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Cluster-based network proximities 
for arbitrary nodal subsets
Kenneth S. Berenhaut1, Peter S. Barr2, Alyssa M. Kogel1,3 & Ryan L. Melvin1,4

The concept of a cluster or community in a network context has been of considerable interest in a variety 
of settings in recent years. In this paper, employing random walks and geodesic distance, we introduce 
a unified measure of cluster-based proximity between nodes, relative to a given subset of interest. The 
inherent simplicity and informativeness of the approach could make it of value to researchers in a variety 
of scientific fields. Applicability is demonstrated via application to clustering for a number of existent 
data sets (including multipartite networks). We view community detection (i.e. when the full set of 
network nodes is considered) as simply the limiting instance of clustering (for arbitrary subsets). This 
perspective should add to the dialogue on what constitutes a cluster or community within a network. 
In regards to health-relevant attributes in social networks, identification of clusters of individuals 
with similar attributes can support targeting of collective interventions. The method performs well in 
comparisons with other approaches, based on comparative measures such as NMI and ARI.

There has been heightened interest recently regarding clustering of individuals in social networks based on charac-
teristics such as tobacco use1, alcohol consumption2, level of happiness3, emotion4, divorce5, cultural preferences6,7, 
gun violence8, and general health behaviors and attitudes9–15 (see Fig. 1). However, there is little notion of what 
definitively constitutes a tightly or diffusely knit cluster in such instances. The requirement that individuals com-
prising a cluster be linked via path-wise attachment (through nodes of similar characteristic) may not be appro-
priate, particularly in cases where there may be missing data regarding links or nodal attributes. Here we provide 
a notion of proximity of nodes restricted to a subset for a network, which is then well-suited for analysis via extant 
clustering procedures. The method can be applied with informativeness through all levels of subset size, from only a 
few nodes in a large network through consideration of the limiting case of all nodes (commonly referred to as com-
munity detection or graph partitioning; see for instance Porter et al.16, Newman17, Schaeffer18 and Fortunato19,20). 
The work here has applications in scientific fields where networks with nodal attributes arise including biology, 
ecology, neuroscience, physics, computer science, sociology, psychology, chemistry, and economics. One side ben-
efit of the approach is that, applied in community detection, it is parsimonious and simple (see Eq. 1). To the best 
of our knowledge this is the first work specifically providing a measure of proximity between nodes that adequately 
reflects cluster membership for restriction to arbitrary nodal subsets on arbitrary networks (including non-spatial 
networks; see Related Work). This should add to the dialogue on what constitutes a community within a network. 
As mentioned in21, in regards to health-relevant attributes in social networks, identification of cliques or clusters of 
individuals with similar attributes can support targeting of collective interventions.

The remainder of the paper proceeds as follows. We first introduce the concept of community-relative distance 
(see Community-relative Distance), and then turn to discussion of applications in the context of related work (see 
Related Work and Applications and Discussion). The paper ends with some technical computational considera-
tions (see Materials and Methods).

Community-Relative Distance
Consider a network represented as a graph, G = (V, E), with a set of vertices or nodes, V, and a set of edges, E (see 
Fig. 2 for an example of a 25-node, 40 edge graph). We assume the graph is connected and undirected, and the 
edges are unweighted (although it is not difficult to extend the work to weighted edges). Suppose some subset of 
nodes, S, is selected. These nodes could represent, for instance, infected individuals in a social network (or indi-
viduals with specific attributes, such as obesity or other health behaviors), suspected terrorists in a communication 
network, crimes on a spatial city street network, genes and conditions in gene expression networks, disease-related 
genes, proteins, or metabolites in an interaction network, etc., or simply nodes of high degree in a larger network.
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The underlying idea, here (see the example in Fig. 2), is that if two nodes, i and j, are part of a closely-knit 
community, then an individual resting at node i and perturbed off the node should encounter first (via randomly 
walking) a subset node “close” to node j. Specifically, for any two nodes, i and j in S, consider a random walk 
on G departing from node i. We define the distance from i to j (relative to the members of S), as the expected 
shortest-path (or geodesic) distance to j of the first node in S that the random walk encounters. We denote the 
resulting |S| × |S| matrix of distances as D.

Now, define the distance between i and j (again, relative to the members of S) to be the smaller of the two 
associated distances (i to j and j to i), with the intuition that connections can be asymmetrically initiated (see 
Remark 1, below). Note that the reflexive distance between node i and itself is taken to be zero. In what follows, 
for convenience, we will refer to the resulting symmetric |S| × |S| matrix of distances as D* (given for the example 
in Fig. 2a in Fig. S1), and the individual entries as community-relative distances. The reader is referred to Lovász22 
and Aldous and Fill23 for discussion of random walks on graphs, and Pons and Latapy24, Zhou and Lipowsky25, 
and Zhou26 for some discussion in the context of community detection (see also Related Work, below). For a sur-
vey on distance measures on graphs, see27, and the references therein; for discussion of kernel-based measures, see 
for instance28. In general, one could replace the shortest-path distances used here with another context-dependent 
measure (including D, in an iterative fashion).

Remark 1. Note that the distances from i to j and j to i may be quite different. For the network in Fig. 2(a), con-
sider a random walk departing from node 4. The expected distance to node 9 of the first node in S that the walk 
encounters is 0.83 (reflecting likely encounters with nodes proximate to 9, such as 8 and 9, itself). On the other 
hand, for a random walk departing from node 9, the corresponding expected distance to node 4 is 1.52 (reflecting 
potential encounters with nodes distant to 4 such as 13 and 20).

Figure 1.  Examples of social networks with noted clustering of nodes of interest. The figures have been 
reproduced by permission of the authors of the respective manuscripts; for further details see the references 
as indicated. (a) A network of individuals in 2000 from the Framingham Heart Study (FHS) Social Network9. 
Connections arise from friendship, marital and familial ties. Yellow nodes indicate individuals with body mass 
index greater than or equal to 30, and nodes are colored green otherwise. The size of each node is proportional 
to the individual’s body-mass index. The authors of9 note that clusters of obese and non-obese individuals are 
visible in the network. (b) A network of individuals in 1996 from the FHS Social Network3. Colors indicate 
mean happiness of egos and all directly connected alters, on a spectrum from blue (unhappy) to yellow (happy). 
Happiness is measured via the Center for Epidemiological Studies depression scale. The authors of3 note that 
“clusters of happy and unhappy people are visible in the network”. (c) A social network of individuals in 2007 
ascertained using Facebook21. Ties indicate the connected individuals were tagged in a photo together. Yellow 
nodes reflect individuals who are smiling in profile photographs and surrounded by others who are smiling. 
Similarly blue nodes reflect individuals who are frowning, surrounded by others who are frowning, and green 
indicate a mix of smiling and non-smiling friends. The graph suggests clustering of both blue and yellow nodes. 
In addition those who do not smile appear to be more scattered towards the peripherally in the network. (d) 
A social network of individuals in 2007 whose social ties were ascertained via Facebook6. The interior color of 
the nodes indicates the individual’s taste in music. The graph suggests clustering (both diffuse and closely-knit) 
based on musical tastes within the network. (e) A network of individuals in 2000 from the FHS Social Network2. 
Node color denotes the alcohol intake of the subject, with red indicating an abstainer and blue indicating heavy 
intake (yellow nodes indicate moderate intake). As noted by the authors of2, “the graph suggests clustering 
in abstention and heavy alcohol consumption behavior”. (f) A network of individuals from the National 
Longitudinal Study of Adolescent Health (Add Health) Social Network76, started in 199477. Node color indicates 
genotypes for DRD2 (which has been associated with alcoholism). The graph suggests clustering of genotypes.
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Example 1. Figure 3a gives a dynamic perspective, which illustrates the connection between community-relative 
distances as suggested above and cluster membership. Consider the 165-node, 15 × 11 grid graph, G, with nodal 
subset S consisting of the 25 nodes in the 5 × 5 sub-grid in black, as well as the two nodes A and B shaded grey. 
For a random walk departing from Node A, the expected distance to B of the first node in S encountered is 2.55, 
as initial entry into S is likely to occur at a black node distant to B. Now, consider S augmented by the node at the 
position labeled 1; the expected distance now shrinks slightly to 2.53. The expected distances for the 28-node 
subsets obtained by augmenting with nodes 2 through 7 (in turn, in place of 1), are indicated adjacent to the cor-
responding node. Note that as the additional node is moved from positions 1 through 7, nodes A and B are in a 
sense drawn closer together, as the distance between them shrinks from 2.55 (with no added node) to 2.31 (for an 
added node at position 7). In a more general sense, two nodes at fixed position in a network will be drawn closer 
in community-relative distance when there are other proximate network nodes in the subset of interest. The sce-
nario reflects a cooperation pattern between nodes in a community, and the leveraging of distance-based informa-
tion from proximate nodes, particularly through weak ties29.� 

Example 2. Figure 3b provides a simple example of an 8-node graph, with community-relative distances for pairs 
at shortest-path distance one indicated adjacent to the corresponding edge. Note that the tie between node 3 and 
node 5 is one of greater community-relative distance, suggesting separation, while the ties in the clique consisting 
of nodes 5–8 correspond to smaller community-relative distance.� 

(a) (b)

(c) (d)

Figure 2.  (a,b) A subset of ten selected nodes within a larger network of 25 nodes. A sample path for a random 
walk departing from node 4, and eventually entering the set of selected nodes at node 13 is indicated with 
dashed lines. The solid red line indicates a shortest path to the “target” node, node 9. A resulting dendrogram 
(via average-linkage clustering) is given in (b). A separation into three distinct clusters can be seen in the 
dendrogram. (c,d) The 25 node network with S comprised of all 25 nodes. A one-step sample path for a random 
walk departing from node 4, entering the set S at node 5 is indicated with dashed lines. The solid red line 
indicates a shortest path of length two to node 9. A resulting dendrogram is given in (d). A separation into three 
clusters (communities) can again be seen in the dendrogram.
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Community-relative distances could have potential use in missing link or attribute prediction, wherein small 
distances between unconnected nodes could suggest potential edges, and a large cluster of mixed attribute nodes 
could suggest missing attributes.

Employing D*, it is possible to cluster the elements of S via standard extant procedures. Unless specified oth-
erwise, the results in what follows here arise from employment of average-linkage hierarchical clustering on D*, 
i.e. sequentially combining two clusters with the lowest average distance between pairs (see for instance Lazega 
et al.30 and Newman31 for discussion of hierarchical clustering). As mentioned in Related work below (see also 
Figs 3b, S2 and S3 and Applications and Discussion), community-relative distances reflect separation between 
clusters, and provide robust results under different clustering procedures (see Fig. S3). It can be worthwhile to 
look at the resulting dendrograms for overall clustering patterns and, if desired, natural locations to “cut” S into 
clusters (see Fig. 2b,d). There are several methods available for searching for appropriate dendrogram cut-points 
(see for instance32). For comparison purposes, below, to estimate reasonable stopping conditions, we employ 
an average silhouette width criterion (ASW; see33) as well as the variance ratio criterion (VR) of Caliński and 
Harabasz34 (see Related Work as well as Figs S4 and S5); similar results are obtained using other common extant 
methods. Also available are non-hierarchical methods such as partitioning around medoids (see35).

Importantly, note that in the case where S = V, i.e. all (say n) nodes are selected, the community-relative dis-
tance from node i to node j, described above, reduces to simply the average of the shortest-path distances from 
the direct neighbors of i to j. In fact, computation reduces simply to

= −D PD I, (1)s

where P is the transition matrix for a random walk on the graph G, Ds is the matrix of shortest path distances and 
I is the identity matrix (of size n). For further details and discussion of computational complexity in the general 
case, see Materials and Methods, below.

Related Work
Closest to the work presented here, specifically in the limiting case of community detection, is the popular 
Walktrap method of Pons and Latapy24. Therein, random walks are also employed to obtain distances which can 
then be used in agglomerative hierarchical procedures. In particular, therein, the distance, ri,j between nodes i and 
j is defined for fixed t ∈ {1, 2, …} via

Δ Δ= −−
⋅

−
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Figure 3.  (a) A 15 × 11 grid with set S consisting of the 5 × 5 sub-grid at the top (in black) as well as the two 
nodes A and B. The community-relative distance between A and B is 2.55. The updated distance when a single 
node is added at one of the locations denoted 1 through 7, is given to the right of the respective location (see 
Example 1). Note that as the extra node approaches A and B, the two nodes become more proximate, in a 
sense shrinking the space between A and B, as they become part of a stronger community. (b) A simple 8-node 
graph. Community-relative distances for nodes at shortest-path distance one are indicated adjacent to the 
corresponding edge. Note that the tie between node 3 and node 5 is one of greater community-relative distance, 
suggesting separation, while the ties in the clique consisting of nodes 5–8 correspond to smaller community-
relative distance (see Example 2).



www.nature.com/scientificreports/

5ScientiFic REPOrTS |  (2018) 8:14371  | DOI:10.1038/s41598-018-32172-0

where Δ is a diagonal matrix with diagonal entries Δi,i = d(i), d(i) is the degree of vi, ⋅Pl
t
,  is the column probability 

vector ≤ ≤P( )l k
t

k n, 1 , P = [Pi,j] is the transition matrix for a random walk on the graph G, and |·| indicates the 
Euclidean norm on n. A plot of these distances against community-relative distances for a cat cortical network 
(see36 and Applications and Discussion, below) is given in Fig. 4. Note that the ordering of distances is quite dif-
ferent in the two cases. In terms of community detection, community-relative distance does have advantages: (i) 
there is no need to choose an appropriate parameter t. The Walktrap method can be sensitive to values of t, as well 
as the choice of agglomerative method (compare Figs S2 and S3). (ii) Community-relative distances are particu-
larly simple and parsimonious (See Eq. 1), while computational times are similar for the two methods, (iii) units 
of resulting distances are easily interpretable in terms of shortest path distance and (iv) most importantly, there is 
no immediate counterpart to clustering restricted to subsets in the case of the Walktrap algorithm.

Figure 5a contains adjusted Rand index (ARI; see37), and normalized mutual information (NMI; see38) values 
for agglomerative clustering (employing average-linkage and a VR stopping condition) for some common net-
works possessing reasonable ground truths, via a range of common distance measures; for discussion of Jaccard 
and cosine similarity measures, see for instance39 and the references therein. Note that community-relative dis-
tance performs comparably or considerably better for the six common networks considered. For similar results 
employing ASW, see Fig. S4. The networks are discussed further in Applications and Discussion, below.

Figure 5b contains ARI and NMI values for the six network data sets, employing nine methods built into 
the igraph package in R (see40), alongside those for community-relative distance using both ASW and VR stop-
ping conditions. Again community-relative distance performs comparably or considerably better for the net-
works considered. Plots and dendrograms under community-relative distance are provided in Applications and 
Discussion, below; for plots of associated ASW and VR values, see Fig. S5. For general discussion regarding 
comparing clusterings see for instance41. For other work related to community detection and random walks see25 
and26 and the references therein.

In terms of restriction to nodal subsets, there has been considerable work recently in the special case of types 
within bipartite networks (see42–51). For discussion of community-relative distance in this context see Applications 
and Discussion, below. It is important to note that, contrasted with methods specific to bipartite networks, the 
perspective proposed here imposes no assumptions on the edge structure of the network considered, nor the sets 
under consideration for clustering.

For some recent work on attributes in the context of clustering, see52. Although different in scope, it is worth 
noting connected work on clustering in spatial networks (see for instance53). Community-relative distance is 
applicable for arbitrary (potentially non-spatial) networks, and may be of some potential future use in existing 
algorithms for spatial networks, in place of often considered geodesic distance. In addition, there has been impor-
tant recent work employing stochastic complementation54 in the context of restriction to subsets of network 
nodes (see55 and [28, Section 10.4.5]).

Applications and Discussion
In this section, we consider community-relative distance applied to several data sets, first in the context of proper 
nodal subsets, S, of interest, and finally in the context of community detection.
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Figure 4.  A plot of Walktrap (t = 4) distances against community-relative distances for the cat cortical network.
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Nodal subsets.  In Fig. 6a–f, we consider a macaque cortical network56. Employing community-relative dis-
tances and average-linkage clustering on the subset consisting of the cortical areas within the visual cortex, we obtain 
a fairly clear partition into two clusters as indicated in Fig. 6a,b. A histogram displaying community-relative dis-
tances is given in Fig. 6c (see also Fig. S13). For comparison, there are only three distinct shortest path distances: 1, 2, 
and 3; a tabulation of these is given in Fig. 6d (see also Fig. S14). If agglomerative clustering were to be implemented 
given the shortest path distances, final results could depend heavily on the choices when dealing with tied distances 
(see Fig. 6e,f). In Fig. S6 we provide a two-clustering for each of the two factions which arose for the karate club at a 
large state university studied by Zachary57. The corresponding D* matrices are given in Figs S7 and S8, respectively.

Since it is possible to consider any subset S contained in V, it is feasible to consider nodes of a particular type 
in a multipartite network. Davis et al.58 studied a group of 18 women and their observed participation in social 
events. Here we obtain the dendrogram in Fig. 6g,h. The suggested structural split into clusters (via ASW or VR) 
matches well with those in the meta-analyses of 21 studies as presented in59, Fig. 7; the match is exact with two of 
the methods considered therein. Similarly, consider the bipartite network of US Supreme court justice decisions 
for the 2000–2001 term60, depicted in Fig. S10. Here edges are drawn from each of the nine justices to any of 24 
important cases for which they voted in the minority (two of the 26 cases from the original data had unanimous 
decisions). It is possible to consider the justices and cases, separately, by taking S as the set of justices, or the set of 
cases, respectively. Clusterings of the justices into 4 groups, and cases into 7 groups match exactly those as sug-
gested in60, Fig. 1; see Fig. S10. For other discussion of analyzing community structures in two-mode (bipartite) 
networks, see for instance61 and the references, therein. As mentioned earlier, contrasted with extant methods 
specific to bipartite networks, the perspective proposed here imposes no assumptions on the edge structure of the 
network considered, nor the sets under consideration for clustering.

For an additional example, in Fig. 7 we consider three disease subsets from the human disease network62 
consisting of disorders and the disease genes whose mutations are associated with the disorders. Histograms for 
community-relative distances for cancer, neurological and skeletal diseases are given in Fig. 7b–d, respectively. 
Note the distinct differences in the distributions of community-relative distances for the three disease node sub-
sets. Cancer nodes are more closely positioned within the network; whereas, neurological and skeletal disease 
nodes are more diffusely positioned. Analyses informed by community-relative distance may aide in uncovering 
key cellular pathway components that lead to disease. A network plot and dendrograms for the three disorder 
classes are given in Figs S11 and S12.

Figure 5.  (a) ARI and NMI values for agglomerative clustering (employing average-linkage and a VR stopping 
condition) for some common networks possessing reasonable ground truths, via a range of common distance 
measures. The networks are discussed further in Applications and Discussion, below. For discussion of Jaccard 
and cosine similarity measures, see for instance39 and the references therein. (b) ARI and NMI values for the 
six network data sets, employing nine methods built into the igraph package in R (see40), alongside those for 
community-relative distance using both ASW and VR stopping conditions.
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Community detection.  Figure 8a–l contains plots and dendrograms for the networks considered earlier 
from a numerical perspective in Related Work; for full numeric comparisons with other methods, see Fig. 5. For 
the case of the karate network (Fig. 8a,b), we obtain a two-clustering which captures the factions suggested in57 
(ARI and NMI values of 1). As noted therein, Individual 9 was “a structural part”57 of the group assigned to in 
Fig. 8a; however, following fission of the original club, this individual did join the other group (due to some per-
sonal motivation). The corresponding full D* matrix of community relative distances is given in Fig. S9.

In the case of the network produced by Lusseau from following a pod of dolphins in Doubtfull Sound, off the 
coast of New Zealand63 (Fig. 8c,d), we find results which nearly match the factions encountered in64 (2 nodes 
misclassified; an ARI value of 0.93; and NMI value of 0.89). In Fig. 8e,f, we consider the macaque brain network 
considered earlier. Here, we obtain a clear separation into two clusters which reflects membership in either the 
visual or sensorimotor cortices (1 node misclassified; ARI value of 0.91; and NMI value of 0.86). As a further 
example of community detection on a highly connected graph, we consider the cat cortical network discussed 
by Scannell et al. (see Fig. 8g,h)36. We find that the results obtained via community-relative distance is in strong 
agreement with the standard classification into four major thalamocortical systems36 (5 nodes misclassified; ARI 
value of 0.55; NMI value of 0.62).

Finally, for the case of community detection, we provide two additional examples. The first is a network 
with (American) collegiate football teams as nodes, and edges representing games played against one another65. 
Community-relative distance and average-linkage clustering (see Fig. 8i,j) quite clearly split these teams into the 
underlying conferences with accuracy (4 nodes misclassified – all independent teams; NMI value of 0.97; ARI 
value of 0.94). Some novel characteristics of the dendrogram may be noted, including the fact that many teams 
which later joined the Atlantic Coast Conference (ACC) are situated close to the ACC teams in the dendrogram. 
We also obtain similarly appropriate results with a network of politically themed books with edges connecting 
books commonly purchased together on amazon.com66. Here community-relative distance and average linkage 
clustering split the books quite well into groups of political affiliation, as identified by Newman67 (4 conservative 
or liberal nodes misclassified; ARI value of 0.67; and NMI value of 0.60).

Remark 2. Note for the latter two examples in the section, results can be improved, if we restrict the set S to only 
nodes of interest. In the case of the football network, if we exclude consideration of independent teams (without 
conference membership), we obtain a perfect eleven-clustering into conferences (ARI and NMI values of 1). 
Similarly for the political blogs network, restricting S to the set of non-neutral books leads to only 3 books being 
misclassified.� 

Figure 6.  (a,b) An application of community-relative distance to the 30-node visual cortex subset within 
the 45-node cortical pathways network of the macaque monkey (see56). Note that we employ the force-
directed layout algorithm of Fruchterman and Reingold78, throughout for network plots. (c,d) A histogram 
of community-relative distances is given in (c). The 435 distinct pairs of subset nodes are comprised of 181 at 
(shortest-path) distance one, 235 at distance two and 19 at distance three (see (d)). (e,f) A cut into two clusters 
using average linkage hierarchical clustering and shortest-path distances for the 30-node visual cortex, for two 
permutations of the vertex order. Note the sensitivity to vertex order. (g,h) Two-clustering (via community 
relative distances and average-linkage clustering) for the nodes representing the 18 women in the bipartite 
network of Davis et al.58.
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Materials and Methods
In this section we address computing of the (distance) entries in the matrix D = [di,j]. Code in the R programming 
language is available upon request.

Suppose G = (V, E) and ⊆S V  are fixed. Let A = [Ai,j] be the adjacency matrix for G, i.e. Ai,j = 1 if (vi, vj) ∈ E 
and zero otherwise, I be the n × n identity matrix, and Δ be a diagonal matrix with diagonal entries Δi,i = d(i), 
where d(i) is the degree of vi.

For a general subset = … ⊆S s s s V{ , , , }m1 2 , the matrix D can be obtained in the following manner. Define 
the matrix L = [Li,j] via

=









=
− ∉ ∈ .L

i j
d i v S v v E

1 if
1/ ( ) if and ( , )

0 otherwise (3)
i j i i j,

Note that L is similar to the random-walk normalized Laplacian matrix, L* = I − Δ−1A except that if vi ∈ S, 
then the i-th row of L* is replaced with ei = (0, 0, …, 0, 1, 0 …, 0), i.e. the i-th row of the n × n identity matrix. 
Now, set

=
∼−D̂ PL D , (4)s

1

where ∼Ds is similar to the matrix of shortest path distances Ds, except that if vi ∉ S, then the i-th row of Ds is 
replaced with 0 = (0, 0, …, 0 …, 0), i.e. a null n-vector of zeros. The (i, j)-entry in D̂ is then the community-relative 
distance from node i to node j relative to the set S.

As suggested in Eq. (4), the process of computing community-relative distances requires (i) all pairs 
shortest-path distances between nodes in S, (ii) a solution to =

∼LX Ds, and (iii) computation of the product 
=D̂ PX . Note that for (i), the full matrix of shortest-path distances (or an approximation, see for instance68–70) 

are often available, as these arise in standard preliminary network analyses (and elsewhere), even for relatively 
large networks. When this is not the case, some savings may be possible since only intra-set distances for S are 

Figure 7.  (a) The human disease network62. Here nodes corresponding to cancer, neurological and skeletal 
diseases are highlighted in green, grey and brown, respectively. (b–d) Histograms for the corresponding 
community-relative distances. For additional considerations for the human disease network, see Figs S11 and 
S12.
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required. For (ii), L can be viewed as the normalized random walk Laplacian for a directed variant of the graph G, 
wherein outgoing edges from nodes in S have been removed. Here, recently developed Laplacian solvers (see71) 
may be employed and computation can then be sub-quadratic in n (at least for sparse graphs). As |S| increases, the 
matrix L becomes increasingly sparse, and in the extreme case where S = V, we have that L is simply the identity 
matrix I. Since, within each column of X, one needs only solve for |Sc| entries, computations can be reduced to

| | | | + | || | | |O E S E S S(( ) ), (5)cc
c

cc
c3/4 2/3

where Ecc denotes the set of within-Sc edges and the O notation suppresses polylogarithmic factors?. For the mul-
tiplication in (iii), note that to obtain the |S| × |S| matrix of within-S community-relative distances, we may con-
sider the sparse multiplication of a |S| × n matrix P  and an n × |S| matrix ∼X , where P  consists of the |S| rows of P 
corresponding to the elements in S, and ∼X  consists of the |S| columns of X corresponding to the elements in S. 
Note that P  contains |ES.| non-zero entries, where ES. is the set of edges outgoing from S, and hence the number of 
operations is of order

| || | ..O E S( ) (6)S

As mentioned earlier, community-relative distances provide expanded separation between clusters. We have 
employed average-linkage hierarchichal clustering, here, which has complexity O(|S|2) (see72,73), in an effort to 
show that even naive clustering procedures can work well. One may chose to employ D in other proximity-based 

Figure 8.  Graph plots and dendrograms (employing community-relative distance and average-linkage 
hierarchical clustering) for the six full networks considered in Fig. 5. (a,b) A two-clustering for the karate 
network of Zachary57. (c,d) A two-clustering clustering for the dolphin social network63. (e,f) A two-clustering 
for a 45-node cortical pathways network of the macaque monkey56. (g,h) A four-clustering for the cat cortical 
network36. (i,j) A twelve-clustering for the nodes representing the 2000–2001 NCAA football teams in the 
network of Girvan and Newman65. (k,l) A two-clustering for the political books network66. The nodes are 
colored to reflect apparent political affiliation (white for neutral, green for conservative and yellow for liberal), 
as suggested in67. Black is used in the dendrogram labels, in the neutral case, in place of white.
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methods, as appropriate in applications. For a discussion of exact and approximation methods, with savings in 
both time and space complexity, see74,75.

In the case S = V, as mentioned earlier, the matrix D has a simple form given via

= − .D PD I (7)s

Code Availability
The computations here were performed using the R programming language; a documented package which em-
ploys optimized routines in C++, is available upon request.
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