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Understanding individual decisions in a world where communications and information
move instantly via cell phones and the internet, contributes to the development and
implementation of policies aimed at stopping or ameliorating the spread of diseases. In
this manuscript, the role of official social network perturbations generated by public health
officials to slow down or stop a disease outbreak are studied over distinct classes of static
social networks. The dynamics are stochastic in nature with individuals (nodes) being
assigned fixed levels of education or wealth. Nodes may change their epidemiological
status from susceptible, to infected and to recovered. Most importantly, it is assumed that
when the prevalence reaches a pre-determined threshold level, P�, information, called
awareness in our framework, starts to spread, a process triggered by public health au-
thorities. Information is assumed to spread over the same static network and whether or
not one becomes a temporary informer, is a function of his/her level of education or wealth
and epidemiological status. Stochastic simulations show that threshold selection P� and
the value of the average basic reproduction number impact the final epidemic size
differentially. For the Erd}os-R�enyi and Small-world networks, an optimal choice for P� that
minimize the final epidemic size can be identified under some conditions while for Scale-
free networks this is not case.

© 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The decisions that individuals make over an epidemic outbreak depend on multiple factors. Here, they are assumed to
depend on available information, misinformation, and the income/education of those making them (Del Valle, Hethcote,
Hyman, & Castillo-Chavez, 2005; Fenichel et al., 2011; Herrera-Valdez, Cruz-Aponte, & Castillo-Chavez, 2011; Perrings
et al., 2014; Towers et al., 2015). There are multiple possible scenarios that consider the decisions that individuals may
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make over the course of an outbreak. Individuals may modify their behaviors in order to reduce their environmental sus-
ceptibility to a disease bywashing their hands frequently, avoiding handshakes and avoiding kissing salutes, not taking public
transportation during rush hours, using masks and more. The frequency and effectiveness of these decisions may depend on
the perceived risk of infection, a function of what each individual “knows”. In short, individual responses to new circum-
stances are adaptive and may depend on real or perceive risks of infection. Current disease prevalence, may become amarker
or a tipping point, that when crossed, triggers individual or policy decisions. Whether or not individuals follow public health
officials’ recommendations may be a function of individuals’ economic/educational status. The determination to make a
drastic decision may be weakened or reinforced by each individual’s networks of friends. Responses are altered by the
opinions of work-related connections. Personal needs play a role, and they include the need to use public transportation or
the desire to attend a social event.

The landscapewhere behavioral decisions take place is not fixed. On the contrary, it may be altered fromwithin (individual
decisions) or by the use of preventive or active public health policy decisions or recommendations, some “obvious” like
vaccination or quarantine, others drastic like mandated social distancing, as in the 2009e10 flu pandemic inMexico (Herrera-
Valdez, Cruz-Aponte, & Castillo-Chavez, 2009). Now, whether the dynamical changes experienced by the socio-
epidemiological landscape are slow or fast, will depend on many factors. It is within this, often altered, complex adaptive
dynamical system, that individual decisions such as individually-driven social distancing, the use of face masks, frequent
hand washing, increased condom use, and or the routine use of non-pharmaceutical interventions, takes place (Wang,
Andrews, Wu, Wang, & Bauch, 2015). It has been theoretically and computationally documented (Barrett et al., 2009;
Funk, Gilad, Watkins, & Jansen, 2009; Funk & Jansen, 2013; Hyman & Li, 2007; Misra, Sharma, & Shukla, 2011; Perra, Balcan,
Gonçalves,& Vespignani, 2011; Tracht, Del Valle,& Hyman, 2010) that massive behavioral changes can impact the patterns of
infection spread, possibly playing a critical role in efforts to prevent or ameliorate disease transmission. Today policies are
implemented regardless of our knowledge of who are the “drivers” responsible for inducing behavioral changes. Modeling
frameworks exist that allow for the systematic exploration of possible scenarios. Through a systematic exploratory analyses of
appropriately selected classes of scenarios, it is possible to identify possibly effective (model-evaluated) public health policies.
The use of highly detailed models including individual-based models has some advantages since they can incorporate in-
dividuals’ awareness of risk based on available of local information. The evaluations carried out on the effectiveness of
changes, at the individual level, can be used to assess, for example, the impact of non-pharmaceutical interventions in
reducing disease prevalence.

Models that couple disease dynamics and awareness to levels of infection risk have been proposed. These models have
been used to explore the impact of behavioral changes on the spread of infection. In the review paper of Wang et al. (Wang
et al., 2015) classify models as Rule-Based Models, those where individuals make their decision about changing behavior
independently of others, and Economic-Epidemiology models (EE models), that is, models where individuals change their
behavior in order to maximize their own utility function (what they value) subject to available resources. The EE models
account for the responses that individuals take in response to infection risks on disease prevalence at the population level.
The modeling and results reported in this manuscript are more closely related to those used in Rule-Based Models.

Ruled-Based Models (Epstein, Parker, Cummings, & Hammond, 2008; Hyman & Li, 2007; Kiss, Cassell, Recker, & Simon,
2010; Misra et al., 2011; Perra et al., 2011; Poletti et al., 2009, 2011, 2012; Sahneh, Chowdhury, & Scoglio, 2012) vary from
compartmental ODE models (Hyman & Li, 2007; Misra et al., 2011; Tracht et al., 2010) to individual-based network models
(Funk et al., 2009; Granell, G�omez, & Arenas, 2013; Meloni et al., 2011; Wu, Fu, Small, & Xu, 2012). These models have been
used to study the dynamics of highly diverse diseases including, for example, influenza and HIV (Fraser, Riley, Anderson, &
Ferguson, 2004; Poletti et al., 2011), or in the study of generic infections (Kiss et al., 2010; Misra et al., 2011; Perra et al.,
2011; Poletti et al., 2009, 2012). Compartmental models (often using a phenomenological approach) categories designed
to capture levels of awareness of infection. Such approach that can be used to incorporate ‘awareness’ in network models, is
the objective of this manuscript. Some models assume that “awareness” spreads along with the invading disease, that is,
through identical contact networks. Here, it is assumed that the disease and information spread over the same social network
(a drastic simplification). The possibility that awareness and responses to the presence of a new infection among a subset of
the population at risk, may significantly alter regular temporal patterns of disease prevalence (lower highs) have been
studied. Studies have also shown that epidemic thresholds can be altered (Perra et al., 2011; Poletti et al., 2009; Sahneh et al.,
2012) in response to the effectiveness of non-pharmaceutical intervention. Here, the focus is on the role of policy decisions/
recommendations in altering disease dynamics, possibly the final epidemic size, within a model where awareness (generated
by official actions) spreads among those susceptible to infection and their ‘friends’.

In this paper, we explore the impact of various, prevalence-dependent pre-selected thresholds (decisions made by public
health officials) as triggers of possibly temporarily behavioral change. The time to a triggering event is assumed to depend on
the prevalence of infectione a decision taken by health authorities (declaring some level of health emergency). We carry out
simulations to explore the impact of variations on triggering prevalence-driven levels on the final epidemic size of a non-fatal
infection under three distinct fixed artificial social structures modeled as, Erd}os-R�enyi, Small-world, and Scale-free networks.

2. Modeling framework

The model captures changing disease transmission dynamics by incorporating-after a health emergency has been
declared-risk information propagation, that play by assumption, over the same social network. Risk information is
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transmitted at different rates depending on the economic/education levels of individuals. We focus on single outbreaks,
within a SusceptibleeInfectedeRecovered (SIR) framework. The dissemination of awareness (risk information) among the
susceptible population, a process triggered by the declaration of a health emergency by the public health authorities, gen-
erates temporary changes on the knowledge and understanding of risk of infection, thus altering their activity and effec-
tiveness as communicators of risk. Becoming aware of the risk of infection and inciting our ability to communicate risk, takes
place at a rate modeled as a function of the economic/educational level of individuals in the network. Economic/educational
levels are preassigned qualities to individuals in the network from pre-selected distributions. A susceptible individual may be
a member of three sub-classes of susceptible: Unaware, Su, Aware, Sa and Indifferent, Si. Unaware individuals that become
aware of the risk of infection may (depending on their economic/educational level), change their state to Aware, that is, be
ready to convey information, with different levels of enthusiasm, on the risks of the infection to neighbors in the network.
Aware, is assumed to be a temporary state and so a transition to the Indifferent state is included. The triggers that determine
or drive awareness state are a function of the disease prevalence level and not the time since start of the outbreak. The case
when delays in transmitting real-time prevalence information to public health officials takes place, the most likely scenario is
not considered. However, we know that it brings additional consequences (see (Velasco-Hern�andez, Brauer, & Castillo-
Chavez, 1996)).

The activation process of public awareness takes place within a time framework determined by the actual (reported in
general) disease prevalence and so, it is a function of the epidemic outbreak growth rate. We let P� denote the pre-selected
level of prevalence identified by public health officials as the triggering threshold after which, a public awareness process
campaign is initiated via mass media, word of mouth, social media and the like, with timing selection by public health of-
ficials. A disease outbreak may be about to reach unacceptable levels, with P�, being the pre-selected tolerance level before a
health emergency is declared. The P� determines the time t� when the information campaign starts (see Fig.1). The t� ¼ t�ðP�Þ
identifies the public health system threshold that forces public health action aimed at reducing outbreak consequences. The
actual changes in behavior are determined by an stochastic process, and so, the shift in behaviors, is a function of “chance”.

Before t�, the dynamics are governed only by the disease transmission process. At the time t�, the model activates in-
formation process that models to behavioral change that reduce disease transmission. Therefore, t� denotes the time when
prevalence reaches P� for the first time, Fig. (1).

Sub-section 2.1 introduces the details of our network model, starting with the network structure and node attributes that
are used to represent individuals in the network.
2.1. Network structure

The network is denoted by G ¼ ðV;EÞwhich includes a set N ¼ jVj of nodes representing individuals V ¼ fiji¼ 1;2;3;…Ng
together with a binary adjacency relation defined by the set of edges E ¼ fijji; j ¼ 1;2;3;…Ng, where ij denotes the edge
between individual (node) i and individual (node) j. We make use of three network structures, namely, Erd}os-R�enyi, Small-
world, and Scale-free networks -defined in the Appendix-as models of our social landscape, the place where infection and
awareness spread and behavioral change take place.

After generating the network (Bollob�as et al., 2003; ERDdS & R&WI, 1959; Newman & Watts, 1999), we assign some at-
tributes to the nodes (individuals) as follows: each node i is associated with a random variable xi2½0;1�, generated from a
beta-distribution, denoting the level of education of individual i, values closer to 0 corresponding to higher levels of education
while those close to 1 indicate limited education, an individual i is assigned a random number from a beta distribution with
shape parameters a and b.
Fig. 1. Flow diagram of the model.



Fig. 2. Plot of the awareness probability function gbðs; t�Þ for t� ¼ 10: Before day t� ¼ 10 there is no awareness spread, ~b ¼ 0. At day t� ¼ 10 initially aware
individual start informing its neighbors about infection. Through time the desire to spread information wanes (Funk et al., 2009).
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The underlying network G is weighted, where the weight 0< cij � 1 for edge ij is the probability, of physical contact
between neighbors i and j on any specific day. We assume that the values cij are randomly generated from a uniform dis-
tribution U ½0:5;1�. For example if cij ¼ 5

7, that means that these two neighbors meet with probability 5
7 and do not meet with

probability 2
7 on a specific day.We also assume that there are no birth or deaths in the population of nodes or edges, during the

epidemic outbreak.

2.2. Dynamic of awareness among susceptible individuals

At any given time t, a person k is classified as susceptible, SkðtÞ, infected, IkðtÞ, or recovered, RkðtÞ, to the disease under
consideration. Disease risk awareness among susceptible individuals spreads after public health officials make the deliberate
decision to stress vigorously the risk of infection, as it may be the case under an influenza epidemic or other health emer-
gency. The model assumes that the decision to promote risk prevention starts once a pre-determined prevalence level P�, at
time t�, has been reached. Health authorities start to spread information about a pathogen’s outbreak, information that gets
communicated by those individuals, actively aware, in the network, with different degrees of efficiency. The spread of in-
formation is a function of chance (probability model) and economical/educational level. The state of active information-
communicator is assumed to be temporary, with individuals moving into a“passive” state, indifferent, after a short period
of time. Before time t� every susceptible individual is unaware of the information campaigns but for times s> t�, members of
SkðsÞ may change status from unaware (SukðsÞ) to aware (SakðsÞ), then moving, with some probability, into the indifferent class
(SikðsÞ).

We define fljk as the probability that SakðsÞ informs Suj ðsÞ at time s, and causes Suj ðsÞ/
eljk
Saj ðs þ 1Þ. Thorough the probability fgk

-generated from an exponential distribution with parameter ~g, the average awareness period is therefore 1= ~g days. The
members of SakðsÞ leave the awareness class into indifferent class, that is, SakðsÞ/

egk Sikðs þ 1Þ, with probability ~gk, after spending,
on the average 1=~g days in the aware class; the mean of waiting time distribution for the class SakðsÞ.

2.2.1. Awareness spread probability
~ljkðsÞ denotes the probability that an aware person SakðsÞwill inform an unaware neighbor Suj ðsÞ at time s via their contact:

~ljkðsÞ ¼ cjk~b. The value cjk denotes the probability of contact between neighbors j and k, with ~b denoting the average
probability that risk information will pass from an aware individual to an unaware neighbor. ~b is the average of a first
increasing and then decaying and waning function gbðs; s�Þ over the awareness period, that is, ~b ¼ ~g

R s�þ1

~g

s�
gbðs; s�Þds, where s� �

t� is the first day that a person becomes aware. gbðs; s�Þ is a function of s�, because before this time the personwas unaware and
therefore, incapable of spreading risk information. Fig. (2) helps visualize the probability function gbðs; t�Þ for t� ¼ 10, a
function acting on initially aware individual, that is, individuals who became aware on the first day of awareness spread t�.
After 10 days, information enters the system, people learn that an epidemic is taking place and the risk and severity of
infection. The higher the value of P� the less effective the campaign in reducing the impact of information on the outbreak (see
Fig. 3).

3. Simulations

In this Section, we perform our analysis and simulations on three different networks: Erd}os-R�enyi random network GE ,
Small-world network GW , and Scale-free network GS . These networks are defined in the appendix. To generate the networks,



Fig. 3. Flow diagram of the analogous mean-field model: The parameters ~l, lu and la denote for the average force of awareness, average force of infection for
unaware, indifferent and aware individuals respectively. The parameters g and ~g denote the average recovery rates from, infection and awareness, respectively.
Further, p denotes the fraction of infected population that follow self-quarantine (Iq).
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we use Networkx1 and Erd}os-R�enyi -graph algorithm to generateGE with probability of connection p ¼ 0:001. Using the same
package, theWatts-Strogatz algorithm is used to generate Small-world network GW with probability of rewiring p ¼ 0:5. We
also use BarabasieAlbert’s preferential attachment model in Networkx to generate a Scale-free network GS with degree
distribution PðkÞek�2:11 (Barab�asi & Albert, 1999). The size of all networks is 10000 and the average number of neighbors for
all networks is equal to 10. However, the networks differ in terms of degree distributions and other properties due to their
different structures. Simulations start by infecting the most connected node (index case) to reach a balanced initial condition
(Azizi, Dewar, & Mac Hyman, 2018, p. 233239). They came out with the model baseline parameters in Table. 1, unless stated
otherwise.
3.1. Time series of infection

To determine the effectiveness of awareness spread, we compare the prevalence over time in the absence and presence of
awareness. Fig. (4) shows the results for network structures GE , GW , and GS. We observe that all networks, with or without
awareness, support an outbreak for the chosen parameters (that is, the probability of extinction is low or the results are
conditioned on non-extinction). Due to a lack of epidemic threshold for Scale-free network (Chowell& Castillo-Chavez, 2003;
May& Lloyd, 2001; Moreno, Pastor-Satorras,& Vespignani, 2002), we always observe an outbreak with severity that depends
on the initial infected index. For the other network structures, we observe an epidemic threshold depends on the network
topology; specifically, on the average number of neighbors and the levels of heterogeneity in the number of neighbors (mean
and variance of degree distribution) (Kiss et al., 2017). For example, for the case of Small-world networks Moore et al. (Moore
& Newman, 2000) derived an analytic expression for the percolation threshold pc, above which there will be an outbreak. For
the case when the network is homogeneous (Erd}os-R�enyi network), the epidemic threshold is proportional to the average
number of neighbors (average degree) (Pastor-Satorras, Castellano, Van Mieghem, & Vespignani, 2015). Hence, for our
simulation for both networks GE and GW we approximated the basic reproduction number using epidemic take-offs, whenwe
had an outbreak, that is, whenever R 0 >1 (probability of extinction for the parameters used seemed to be negligible).

The spread of infection on Scale-free network GS is faster than for the other two network topologies. Moreno et al. (Moreno
et al., 2002), modeled infection with immunity on Scale-free and Small-world networks, they observed that the spread of
infection on Scale-free complex networks is faster than that of Small-world networks due to a lack of epidemic threshold for
network GS; large connectivity fluctuations (heterogeneity in degree) on this network causes stronger outbreak incidence
(Moreno et al., 2002). Our result is also related to (Chowell& Castillo-Chavez, 2003), inwhich Chowell et al. tested the severity
of an outbreak using an SIR model over a family of Small-world networks and an Scale-free network found out that the worst
case scenarios (highest infection rate) are observed in the most heterogeneous network, namely, Scale-free networks.

The speed for infection has an impact on efficiency of awareness spread: for Scale-free network GS awareness reduces the
peak of infection by roughly 6%, but for GE and GW this reduction is around 19%. Since in GS network infection spreads faster,
hubs (individuals withmany neighbors) get infected faster and loosing the chance of transmitting or receiving awareness.Wu
1 We use the NetworkX124 https://networkx.github.io/open software platform to generate and analyze the network.

https://networkx.github.io/


Table 1
Parameters and their baseline values assumed for simulations, unless stated otherwise.

Parameter Description Unit Baseline

Network Parameters N Number of nodes in the Network People 10000
GE Erd}os-R�enyi random network e GðN;0:001Þ
GW Small-world network e GðN;10;0:5Þ
GS Scale-free random network e PðkÞek�2:11

C Average number of contact per neighbor per unit time contact/time 0.75
XðxÞ Level of education distribution (its mean) e bð5; 2Þð0:7Þ

Infection Parameters b Probability of infection transmission per contact 1/contact 0.011
1=g Average time to recover without treatment days 10

Awareness Parameters ~b Average probability of awareness transmission per contact 1/contact 0.3
P� Prevalence threshold 1 0.1
1=~g Average time of behavior change for susceptible individuals days 7
k Saturation factor in s function 1 0.85
q Parameter in which, half maximum s function is obtained 1 0.5
x� Level of education threshold 1 0.4
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et al. (Wu et al., 2012) showed a similar result: global awareness (behavior change because of higher prevalence in the
population) on Scale-free networks cannot be as effective as local awareness in reducing infection.
3.2. Initiation of awareness

The presence and spread of awareness are coupled to the presence of infection, with awareness spreading, by design, after
the infection reaches the level P�. Therefore, there is a time-lag between starting time of infection and awareness spread.
What should the value of P� be, if the goal is to reduce the final epidemic size? When the infection disperses fast-high basic
reproduction number-people must be informed immediately, or the policy will have no effect. As noted, there is no threshold
condition for GS network. We did not derive expressions for epidemic thresholds. Instead, we used epidemic take-offs to
estimate the basic reproduction number as R 0 ¼ 1:8 and 2.01, numbers corresponding to GE and GS, respectively. Numbers
that are not too high-such as that of the R 0 for measles (Keeling & Rohani, 2011)- we are giving awareness a chance to be
effective, since an epidemic with low R 0 will reach the value P� much slower.

Proceed to quantify the sensitivity of the final size of the outbreak as a function of the prevalence threshold P� over the
network structures GE, GW, and GS, Fig. 5, for the simulated GE network that representing homogeneous random mixing and
for the simulated GW network, we identify an optimal point for P� (the point that final size is minimized), that means
awareness spread is most effective in reducing final size for these values of P�. For larger values of P�, the awareness policy is
useless because it starts very late when many individuals got already infected, while for smaller values of P� is less effective
because in this case, there is not enough infected cases in the population and therefore, individuals are not surrounded by
infected contacts and consequently their social distancing for only one time and for a limited period wastes their protection,
that is, they are protecting themselves when there is a small risk of catching infection, while later time when this risk in-
creases they do not take any proper action, see subfigures (5a), and (5b).
Fig. 4. Prevalence of infection versus time for three different network structure: the curves are the mean of 100 different stochastic simulations seeding the
same initial condition. The diffusion of infection happens faster and more intense in more heterogeneous network GS, and awareness diffusion has less impact on
reducing peak of infection for GS (by 6%). For other networks reduction of peak is by 19%.



Fig. 5. Infection Final Size and Incidence Rate Versus Prevalence Threshold: the circles are the mean of 100 stochastic simulations and error bars are 95%
confidence interval. The impact of prevalence threshold on infection final size depends on network topology. For networks GE and GW there is an optimal P� to
minimize infection final size, subfigures (5a, 5b). For the heterogeneous network GS the optimal point for P� disappears, subfigures (5c). The incidence rate forthe
period of 100 days for Erd}os-R�enyi and Small-world networks plotted in subfigures (5d) illustrates the reduction in speed of disease spread at values around
optimal prevalence threshold.
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For the simulated networks GS - in which network structure follows a power-law distribution - we observed that the
sooner awareness gets started, the smaller the total number of infected individuals will be, see subfigures (5c) (see also
(Chowell & Castillo-Chavez, 2003; Moreno et al., 2002)).

To investigate the impact of awareness on the previous result and on network GE , we vary the value of the awareness basic
reproduction number gR 0 via changes in the average time of behavior change 1=~g. Fig. 6 shows that the value of the optimal
prevalence threshold P� increases as the gR 0 increases. Accelerating awareness spread-increasing gR 0 - does not seem to
change final awareness size trend (Fig. (5)). Nevertheless, it makes the prevalence threshold P� more effective at reducing
infection final size.
4. Discussion

We used a network model to model the spread of infection and risk information within a population of individuals in
different epidemiological states, education levels and information states. In our model infection spreads within an SIR
framework while awareness disseminates only among susceptible individuals. Specifically, when a fraction of the infected
people reaches a pre-determined threshold, public health officials start a massive information campaign on the risk and
severity of infection. Information is transmitted by those not infected only. Awareness dynamics are triggered by public health
authorities with the objective of conveying information about risk and severity of infection via aware susceptible individuals
to unaware susceptible neighbors in the network. The level of awareness achieved is tied in to the educational level of each
individual and the disease prevalence. Aware susceptible individuals can become indifferent, stop propagating information
on the risk of infection, after sometime.

Simulations of the spread of infection or awareness are carried out on different network topologies. The patterns vary even
when preserving some network properties such as the mean degree (Chowell & Castillo-Chavez, 2003; Moreno et al., 2002;



Fig. 6. Infection final size versus P� for different awareness fR0: Increasing gR 0 via increasing the average period of awareness will make the impact of
prevalence threshold on final size stronger.
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Shirley& Rushton, 2005). We simulated the spread of awareness and disease over three different network structures, namely
Erd}os-R�enyi, Small world and Scale-free networks.

The results of the infection-awareness model show that Scale-free networks support a fastest rate of infection with the
impact of awareness having the lowest effect on transmission. Small-world and Erd}os-R�enyi networks became less effective
at disease transmission, and the role of information via aware individuals had a stronger impact in reducing transmission,
Fig. (4). These result are somewhat similar to those obtained by Chowell et al. (Chowell & Castillo-Chavez, 2003) and Moreno
et al. (Moreno et al., 2002) as they studied the rate of infection rate of growth on an SIRmodel over Small-world and Scale-free
networks, in the absence of awareness. These researchers observed that the spread of infection on Scale-free complex net-
works is faster than in a Small-world one. Pastor et al. (Pastor-Satorras& Vespignani, 2002) and Dezs}o et al. (Dezs}o& Barab�asi,
2002) focused on identifying the best strategy that can be used to control (reduce) an epidemic peak on a scale-free network.
They concluded that in order to control infection public health workers needed to immunize the hubs at an early stage. Our
results are somewhat related, that is, we find that in order to control an infection, public health workers need to start
awareness spread soon, that is, before hubs play the role of super-spreaders.

Infection final size is a function of network topology and prevalence threshold, P�, and the basic reproduction numberR 0.
We observed that for Erd}os-R�enyi and Small-world networks under small value of R 0, an optimal P� can be found for which
the infection final size is minimized. This optimal point is the value that provides the best outcome under the prevalence P� at
the time, t�, the time when temporary protection was promoted by aware susceptible individuals, Fig. 5a and 5b. The exis-
tence of this optimal P� is because of lack of enough infected cases to spread the infection for prevalence less than P�, and lack
of enough susceptible individuals to protect themselves against the infection for prevalence bigger than P�. This trend is
observed for more homogeneous network structures as the infection spreads more slowly than in heterogeneous networks
such as Scale-free ones. For Scale-free network, for which there is no epidemic threshold, a monotonic increasing function
final size is observed, a function of the prevalence threshold P�, there is no optimal point P� that minimizes infection final size,
Fig. 5c.

Infection network and awareness network: One of the big assumptions in our model is that the infection and awareness
spread over the same network, ignoring the fact that individuals may have multiple sources of information outside their
physical contact network. In fact, we know that information does flow through virtual neighbors such as facebook friends.
How should we incorporate the role of physical network and virtual information? We are exploring possibilities.

Static network: Again, since we are focusing on single epidemic outbreak, we have assumed a short time frame in our
simulation. We also assumed that the context network is static. The need to extend the model to a dynamic network where
individuals are allowed to change neighbors is important in the study of disease spread over the longer time scale. The impact
of awareness in such extended model would be prone to change as well.

For sexually transmitted infections on Scale-free network (Liljeros, Edling, Amaral, Stanley, & Åberg, 2001), waiting for
enough people to become infected people before starting a campaign about risk of infection is not reasonable. For measles in
children with basic reproduction numbers very high (Keeling & Rohani, 2011), waiting to reach pre-selected prevalence
thresholds may also not be great idea. Our model results, highlight the importance of campaigns that warns a population
about the risk and severity of infection for diseases that do not spread too fast, possibly including some flu infections or the
severe acute respiratory syndrome (SARS). For disease with a basic reproduction number that it is not high (Keeling& Rohani,
2011), and assuming that these infections spread over a random homogeneous networks such as Erd}os-R�enyi, it may not be
unreasonable the existence of an optimal prevalence threshold to start and starting an awareness dynamic campaign.



Table 2
Table of notation for a conventional network G in algorithms.

Notation Description

St Set of susceptible nodes at time t
Ut Set of unaware nodes at time t
At Set of aware nodes at time t
Ct Set of careless nodes at time t
It Set of infected nodes at time t
Qt Set of quarantine nodes at time t
Ft Set of free nodes at time t
Rt Set of recovered nodes at time t
G:NðkÞ Set of neighbors of node k in Network G
IP(k) Infection period for infected node k
AP(k) Awareness period for aware node k
ernðaÞ Exponential random number with average a for a>0
urn Uniform random number in ½0;1�
ckj Probability of having contact between two neighbors k and j
A k
/

B Element k moves from set A to set B
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Appendix

In this appendix, first we define some models for the network structures we used for our simulation, then we present the
pseudocode of our model.

Definition 4.1. Erd}os-R�enyi random network Suppose we have n disconnected nodes, and then we make edge between two
arbitrary nodes with probability p independent from every other edge. The graph constructed via this model is called Erd}os-R�enyi
random network Gðn; pÞ. The parameter p in the model is a weighting function p2½0;1�, where for p closer to one the generated
graph is more likely to construct graphs with more edges (ERDdS & R&WI, 1959).

Definition 4.2. Small-world network Suppose we have n nodes over a ring, where each node in the ring is connected to its k
nearest neighbors in the ring. Then with probability p and independent from any other pair of edges we select two edges i1j1 and
i2j2 such that jk is from the k nearest neighbor of ik for k ¼ 1;2, and rewire them. Then the constructed network is called Watts-
Strogatz Smal-world network (Watts & Strogatz, 1998) Gðn;k;pÞ.
Definition 4.3. Preferential attachment Scale-free network Suppose we want to generate a network of n nodes. We start with one
node and follow the following procedure n times: the probability of attaching a new node to the existing ones is proportional to their

current degree:Pðconnect a new node i to existing node jÞ ¼ degðjÞP
k
ðdegðkÞÞ, where the degðkÞ is the number of neighbors for node k,

then with this probability we make new edge ij. The constructed network via this model is called BarabasieAlbert Scale-free
network (Barab�asi & Albert, 1999). The degree distribution of this network follows a power-law distribution.

Now, we define assumptions and algorithm of our model Table 2. Person i at any given day t has one of the states: Su;Sa;Si;
Iq; If , or R. The fraction of infected people at dat t is PðtÞ, and P� is a positive fraction 2½0;1�. We define t� ¼ mintfPðtÞ¼ P�g
which is the first time that PðtÞ reaches P�. We assume Education level for each person k, xk does not change by time. Also
prior to time t� every susceptible person is at state Su, and finally the time scale for each update is day, in which each person
can have at most one update. The following algorithms briefly shows some key part of the model.

Algorithm 1. The probability of contact per day between two neighbors: infected k and susceptible j.

csk ¼ 1jk2Qt
;

sj ¼
kxj�

qþ xj
�ð1þ prðtÞÞ

�����
j2At

þ 1jj;At
;

Skj ¼defcsksj
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Algorithm 2. Dynamics within a typical day t
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