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Abstract

Explaining the emergence and stability of cooperation has been a central challenge in biology, economics and sociology.
Unfortunately, the mechanisms known to promote it either require elaborate strategies or hold only under restrictive
conditions. Here, we report the emergence, survival, and frequent domination of cooperation in a world characterized by
selfishness and a strong temptation to defect, when individuals can accumulate wealth. In particular, we study games with
local adaptation such as the prisoner’s dilemma, to which we add heterogeneity in payoffs. In our model, agents accumulate
wealth and invest some of it in their interactions. The larger the investment, the more can potentially be gained or lost, so
that present gains affect future payoffs. We find that cooperation survives for a far wider range of parameters than without
wealth accumulation and, even more strikingly, that it often dominates defection. This is in stark contrast to the traditional
evolutionary prisoner’s dilemma in particular, in which cooperation rarely survives and almost never thrives. With the
inequality we introduce, on the contrary, cooperators do better than defectors, even without any strategic behavior or
exogenously imposed strategies. These results have important consequences for our understanding of the type of social
and economic arrangements that are optimal and efficient.
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Introduction

Explaining the emergence and stability of cooperation has been

a central challenge in biology, economics and sociology [1].

Unfortunately, the mechanisms known to promote it either require

elaborate strategies [2,3], or hold only under restrictive conditions

[4,5]. More recently, a number of new mechanisms have been

shown to facilitate cooperation: the topology of networks

determining the interactions among players [6–16], even though

their robustness has been challenged [17–19]; optional participa-

tion [20]; or reciprocity [21,22]. However, even when these

conditions are met, cooperation typically merely survives but does

not thrive.

Here, we show instead that cooperators can dominate exploiters

even without complex strategies and for a wider range of

parameters than previous models. We obtain this result by

studying heterogeneity among individuals. While this is not the

first study to emphasize the importance of diversity on coopera-

tion, we adopt a different approach in which it is neither

predetermined nor exogenous. In particular, previous publications

have assumed fixed and exogenously imposed heterogeneity in

payoffs [23], strategies [24], or the number of interaction partners

[25]. Here, on the contrary, we allow a more dynamic and

endogenous ‘rich-get-richer effect,’ and we do not impose any

strategy on the players. More precisely, we assume that people can

accumulate gains, and that this accumulated wealth affects the size

of the deals they can potentially reach, so that the rich can get

richer [13,26]. This emergent heterogeneity in which present gains

affect future ones is more realistic than the conventional game-

theoretical assumption of equal payoffs since, in the real world, the

rich typically engage in deals with larger stakes than the poor.

Our study follows the standard literature in analyzing the

problem of cooperation by means of ‘games’—simplified mathe-

matical representations of social or strategic dilemmas. In them,

people interact in a pairwise fashion with members of their local

network, and can take one of two actions: ‘cooperate’ or ‘defect’

(i.e., exploit the other). If both cooperate, they each receive R; if

both defect, they receive P; finally, if only one defects and the

other cooperates, the exploiter receives T , whereas the ‘sucker’

receives S. The well-known prisoner’s dilemma, for example, is

defined by TwRwPwS. These interactions are repeated over

time, and individuals imitate the strategy of the best-performing

member of their interaction network (without forecasting).

To this typical setup, we added inequality by varying gains and

losses across agents in the following manner. In each interaction,

individuals invest a fraction aƒ1 of their wealth (to keep the

model simple, we assume a common a for the entire population),

and the return on this investment is then determined by the

outcome of the game. Assume for example that an individual with

wealth 100 interacts with another with wealth 2. Then, the smaller

budget (here: 2) determines the size of the deal and a the

proportion of wealth actually devoted to it, so that both are

assumed to invest 2a. This is intuitive: middle-income individuals

cannot enter into multi-million deals, and individuals do not

always invest their entire wealth into a single risky deal (hence

aƒ1).

In turn, the payoffs are logically determined by the size of the

deal. To return to our earlier numerical example, if one player

cooperates and the other decides to exploit, the cooperator

receives a gain of 2aS, whereas the defector receives 2aT . These

gains are added to the individual’s existing wealth, which in turn
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affects her future gains. Thus, the nature of the game (be it a

prisoner’s dilemma, a stag-hunt or a snowdrift game) is preserved,

but gains and losses are endogenous, in the sense that they are a

function of past performance. This is the main theoretical

innovation of this paper: payoffs are not exogenously defined,

but rather endogenously determined as a function of the players’

past actions.

Methods

We analyze a spatial game with only two types of behaviors:

cooperation (C) and defection (D). n2 players are randomly

assigned an initial strategy (C or D) and placed on the sites (cells) of

a two-dimensional n|n square lattice with periodic boundaries (a

torus). Time increases discretely (i.e., we use the standard parallel

update, though the results are robust to continuous updating). In

each round, every player interacts with each of its four von-

Neumann neighbors (denoted by j[J ) in a pairwise fashion (self-

interactions are excluded). Thus, each individual plays four games

in each round and her score for the round is the sum of her payoffs

in each of these games. The impact of adopting the ‘Moore’

neighborhood instead will be explored below.

Player i’s payoff in her pairwise interaction with player j at time

t is defined by the matrix

p
ij
t ~a| min (wi

t,w
j
t)|

R S

T P

� �
, ð1Þ

where pi
t denotes i’s cumulative payoff at the beginning of round t.

Note that, if we assumed that individuals i and j invest different

fractions ai and aj of their wealth, a| min (wi
t,w

j
t) would just have

to be replaced by min (aiwi
t,a

jw
j
t), but this is not a relevant issue in

our model. The payoff reflects the idea that the magnitude of the

gains (or losses) two players can obtain is limited by the wealth of

the weaker player. When a rich person meets a poor one, the

stakes of the game they might play are small in absolute terms. Put

differently, a rich player cannot force a poor one into potential

debt. Finally, to avoid division by zero and the intricacies of

negative wealth (‘debt’), we assume that players have a minimal

cumulative payoff of 1 (again, this is no crucial model ingredient.

Alternatively, all payoffs could be shifted by a constant amount

towards positive values.)

At the end of each step, agents update their payoffs and switch

their strategy to the one of their most successful neighbor, but do

not switch if they were the most successful in that round. By

‘successful’, we mean here the amount of gains obtained during

that step. To ensure the robustness of our findings, we also

included a mutation mechanism by which at the end of each

round, one player is randomly chosen to switch its strategy to

defection (no change occurs if a defector is chosen) [27,28].

Unless otherwise specified, the simulations used to generate the

graphs are based on the following setup: 10,000 agents are placed

on a 100|100 torus, each simulation is run for 1,000 steps, and

the results are averaged over 100 different runs for each set of

parameters. The default set of parameters is a~1, R~1, T~2,

S~0, and P~0 (but PwS does not change our conclusions).

These values are standard in the literature on games, but we also

investigated the impact of varying S and T (see below). The

Figure 1. Evolution of cooperation over time. Snapshots of the lattice of a typical run (red denotes defectors, blue cooperators). (A) We start at
t~0 with 50% cooperators. (B) After only a few steps (t~4), the number of cooperators has dramatically decreased, and only a few cooperative
clusters survive. (C) Those who do survive, however, expand (t~50) and (D) ultimately take over the entire lattice (t~400).
doi:10.1371/journal.pone.0013471.g001

Figure 2. Gini coefficient over time in a typical run. The plot
measures inequality by reporting the evolution over time of the
population’s Gini coefficient. We use the players’ cumulative wealth to
calculate the coefficient. Because of the setup in which we allow the
rich to become increasingly rich, the coefficient rapidly reaches extreme
levels, implying that wealth ends up being very unevenly distributed
among individuals, with only a few owning most of the total
accumulated wealth.
doi:10.1371/journal.pone.0013471.g002

Inequality and Cooperation
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interaction network in each simulation is of degree k~4, but we

have also explored extending it to larger degrees (see results

below). We start with 50% cooperators and 50% defectors

uniformly distributed in space. The updating rule is synchro-

nous—that is, all agents update their payoff and strategy

simultaneously at the end of each step. The asymptotic

proportions are determined by averaging over the last 100 rounds

of each simulation. In none of the cases is the standard deviation in

these last steps large enough to suggest any instability that would

warrant a different approach. In other words, the level of

cooperation converges to a fixed, parameter-dependent value.

Results

Extending classical spatial games such as the prisoner’s dilemma

[29] by wealth accumulation and economic inequality yields

striking results. Intuitively, we would expect the ‘rich get richer’

effect to undermine cooperation and, initially, defectors do indeed

obtain a high score, while cooperators perform poorly. This is

because defectors exploit cooperators, thereby securing an initial

level of wealth that allows them to do well. As a result, most

players imitate these successful defectors, and cooperation almost

disappears from the world (Figure 1B). However, those who do

survive are those who were initially isolated from defectors by a

cooperative network, and have thereby accumulated a substantial

cumulative wealth. They have been at the center of a cluster of

cooperators, and hence have been able to accumulate a sizeable

wealth in their first rounds. This wealth then makes them

‘competitive’ against defectors (Figure 1C–D). More precisely,

their wealth enables them to secure large gains with their peers,

but to suffer only small losses when interacting with defectors. This

is because defectors, who perform poorly in the defective

environment that follows the first rounds, have little to invest,

and hence do not pose a great threat to cooperators. Therefore,

after the initial turmoil, and as the world becomes more unequal

(Figure 2), cooperators rapidly take over the entire lattice and

defectors vanish almost completely (Figures 1D and 3).

These results are in marked contrast to the classical spatial

prisoner’s dilemma, in which defectors tend to spread and

Figure 3. Evolution of the number of cooperators over time.
The plot shows the evolution of the number of cooperators over a typical
run (see also Figure 1), with (blue line) and without (red line) wealth
accumulation. Initially, cooperators perform poorly. However, those
cooperators who do survive the initial rounds have accumulated
substantial amounts of wealth and are hence able to survive and spread.
Over time, the proportion of cooperators converges to 1 (but typically
does not reach it). The dashed lines represent two standard deviations.
doi:10.1371/journal.pone.0013471.g003

Figure 4. Asymptotic proportion of cooperators without and with wealth accumulation. The contour plot shows the average final
proportion of cooperators in the world, as a function of the payoff parameters T (horizontal axis) and S (vertical axis). (A) In a world in which payoffs
are homogenous across agents, the proportion of cooperators is low for any Tw1. (B) In an unequal environment, in which the rich can become
richer, cooperation is stable for a much larger range of payoff parameters. The top-left quadrant corresponds to the harmony game (HG); the bottom-
left (Tƒ1 and Sv0) to the stag-hunt (or ‘assurance’) game (SH); the upper-right quadrant (S§0, Tw1) to the snowdrift (or ‘chicken’) game (SD); and
the lower-right quadrant (Sv0 and Tw1) corresponds to the prisoner’s dilemma (PD) [33].
doi:10.1371/journal.pone.0013471.g004
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cooperators do not thrive. There are three main ways to

appreciate these differences. First, in an equal world (the classical

model) in which payoffs are homogenous across agents, the final

proportion of cooperators is low for a wide range of parameters—

in particular those that define the prisoner’s dilemma. That is, it is

very rare and difficult to obtain cooperation, and even more

difficult to sustain it without the rich-get-richer dynamics

considered here. In our setup, however, cooperation is stable for

a much larger range of parameters. More precisely, the asymptotic

proportion of cooperators is larger for a wide range of parameter values

(Figure 4), including in the prisoner’s dilemma and the snowdrift

(or ‘chicken’) games.

Second, cooperation survives more often in our setup. In fact,

cooperation fails to survive only very rarely and only for the

most extreme payoff parameters (Figure 5). This is in particular

contrast the conventional prisoner’s dilemma (without wealth

accumulation).

Finally, and even more strikingly, we find that cooperators

dominate defectors for a far wider range of parameters than under

the classical game rules. That is, not only can cooperation survive

more often, but it thrives and dominates far more than in an equal

world (Figure 6). Without wealth accumulation, the domination of

cooperators is rare for most parameter values—and in particular

for the notoriously hostile parameters that define the prisoner’s

Figure 5. Survival of cooperation without and with wealth accumulation. The contour plot shows the percentage of runs in which at least
1% of cooperators survive after 1000 steps, as a function of the payoff parameters T (horizontal axis) and S (vertical axis). Note that cooperation can
survive in much more hostile conditions (Tw1:5 and Sv0) when payoffs are unequal (panel B) than when they are not (panel A). In particular, for
extreme values (T close to 2 and S close to 21), cooperation never survives without wealth accumulation, but can survive with it.
doi:10.1371/journal.pone.0013471.g005

Figure 6. Domination of cooperation without and with wealth accumulation. The contour plot shows the percentage of runs that end with
more than 99% cooperators, as a function of the payoff parameters T (horizontal axis) and S (vertical axis). In a world in which wealth is not
accumulated (A), the range of parameters for which cooperation can take over is very limited (blue area in A). When the rich get richer (B), however,
the range of parameters is far larger (blue area in B).
doi:10.1371/journal.pone.0013471.g006
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dilemma and the snowdrift games. With wealth accumulation,

however, cooperators fail to dominate defectors only for extreme

values of the prisoner’s dilemma.

We also investigated the impact of varying the proportion of

wealth that individuals invest (a). This proportion determines how

much past gains affect present benefits, i.e. the rate of wealth

accumulation. a~1, for example, means that present payoffs

depend on the full amount of past benefits. a~0:01, on the other

hand, means that only a small portion of the accumulated wealth

affects present payoffs and, correspondingly, the rich-get-richer

effect is small. We find that the larger the ‘‘rich-get-richer effect’’

(Figure 7), the more likely cooperation is to prevail. However,

there is no noteworthy increase in the level of cooperation beyond

a value of a&1. Furthermore, we tested the impact of using total,

cumulative payoffs over time instead of relying on the previous

step’s payoff only, and found our results to be robust to this

specification (Figure 8).

We also investigated the robustness of our findings to changes

in the number of individuals in the world, and found a strong

positive correlation with the likelihood that cooperation emerges

(Figure 9). That is, for any payoff parameters, adding individuals

on the lattice increases the probability that cooperation will

survive and dominate. The logic behind this result is that the

survival of cooperators during the first steps of the game is

critical. Large worlds—those with many individuals—are likely

to have at least one cluster of cooperators of sufficient size to

survive the initial turmoil. Since one such cluster is sufficient to

foster and promote the eventual spread of cooperation, a large

world also increases the chances that cooperation eventually

spreads.

Finally, we changed the degree of the players interaction

network from k~4 (von-Neumann neighborhood) to k~8
(Moore neighborhood). Not only do our results generalize to

this extended neighborhood, but they are even reinforced by it

(Figure 10). The underlying reason is the following: when the

interaction network is large, the likelihood that an initial

supercluster of cooperators emerges is low, since it requires a

large set of contiguous players with a cooperative strategy—the

likelihood of which decreases as the interaction network

increases, since a cluster of 8 surrounding cooperators is far less

likely than one of 4. However, any such cluster is also much

stronger and resistant to invasion than only of 4 players. In other

words, the player at the center of this protective cluster is able to

play cooperate over more interactions at the beginning of the

game than the player surrounded by only 4 cooperators. As a

result, the Moore neighborhood leads to the emergence of very

strong cooperative players that are able to sustain the initial

cluster and to invade the rest of the world. Of course, the

Figure 7. Final proportion of cooperators as a function of a. This
plot shows the impact of the multiplier a (see eqn. 1) on the final
average proportion of cooperators in the world, for typical parameter
values.
doi:10.1371/journal.pone.0013471.g007

Figure 8. Asymptotic proportion, domination, and survival of cooperators, when individuals imitate others based on cumulative
wealth. We tested the robustness of our results by using cumulative payoffs instead of the current step’s payoff as the basis of adaptation. That is,
agents here adapt to the strategy of their most successful neighbor, as measured by the total wealth they have accumulated over time, instead of the
payoff they obtained in the previous step. Panel A shows the final proportion of cooperators in the world (compare with Figure 4). Panel B shows the
percentage of runs that end with more than 99% cooperators (compare with Figure 6). Panel C shows the percentage of runs in which at least 1% of
cooperators survive after 1000 steps (compare with Figure 5). Note that the results basically agree with the ones, when individuals imitate others
based on their payoff in the previous time step, rather than their overall wealth, as is the case here (see Figures 4B, 5B and 6B).
doi:10.1371/journal.pone.0013471.g008
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principle is transferable to larger neighborhoods than k~8, but

unfortunately the probability that a protective cluster emerges

becomes vanishingly small as k increases. Hence, cooperation

then only emerges when the world becomes sufficiently large to

ensure (probabilistically at least) the initial appearance of this

cluster.

Discussion

Our results highlight that emergent heterogeneity through the

rich-get-richer effect can support the welfare of society. Some

economic inequality can dramatically and unexpectedly promote

cooperation, far beyond what would be possible without it.

However, this should not be construed as a call for higher levels of

inequality, since the marginal effect of inequality is decreasing.

Rather, it is the ability for some to build upon previous success that

has an impact on cooperation, but increasing inequality itself

might not be helpful, and could even become detrimental.

Nevertheless, this result has broad theoretical and practical

implications.

At the theoretical level, this finding adds to the existing and

growing research on the impact of diversity on cooperation

[23–25], and more generally on evolutionary games on graphs

[30]. In particular, it shows how cooperation can be reached in

highly hostile environments without any strategic behavior or

memory, and for a wide range of parameters and modeling

choices. It also points to important future avenues for research that

could be explored. For example, the amount of wealth invested in

each round could be a parameter determined evolutionarily and

specific to each individual. It could also be conditional upon the

opponent’s strategy: small investments would be made against

probable defectors, whereas large ones would be reserved for

cooperators. In turn, this might create incentives to defect at the

highest level, when the stakes have become large. Another

extension would be to allow voluntary contributions across

individuals. Donations by the rich to their neighbors (or perhaps

strategically to specific key individuals or areas of the world) could

help foster more cooperation faster by ensuring the survival of a

protective group around them. In this sense, inequality is not the

key to cooperation. Rather, the ability of a few to become richer

and to reward those who cooperate would be a powerful

mechanism to prevent the spread of defection. Finally, more work

is needed on including more complex strategies into the present

framework. How, for example, does tit-for-tat perform in this

context? Are there long-term strategies that would first establish a

reputation for cooperation, and then use their dominating position

to exploit others? In other words, is the high level of cooperation

obtained in our framework susceptible to exploitation by more

complex and long-term strategies?

At a practical level, our result goes against our intuition that

inequality and conflict (e.g., civil war or class tensions) are

positively correlated. However, at least for a moderate inequality,

Figure 9. Cooperation as a function of the number of
individuals. Asymptotic proportion of cooperators as a function of
the number of individuals. A larger number of individuals increases the
likelihood that an initial supercritical cluster of cooperators will survive,
and hence that at least one cooperator is protected sufficiently long to
accumulate enough wealth to outcompete defectors. Hence, for any
given set of parameters, a large number of individuals increases the
probability with which cooperation will prevail.
doi:10.1371/journal.pone.0013471.g009

Figure 10. Asymptotic proportion, domination, and survival of cooperators with wealth accumulation under the Moore
neighborhood. The contour plots shows three different statistics as a function of the payoff parameters T (horizontal axis) and S (vertical axis),
when the players’ interaction network is of degree k~8 (‘Moore’ neighborhood). Panel A shows the final proportion of cooperators in the world
(compare with Figure 4). Panel B shows the percentage of runs that end with more than 99% cooperators (compare with Figure 6). Panel C shows the
percentage of runs in which at least 1% of cooperators survive after 1000 steps (compare with Figure 5). We note in particular that the results we
obtained with the von-Neumann neighborhood hold under the Moore neighborhood, and even that the performance of cooperators is often
improved as a result.
doi:10.1371/journal.pone.0013471.g010
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there is little empirical evidence linking the two, whether macro-

economic data on civil wars [31] or micro-behavioral data from

experiments [32] is used. The US, for example, despite its high

economic inequality, is relatively exempt from class conflicts.

Moreover, the recent financial crisis has raised fundamental

questions regarding appropriate incentive structures and income

distributions. In particular, the extreme incomes in the financial

sector have caused much debate and concern. While we do not

pretend that our study can offer practical recommendation

regarding this issue, we note that the ability to accumulate wealth

is key to the success of cooperation in our model. However, this

does not mean that the extreme inequality observed between Wall

Street and ‘‘Main Street’’ is desirable or even beneficial at all. It

might well be that, combined with other factors, growing

inequality leads to more conflict rather than cooperation. In

addition, while the spread of incomes could in principle be

beneficial if it resulted from cooperative behavior (since it would

then promote the spreading of cooperation by imitation), it is likely

to promote a temporary spreading of defection if it is based on

exploitation. Hence, we wish to warn against applying our findings

too literally for policy purposes before additional work on more

complex strategies has been conducted.
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