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In silico prediction of post-translational modifications in therapeutic antibodies
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ABSTRACT
Monoclonal antibodies are susceptible to chemical and enzymatic modifications during manufacturing, 
storage, and shipping. Deamidation, isomerization, and oxidation can compromise the potency, efficacy, 
and safety of therapeutic antibodies. Recently, in silico tools have been used to identify liable residues and 
engineer antibodies with better chemical stability. Computational approaches for predicting deamidation, 
isomerization, oxidation, glycation, carbonylation, sulfation, and hydroxylation are reviewed here. 
Although liable motifs have been used to improve the chemical stability of antibodies, the accuracy of 
in silico predictions can be improved using machine learning and molecular dynamic simulations. In 
addition, there are opportunities to improve predictions for specific stress conditions, develop in silico 
prediction of novel modifications in antibodies, and predict the impact of modifications on physical 
stability and antigen-binding.
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Introduction

Monoclonal antibodies (mAbs) have become one of the pre-
dominant classes of therapeutic proteins and they are used to 
treat various diseases, such as breast cancer, multiple sclerosis, 
and asthma.1 Therapeutic antibodies can be engineered to have 
high specificity and affinity for their targets.2 However, physi-
cal and chemical instabilities can have a negative impact on the 
manufacturability, safety, and efficacy of therapeutic 
antibodies.3 Like all proteins, mAbs are susceptible to chemical 
degradation (e.g., oxidation)4 and enzymatic modifications 
(e.g., sulfation) during cell culture.5 Chemical and enzymatic 
modifications contribute to heterogeneity. For example, aspar-
agine (Asn) deamidation can generate charge variants; trypto-
phan (Trp) oxidation can generate hydrophilic or hydrophobic 
variants.6 In addition, chemical modifications can affect the 
physical stability and biological activity of antibodies. For 
example, isomerization within the Fab region can reduce con-
formational stability,7 whereas deamidation within comple-
mentary-determining region (CDR) loops can reduce binding 
affinity.8 Therefore, identifying liable sites for post- 
translational modifications (PTMs) has become a critical step 
in assessing the developability of therapeutic candidates.

Developability assessments aim to identify candidates with 
long-term stability, manufacturability, and low heterogeneity.9 

Forced degradation with thermal, pH, and light stress has been 
used to accelerate chemical degradation and identify liable 
residues.10 Peptide mapping can identify the specific sites for 
chemical modifications after forced degradation. In contrast, 
chromatographic techniques such as cation exchange chroma-
tography and hydrophobic interaction chromatography can 
monitor the overall change in charge and hydrophilic variants, 
respectively.11 However, experimental approaches for identify-
ing PTM liabilities are time-consuming and require high 

quantities of the purified protein.12 The sample preparation 
and data analysis for peptide mapping is incredibly labor- 
intensive.13 At earlier stages of drug development, the number 
of forced degradation conditions is limited by the low avail-
ability of the purified protein.10 Computational tools are 
becoming more common during developability assessments 
due to the low cost, lack of sample consumption, and high 
speed. In the past decade, computational tools have been used 
to predict PTM liable sites and engineer antibodies with better 
chemical stability.14

Computational approaches for predicting PTMs

Computational approaches for predicting PTMs can be divided 
into three categories: sequence-based, structure-based, and 
physics-based. Sequence-based approaches either flag indivi-
dual residues prone to chemical degradation (e.g., methionine 
oxidation) or liable motifs (e.g., NG, NS, and NT for 
deamidation).15 Liable motifs for deamidation and isomeriza-
tion were identified by investigating the effects of protein 
sequence on deamidation16 and isomerization17 rates for 
model peptides. Model peptides are suitable for assessing the 
effects of protein sequence on chemical degradation due to the 
generation of substantial chemical degradation in a short 
time.17

Structure-based approaches predict PTM liabilities by using 
structural features correlated with enzymatic and chemical 
modifications.18 Common structural features include, but are 
not limited to, secondary structure, water coordination num-
ber (WCN), and solvent-accessible surface area (SASA).9 WCN 
represents the average number of water molecules within the 
radius of an atom;19 SASA represents the surface area of the 
protein that interacts with the solvent.20 Structural features 
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such as SASA are typically extracted from crystal21 or predicted 
structures for antibodies.22 Alternatively, machine learning 
algorithms (e.g., NetSurfP) can also be used to predict struc-
tural features such as secondary structure, solvent exposure, 
and structural disorder for protein sequences.23

Physics-based approaches are based on physical principles: 
for example, molecular dynamic (MD) simulations use 
Newtonian physics to predict the spatial position of atoms 
over time.24 Physics-based approaches can predict the free 
energy barriers for chemical modifications25,26 and probe pro-
tein dynamics.27 MD simulations can be used to estimate 
averaged SASA, which captures changes in solvent exposure 
due to conformational changes. In addition, MD simulation 
can provide the root-mean-square fluctuations (RMSF) for Cα 
atoms, which captures structural flexibility.28

Comparison of computational approaches

Sequence-based approaches are simple and easy to implement. 
Once the protein sequence is available, candidates with poor 
chemical stability can be eliminated by checking for liable 
motifs.15 However, using liable motifs alone can overestimate 
the number of liable residues or miss potential degradation 
hotspots.12 The rate of chemical degradation for model pep-
tides does not represent chemical degradation in native pro-
teins, where the tertiary structure plays a role in chemical and 
enzymatic modifications.16 For example, high solvent exposure 
can increase the risk of chemical modifications due to the 
increased exposure to degrading agents such as water, perox-
ides, and light.27

Structure-based approaches have better accuracy than 
sequence-based approaches because the in silico prediction 
includes the impact of secondary and tertiary structure on 
PTMs.29 The accuracy of structure-based approaches is depen-
dent on the quality of crystal or predicted structures and the 
selection of structural features. Knowledge of the chemical 
mechanisms for modifications (e.g., deamidation) can improve 
the accuracy of structure- and physics-based approaches. For 
example, some studies use the nucleophilic attack (Cγ – Nn+1) 
distance to predict the risk of deamidation due to the nucleo-
philic attack on the side chain by the backbone nitrogen during 
succinimide formation.30,31

Although physics-based approaches provide valuable 
insight into the dynamics and energetics of chemical degrada-
tion, physics-based approaches are more computationally 
demanding compared to sequence- and structure-based 
approaches. It is challenging and time-consuming to predict 
free energy barriers and conduct MD simulations for larger 
proteins like antibodies.32 Improvements in the speed and 
accuracy of MD simulations and quantum chemical calcula-
tions are required for the broader adoption of physics-based 
approaches. Moreover, coarse-grained models can potentially 
improve the efficiency of MD simulations for larger proteins 
such as antibodies.33

More recent studies combine these three computational 
approaches for in silico prediction of PTMs. Protein sequence 
and structural features have been incorporated into machine 
learning algorithms (e.g., random forest) to classify cold and 
hot spots for chemical modifications.34 This review discusses 

current computational approaches for predicting isomeriza-
tion, deamidation, oxidation, and lysine glycation in mAbs. 
In silico prediction of novel PTMs in mAbs, such as carbonyla-
tion, sulfation, and hydroxylation, is also considered.

Aspartic acid isomerization

Aspartic acid (Asp) residues in mAbs can undergo isomeriza-
tion to form IsoAsp. During isomerization, there is 
a nucleophilic attack on the carbonyl group of Asp by the 
ionized amine group at the n + 1 residue. The Asp side chain 
requires a proton (H+) to form the succinimide intermediate 
and leaving water molecule, and thus isomerization is more 
favorable at low pH.35 Finally, the succinimide intermediate is 
hydrolyzed at the n + 1 peptide bond to form isoAsp.17 At pH 
4–7, Asp isomerization forms succinimide, which can cause 
a change in net charge. In contrast, IsoAsp formation can cause 
conformational changes because of the methyl group added to 
the peptide backbone. These conformational changes can cause 
changes in surface charge distribution or surface 
hydrophobicity.5 Depending on the location of IsoAsp forma-
tion, isomerization can generate basic,8 acidic,36 hydrophilic, 
or hydrophobic variants.37 Aspartate isomerization at the CDR 
loops can decrease the antigen-binding affinity.38

Asp isomerization is sensitive to temperature and the dielec-
tric constant of the solvent. At neutral pH, a high dielectric 
constant for solvents increases the pKa of Asp, which increases 
the concentration of the carboxylic acid (COOH) form of the 
Asp side chain. The COOH form is more reactive and prone to 
isomerization than the carboxylate form (COO−).39 High tem-
peratures can also accelerate the rate of isomerization reac-
tions. Moreover, flanking residues, ionization state, and 
higher-order structure also influences isomerization.40 For 
example, the risk of isomerization is highest for Asp residues 
within random coils due to structural flexibility and higher 
solvent exposure.41 The risk of isomerization also differs for 
different CDR loops. Asp isomerization at liable motifs is more 
likely with the CDR H3, H2, and L1 loops.42

Sequence-based approaches

Sequence-based approaches for predicting Asp isomerization 
flag liable motifs for Asp isomerization such as DG, DS, DD, 
DT, and DH.42 Flanking glycine (Gly) residues make succini-
mide formation more favorable due to the lower steric hin-
drance. Serine and threonine residues can act as proton donors 
during isomerization.40 Positively charged residues at n + 1 or 
n-1 position can accelerate Asp isomerization due to electro-
static effects.35 Moreover, flanking residues that act as proton 
donors and acceptors can make Asp residues more reactive and 
prone to isomerization. For example, histidine residues can act 
as proton donors (H+) to OH− ions at low pH during succini-
mide formation.43

During the developability stage, protein engineering can be 
used to remove PTM liabilities and improve chemical 
stability.14 The risk of isomerization can be reduced by sub-
stituting Asp with glutamic acid, which is less prone to iso-
merization. Patel et al. identified a liable DS motif within the 
CDR loop that was prone to isomerization: substituting Asp 
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with glutamic acid led to a loss in bioactivity. However, engi-
neering the n + 1 residue (i.e., serine) retained the bioactivity 
while reducing the risk of Asp isomerization.44

Structure-based approaches

The higher-order structure of antibodies also plays a crucial 
role in the risk for Asp isomerization. Dihedral angles can 
influence the reactivity of Asp residues and affect the risk of 
isomerization.26 Diepold and colleagues observed isomeriza-
tion for liable motifs within the solvent-exposed and flexible 
CDR loops. However, isomerization did not occur at the DG 
motif in the conserved region of the antibody.45 Asp isomer-
ization is the least favorable within beta-sheets due to structural 
rigidity. Sreedhara and colleagues observed succinimide for-
mation for Asp74, which was solvent-exposed and part of 
a loop, whereas the Asp73 within beta-helix was less prone to 
isomerization.40 In addition, hydrogen bonding for peptide 
backbone and side chains can make succinimide formation 
less favorable.46

Structure-based approaches for predicting Asp isomeriza-
tion incorporate solvent exposure, secondary structure, 
nucleophilic attack (Cγ – Nn+1) distance, and hydrogen 
bonding.46 Sydow and colleagues used the root mean square 
deviation of Asp Cα atoms, size of the n + 1 residue, and 
secondary structure to develop a decision tree for classifying 
liable Asp residues.46 They reported that Asp residues with 
high conformational flexibility and small size for n + 1 residue 
were more prone to isomerization. Although, a smaller side 
chain leads to lower steric hindrance for forming 
succinimide;26 using the size of n + 1 residue for predicting 
isomerization neglects potential electrostatic effects from flank-
ing residues on isomerization.35

Physics-based approaches

MD simulations can supplement structure-based approaches 
for predicting Asp isomerization. Sharma et al. developed 
a logistic regression model to predict Asp isomerization at 
liable motifs (i.e., DG, DS, DT, DD, DH). 29 The averaged 
SASA for Asp residues, RMSF for Cα atoms, and the averaged 
SASA for the n + 1 residue correlated well with Asp isomeriza-
tion liability. Sharma and colleagues’ regression model success-
fully predicted five out of six liable Asp residues and all non- 
liable sites. Most of the parameters used in the study were 
derived from MD simulations. Thus, MD simulations can 
provide insight into how conformational flexibility plays 
a role in chemical degradation.

Recent studies have used MD simulations to predict chemi-
cal modifications; however, few studies attempt to predict the 
free energy barriers for chemical modifications. Plotnikov et al. 
used quantum mechanical/molecular mechanics (QM/MM) 
MD simulations to identify isomerization and deamidation 
hotspots. They estimated the free-energy barriers at different 
steps for isomerization and deamidation. The steric hindrance 
for succinimide formation is captured by the free energy bar-
riers for adopting more reactive conformations to form 
succinimide.26 In addition, Plotnikov et al. included long- 
and short-range electrostatic interactions in their QM/MM 

model. Compared to structure-based approaches, free energy 
predictions can incorporate electrostatic effects on Asp 
isomerization.26

Therapeutic candidates with high and low risk for isomer-
ization can be classified based on liable motifs and structural 
predictors such as SASA. In addition, knowledge of the anti-
gen-binding sites, either from crystal structures or in silico 
predictions, can guide protein engineering to improve chemi-
cal stability. For example, if a liable Asp residue is involved in 
antigen binding, then the n + 1 residue can be substituted to 
improve chemical stability without affecting the bioactivity of 
the antibody.44

Asparagine deamidation

Asn residues can undergo deamidation to form Asp or IsoAsp. 
There are three possible pathways for Asn deamidation. 
A nucleophilic attack on the backbone nitrogen at the n + 1 
residue forms succinimide, which is hydrolyzed to form Asp. 46 

Alternatively, the nucleophilic attack by the backbone carbonyl 
group can form isoimide, which is hydrolyzed to IsoAsp and 
Asp (Figure 1). At acidic pH (pH ≤ 4), direct hydrolysis of Asn 
can also form Asp (Figure 1).47 The direct hydrolysis pathway 
competes with succinimide-mediated deamidation.48 Overall, 
deamidation is more favorable at pH ≥ 6. Forced degradation 
by thermal and high pH stress are used to confirm liable Asn 
residues.10 Flanking residues, secondary and tertiary structure, 
solvent exposure, and structural flexibility can affect 
deamidation.49

Sequence-based approaches

Liable motifs for deamidation include NG, NS, NN, NT, and 
NH:42 the NG motif has the highest deamidation rate, followed 
by NS, NT, and NH.16 The high deamidation rate for the NG 
motif can be attributed to lower steric hindrance for forming 
succinimide. Alternatively, Gly residues at the n + 1 position 
can provide more conformational flexibility, allowing Asn 
residues to adopt more reactive conformations to form 
succinimide.41 The n + 1 flanking residues can also play 
a role in deamidation. Chelius et al. reported the highest level 
of deamidation at SNG, ENN, LNG, and LNN.50 Lu et al. 
investigated the deamidation for 131 clinical-stage antibodies 
and reported deamidation at liable motifs was more common 
at CDR-H2 and CDR-L1 loops.42 Deamidation at NT, NF, and 
NY only occurred within the CDR-H3 loop,14 which could be 
due to the length and flexibility of the CDR-H3 loop, allowing 
it to adopt more conformations.51 Excluding the CDR-H3 
loop, the remaining CDR loops are clustered into canonical 
structures, where a few critical amino acids at specific positions 
can determine the CDR conformation.52 Non-H3 CDR loops 
are clustered based on structural similarity: dihedral angles and 
root mean square deviation have been used to compare and 
cluster structures for the same type of CDR loops (e.g., CDR- 
L1).53 For example, the L1-11-A cluster refers to CDR-L1 loops 
with a length of 11 residues, which fall into the first cluster of 
CDR-L1 structures. 53 Future studies could investigate how 
differences in conformations for different CDR-L1 and H2 
clusters affect the risk of deamidation.
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Structure-based approaches

The higher-order structure also influences the rate of Asn 
deamidation.45 The risk of deamidation is low for Asn within 
beta-sheets due to structural rigidity and an extensive network 
of hydrogen bonds. Structure-based approaches for predicting 
deamidation incorporate secondary structure, hydrogen bond-
ing, SASA, dihedral angles, and nucleophilic attack (Cγ – N) 
distance.30 Random forest and decision trees are the most 
common machine learning algorithms for classifying hot and 
cold spots (Table 1). Delmar et al. developed a random forest 

model to identify liable Asn residue and predict the deamida-
tion rate.30 The backbone and side-chain dihedral angles are 
used to assess if the Asn side chain and backbone alignment are 
favorable for forming succinimide. However, the backbone 
dihedral angles are more critical than side-chain dihedral for 
predicting deamidation hot spots.30,54

There are contradicting results for the impact of Cγ – 
Nn+1 distance on Asn deamidation. Yan et al. reported that 
a Cγ – Nn+1 distance > 3.4 Å was unfavorable for Asn 
deamidation, 54 whereas Sydow et al. found no correlation 
between deamidation risk and Cγ – Nn+1 distance.46 The 

Figure 1. Asparagine deamidation and aspartic acid isomerisation pathway. Reproduced from Sydow JF et al. (2014).46 (Creative Commons Attribution License).

Table 1. Summary of parameters used for machine learning methods for predicting asparagine deamidation in mAbs. Abbreviations: RMSD, root mean square deviation; 
SASA, solvent-accessible surface area.

Authors

Machine 
learning 

algorithm Parameters Data Set

Accuracy 
and 

precision1 Reference

Sydow, J. F. et al. (2014). Decision 
tree

RMSD of asparagine Cα-atoms, C-terminal amino acid size 
(>102.7 Å), SASA (>89.4 Å2), and phi angles (>75.2º)

Data set consisted of 55 deamidation 
hotspots and 940 non-hotspots from 
forced degradation data for 37 
mAbs.

Accuracy: 
95.7 % 

Precision: 
100.0 %

46

Yan, Q., Huang, M., 
Lewis, M. J. & Hu, 
P. (2018)2

Decision 
tree

Secondary structure, SASA 
(> 10 Å2), Cγ-Nn+1distance (> 3.4 Å), motifs (NS, NT, 
NG).

Data set consisted of deamidation sites 
for five IgG1 and five IgG4 
antibodies.

Accuracy: 
83.8% 

Precision: 
41.7%

54

Delmar, J. A., Wang, J., 
Choi, S. W., Martins, 
J. A. & Mikhail, 
J. P. (2019).2

Random 
forest

Residue at n + 1 position, half-life of pentapeptide, 
backbone dihedral angles, Cγ-Nn+1 distance, side-chain 
dihedral angles, and hydrogen bonding within side 
chains and secondary structures.

Combination of in-house data and 
deamidation data from Lu et al.39

Accuracy: 
95.6 % 

Precision: 
100.0 %

30

1Accuracy is determined by the following formula: TPþTN
TPþTNþFNþFP and precision was determined by the following formula: TP

TPþFP . TP = true positive, TN = true negative, 
FN = false negative, and FP = false positive. 

2The accuracy and precision is reported from Delmar et al. (2019)30
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discrepancy in results could be due to different stress con-
ditions used to identify liable Asn residues for both studies. 
Yan et al. used high pH stress to identify liable residues, 
while Sydow et al. thermally stressed their samples at the 
formulation pH of 6.0. At basic pH, deamidation by forming 
succinimide is more favorable, and the Cγ – Nn+1 distance is 
a useful predictor for succinimide formation.48 Therefore, 
the impact of structural features such as Cγ – Nn+1 distance 
on deamidation can differ between thermal stress at acidic 
and basic pH. Future studies could select different structural 
features to develop machine learning models to predict the 
risk of deamidation for different types of stress conditions.

Antibodies can also change conformations at different pH, 
which can cause a change in the solvent exposure for Asn 
residues. At high pH, heavy chain (HC)-Asn325 at the FG 
loop of the CH2 domain is buried between the FG and BC 
loop (Figure 2). There is a conformational change in the BC 
loop at low pH, which causes HC-Asn325 to become exposed 
and susceptible to deamidation.54 The CDR-H3 loop can adopt 
multiple conformations due to its length and flexibility. Lan 
et al. observed different conformations for the CDR-H3 loop at 
different pH. At neutral pH, the CDR-H3 loop is extended and 
solvent-exposed. In contrast, at low pH, the CDR-H3 loop is 
bent. 55 Future studies could use MD simulations to identify 
more reactive conformations for deamidation at different pH.

Oxidation

Oxidation of antibodies can occur due to peroxides within for-
mulations, exposure to trace metals during manufacturing, and 
light exposure. Aromatic amino acids and the sulfur groups of 
methionine and cysteine residues are the most susceptible to 
oxidation.56 Methionine (Met) oxidation generates sulfoxides 

and sulfone. Histidine (His) oxidation generates oxo-His. For 
tryptophan (Trp) oxidation, singlet oxygen reacts with the indole 
group to form kynurenine and N-formylkynurenine.4,49 Met is 
the most prone to oxidation due to the reactive sulfur atom.57

Sequence-based approaches flag all Met and Trp residues in 
the variable domains as liable residues.58 However, sequence- 
based approaches can overestimate the risk of oxidation due to 
the impact of higher-order structure on oxidation. Exposed 
Met, Trp, and His are more prone to oxidation. SASA is 
a common predictor for identifying liable Met and Trp 
residues.9 More recent studies have successfully incorporated 
MD simulations and machine learning to predict Met and Trp 
oxidation.29,59However, specific factors that affect oxidation 
risk can vary depending on the type of liable residue and the 
type of oxidative stress.60 The subsequent sections outline in 
silico prediction for Met, Trp, and His oxidation in more depth.

Methionine oxidation

Met is oxidized by peroxides, light stress, and trace metal ions. 
Oxidation by peroxides involves transferring oxygen from the 
peroxide to Met through nucleophilic substitution.61 Water 
molecules stabilize the transition state near the sulfur atom.62 

Alternatively, Met can also react with singlet oxygen to form 
Met sulfoxide. Met oxidation in mAbs can reduce conforma-
tional stability,63 generate hydrophilic variants,5 cause struc-
tural changes,64 and affect antigen binding.65 Met residues 
within CDR loops are more prone to oxidation than Met 
residues within framework regions. For example, Yan et al. 
reported oxidation of Met-56 in the solvent-exposed CDR-H2 
loops.7

SASA and WCN are useful predictors when water molecules 
play a role in stabilizing the transition state during oxidation by 
H2O2.62 WCN represents the average number of water mole-
cules within the radius of an atom.19 The accuracy of WCN as 
a predictor depends on the selected radius. If the radius is too 
small, the risk of Met oxidation is underestimated; if the radius 
is too big, the risk of Met oxidation is overestimated. A radius 
of 5 Å- 6 Å for WCN is sufficient for predicting Met 
oxidation. 19,66 Recent studies use the averaged SASA values 
of Met residues from MD simulations. MD simulations capture 
changes in solvent exposure for Met residues due to the flex-
ibility of flanking residues and conformational changes.23 In 
addition, the SASA of the sulfur atom can be a better predictor 
than overall SASA for Met residues.19

Machine learning models have been used to identify liable 
Met residues.22,59 Yang and colleagues used the SASA of Met 
side chains derived from a random forest model to identify 
liable Met residues for 121 antibodies.67 They observed 
a strong correlation between side-chain solvent exposure and 
experimental Met oxidation, but there were some false nega-
tives. The study used SASA values from static crystal struc-
tures, which fails to capture changes in solvent exposure of Met 
residues due to conformational changes.67 Sankar et al. devel-
oped a random forest model incorporating SASA, WCN, and 
distance between sulfur and aromatic residues, to predict Met 
oxidation by 2,2ʹ-azobis(2-amidinopropane) dihydrochloride 
(AAPH). Most of the incorrect predictions for Met oxidation 
were for the CDR-H3 loop. 22 Predicting the structure of CDR- 

Figure 2. Ribbon diagram representation for HC-Asn325 between BC and FG loop 
(PDB: 4BYH).[Alt Text: Zoom-in on three loops within the CH2 domain. Each loop is 
connected to two beta-sheets. Two loops are labelled as FG and BC loop. Both 
loops are facing each other and the BC loop is above the FG loop. A stick 
representation for the asparagine-325 side chain is shown at bottom right side 
of the BC loop.].
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H3 is challenging due to the longer length and high structural 
variation of the CDR-H3 loops.68 Thus, the accuracy of SASA 
values is limited by the quality of the crystal or predicted 
structures.

Although MD simulations have provided more accurate 
SASA values, most studies conduct MD simulations with 
water. Excipients and buffers impact the risk of Met oxidation 
and the hydrodynamic radius of antibodies.69 Changes in 
hydrodynamic radius of IgG can lead to changes in solvent 
exposure for Met residues. Conducting MD simulations with 
the formulation buffer can further bridge the gap between in 
silico predictions and experimental data. In addition, in silico 
tools can be used to identify formulations with a lower risk of 
Met oxidation.70

In silico prediction of Met oxidation by peroxides is very 
well established. More recent studies have explored in silico 
prediction for Met oxidation under light stress and forced 
oxidation by AAPH. 22,59 The mechanism for Met oxidation 
by peroxides and photolysis is different. Hydrogen peroxide 
oxidizes Met residues through nucleophilic substitution, 
whereas light exposure oxidizes Met by generating free 
radicals.4 In addition to using solvent exposure, Delmar and 
colleagues also used the closest atomic distance between phe-
nylalanine and Met residues as a predictor for Met oxidation 
under light stress. Neighboring aromatic residues can prevent 
Met oxidation by acting as scavengers for free radicals.59 

Forced oxidation by H2O2 mimics exposure to trace peroxides 
from polysorbates in formulations, whereas photolysis is meant 
to mimic degradation due to light exposure during shipping 
and storage.71 Therefore, different predictors for Met oxidation 
(e.g., WCN) should be selected for different types of forced 
oxidation (e.g., peroxides and photolysis).19

Tryptophan oxidation

Trp oxidation can cause color changes due to kynurenine 
formation,72 reduce physical stability,73 and oxidation of Trp 
residues in CDR loops can reduce binding affinity.65 Structural 
flexibility, solvent exposure, secondary structure, and side- 
chain and backbone conformations affect Trp oxidation.59 

Most aromatic residues get buried within the hydrophobic 
core during protein folding;74 however, the CDR loops are 
enriched with tyrosine and Trp residues, which play a role in 
antigen binding.75

Trp oxidation is more common in the solvent-exposed and 
flexible CDR loops:9 Trp oxidation in CDR-H3,76 CDR-L1,77 

CDR-L3,78,79 CDR-H2, and CDR-L2 loops60 has been 
reported. Neighboring aromatic residues and disulfide bonds 
can prevent photooxidation of Trp residues by acting as 
a light sink.80 IgG1 antibodies have a conserved Cys-Cys- 
Trp triad, where the disulfide bond protects the neighboring 
Trp residue from photooxidation. Electron transfer from the 
Trp residue to the disulfide bond occurs as the disulfide bond 
dissipates the UV energy absorbed by Trp residues. 80 Solvent 
exposure is the predominant predictor for Trp oxidation. 
SASA from static structures does not capture fluctuations in 
the exposure of Trp residues due to conformational changes. 
An averaged SASA sampled from MD simulations can pro-
vide a more accurate prediction for Trp oxidation. Solvent 

exposure for Trp side chains is a good predictor because the 
oxidation of the indole ring is a critical step for forming 
kynurenine.27 In addition, SASA for Trp side chains can be 
an accurate predictor for oxidation in cases where the Trp 
backbone is buried, but the side chain is exposed. Sharma 
et al. observed that a Trp side chain SASA of > 80 Å2 

correlated well with Trp oxidation after incubation with 
AAPH.29

Other structural factors also influence the oxidation rate 
and liability for different Trp residues (e.g., side chain and 
backbone dihedral angles) and the electrostatic 
environment.60 Recently, Delmar and colleagues developed 
a random forest model to predict Trp oxidation under light 
stress, which incorporated secondary structure and psi and phi 
angles.59 Future studies could investigate the role of other 
structural factors on Trp oxidation for a broader panel of 
antibodies.

The risk of Trp oxidation can also differ under long-term 
thermal stress compared to forced oxidation by AAPH and 
photolysis. For example, Jacobitz et al. reported that solvent 
exposure of Trp residues correlated better with Trp oxidation 
under long-term thermal stress than oxidation by AAPH and 
light stress.60 Future studies can continue to tailor in silico 
prediction of Trp oxidation to specific stress conditions, such 
as thermal stress, photolysis, and forced oxidation by AAPH 
and peroxides combined with trace metals.

Histidine oxidation

Photo-oxidation and metal-catalyzed oxidation (MCO) are the 
primary mechanisms for His oxidation. During light stress or 
MCO, a singlet oxygen reacts with the imidazole ring of His to 
form peroxide intermediates that then yield oxo-His or cross- 
linked products.4 Recently, His oxidation has been reported for 
mAbs: Luo et al. observed oxidation at His-304 and His-428 for 
IgG2 antibodies after incubation with Cu2+/ascorbate,81 and 
Amano et al. reported His oxidation in the CH2 domain of an 
IgG1 antibody under light stress.82 Studies have also reported 
cross-linking of mAbs caused by His oxidation, with cross- 
linking being more favorable at higher pH.83 For IgG1 antibo-
dies, oxidized His residues in the Fc and hinge region can cross- 
link with His, cysteine, and lysine residues after light stress.84 

Interestingly, His-His cross-linking has also occurred between 
the His side chain of an IgG4 antibody and the free His in the 
formulation.85 Therefore, in silico tools can be used to select 
formulations for antibodies with a higher risk of His oxidation.

Solvent exposure,85 conformational flexibility,84 surround-
ing residues, and pKa influence His oxidation. Not all solvent- 
exposed His residues will get oxidized,82 but solvent exposure 
is still a prerequisite for His oxidation. His residues within 
highly flexible and solvent-exposed regions are more prone to 
oxidation. For example, the oxidized HC-His440 and HC- 
His292 were located at the CH2-CH3 interface within loops,84 

whereas the oxidized His23184 and His22083 were within the 
hinge region. Surrounding residues can also enhance or inhibit 
His oxidation. Neighboring Trp residues can act as photosen-
sitizers and increase the risk of His oxidation. Under light 
stress, Trp residues can generate singlet oxygen or superoxide 
anions, which can oxidize neighboring His residues.86,87
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Studies on the impact of pKa on the risk of His oxidation have 
yielded inconsistent results. For example, Amano et al. reported 
no correlation between pKa of His residues and His oxidation,82 

whereas Miyahara et al. reported His residues with lower pKa 
values were more prone to photooxidation.88 The discrepancy in 
the reported role of pKa on His oxidation could be due to the 
different stress conditions (i.e., MCO versus UVC light expo-
sure) used in these studies and the different by-products formed 
after the stress condition (i.e., oxo-His versus Asn and Asp 
residues). Compared to Met and Trp oxidation, in silico predic-
tion of His oxidation is understudied.49 Future studies could 
investigate the impact of pKa on His oxidation for different 
types of oxidative stress (e.g., photooxidation versus MCO).

Lysine glycation

Glycation is a non-enzymatic modification, where amino 
groups at lysine (Lys) and arginine residues or the 
N-terminal are glycated by reducing sugars such as 
glucose.89 The Schiff base is formed after a condensation 
reaction between the aldehydes of the reducing sugars and 
the amine groups of Lys residues (Figure 3(a)). Schiff base 
formation is reversible; however, the multistep Amadori 
rearrangement can generate more stable ketoamines 
(Figure 3(b)).90 Glycated Lys residues can further degrade 
to form advanced glycation end products,91 which can 
cause an immunogenic response. Lys glycation typically 

occurs during long-term storage in formulations, cell cul-
ture, and in vivo.92 Disaccharides in formulations can 
degrade to form reducing sugars, leading to glycation dur-
ing storage.92 During cell culture, a high glucose concen-
tration can accelerate Lys glycation and reduce protein 
yield.89 The effects of Lys glycation on antigen binding 
varies from decreased binding affinity93 to minimal change 
in binding affinity.94 Lys glycation can increase protein 
aggregation by affecting the net surface charge, reducing 
the electrostatic repulsion between antibodies.95 Forced gly-
cation is used to identify liable Lys residues by incubating 
the IgG with high concentrations of reducing sugars (e.g., 
glucose) at high temperatures.92 Forced glycation in citrate 
buffers correlates well with glycation during cell culture.96

The use of SASA to identify liable residues is a popular 
approach.27 High solvent exposure is a prerequisite for Lys 
glycation, but not all exposed Lys residues are glycated.96 Lys 
glycation is also influenced by flanking residues (i.e., polar, 97 

acidic, and basic residues92), three-dimensional structure, and 
pKa of Lys residues.90 Neighboring Asp and His residues can 
slow Schiff base formation; however, flanking His and Asp 
residues can promote Amadori rearrangement by acting as 
proton donors and acceptors (Figure 3(b)).90,97 Liable motifs 
for glycation include KD, KXD, KXK, and KXE.96 Structure- 
based approaches can identify acidic residues that are not part 
of motifs, but are close enough to catalyze glycation.98 For 
example, Zhang et al. reported glycation at light chain (LC)- 

Figure 3. (a) Mechanism for Schiff base formation. (b) Mechanism for Amadori rearrangement on glycated lysine.
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Lys49, which was 11 Å apart from LC-Asp31.97 They suggested 
that the flexibility of Lys and Asp side-chains promoted 
Amadori rearrangement by reducing the distance between LC- 
Lys49 and LC-Asp31.97

Basic residues such as arginine can promote Schiff base 
formation by lowering the pKa of the Lys side chain.90,95 

Lys side chains with lower pKa values are more likely to 
adopt the deprotonated form (NH2), which is more favor-
able for forming the Schiff base. The deprotonated form of 
the Lys side chain can perform a nucleophilic attack on the 
carbonyl carbon of the sugar to form the Schiff base 
(Figure 3(a)). Miller et al. suggested that neighboring argi-
nine and His residues increased reactivity of HC-Lys98 by 
influencing the pKa of HC-Lys98.95 However, Zhang et al. 
found no correlation between Lys side chain pKa and 
glycation risk.97 They inferred that Amadori rearrangement 
(Figure 3(b)) was the rate-limiting step for the glycation of 
a recombinant humanized mAb. Thus, the impact of the 
Lys side chain pKa on glycation may depend on the rate- 
limiting step for Lys glycation. QM/MM simulations of free 
energy calculations could be used to help identify the rate- 
limiting step for the glycation of different antibodies. 

Moreover, future studies could investigate if different back-
bone and side-chain conformations are more favorable for 
glycation.

Carbonylation

Metal ions can catalyze oxidative carbonylation of arginine, Lys, 
proline (Pro), and threonine residues. Transition metals such as 
iron and copper can convert oxygen (O2) to superoxide radical 
anions (O2

–·).99 During carbonylation, free radicals attack the 
side chain and add an amine or ketone group. Arginine and Pro 
are converted to glutamic semialdehyde; Lys is converted to 
aminoadipic semialdehyde, and threonine is converted to 
2-amino-3-ketobutyric acid (Figure 4).100 Exposure to trace 
metals from stainless steel surfaces and glass vials can cause 
carbonylation of mAbs during manufacturing and storage.101 

Carbonylation of arginine and Lys residues leads to a loss in 
positive charge, which generates acidic variants. For example, 
Yang et al. reported increased acidic variants after forced oxida-
tion with ferrous sulfate and hydrogen peroxide.102 Oxidative 
carbonylation of mAbs can also increase protein aggregation.103

Figure 4. Carbonylation pathway for (a) Lysine (b) Proline (c) Arginine and (d) Threonine.
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Lys is most susceptible to carbonylation, followed by Pro as 
the next most susceptible residue, and arginine and threonine 
are the least susceptible residues. Pro residues tend to form kinks 
that make Pro residues more exposed and increases the risk of 
carbonylation.104 Carbonylation sites are more likely to occur in 
regions enriched with arginine, Lys, Pro, and threonine residues. 
Regions at the N- and C-terminal of the carbonylation sites tend 
to be enriched with positively charged residues.105,106 Solvent 
exposure and structural flexibility also increase the risk of 
carbonylation.105 Currently, there is no clear association 
between carbonylation sites and different types of secondary 
structures.104,107 Multiple carbonylation predictors such as 
CarSPred,106 iCar-PseCp,108 and iCarPS,109 have been developed 
using random forest and support vector machine (SVM) algo-
rithms (Table 2). The most common features of machine algo-
rithms for predicting carbonylation include the position-specific 
propensity of amino acid, hydrophilicity, SASA, side-chain 
interaction parameter, and positive charge (Table 2). 106,108,109

More precise, sensitive, and site-specific analytical methods 
for detecting carbonylation in antibodies have been developed 
in the past decade.5,99,100,110 Joshi et al. identified 27 carbonyla-
tion sites within trastuzumab. Most carbonylation sites were 
within the framework region; they reported no carbonylation 
sites within the CH3 domain and CDR loops.101 The abundance 
of carbonylation sites within the structurally rigid framework 
regions100,101 is surprising because previous studies have sug-
gested that carbonylation is more common in structurally 
flexible or disordered regions. 104,107 However, residues within 
the framework region can have a high solvent exposure and 
undergo carbonylation. 100 Future studies could investigate the 
impact of the structure of antibodies on carbonylation. In 
addition, carbonylation sites from a wide panel of antibodies 
could be used to develop machine learning models for specifi-
cally predicting carbonylation sites for therapeutic antibodies.

Tyrosine sulfation

Tyrosine sulfation is an enzymatic modification that is cata-
lyzed by tyrosylprotein sulfotransferases (TPSTs). During sul-
fation, a sulfate group is attached to the hydroxyl group of 
tyrosine residues.111 Tyrosine sulfation has been reported for 
a few monoclonal and bispecific antibodies.111–114 Sulfation of 
mAbs can occur in Chinese hamster ovary (CHO) cells during 
the cell culture. The degree of tyrosine sulfation in CHO cells 
varies due to differential expression of phosphoadenosine-5ʹ- 
phosphosulfate (PAPS) synthetase and TPST. PAPS synthetase 
converts ATP to PAPS; TPST transfers the sulfo group from 
PAPs to tyrosine residues.115 Sulfation in mAbs generates 
acidic variants,111 but the impact of tyrosine sulfation on the 
safety and efficacy of therapeutic antibodies has not yet been 
established.5

Common predictors of tyrosine sulfation include secondary 
structure, flanking residues, structural flexibility,101, and 
SASA.116 Sulfation is more favorable for structurally flexible 
or disordered regions that can fit into the cleft of TPSTs. 
Tyrosine residues flanked by acidic residues are also more 
likely to get sulfated (Figure 5(a)).111 During sulfation, the 
flanking acidic residues within the IgG form electrotactic inter-
actions with arginine and Lys residues of TPST.117 The role of 
structural flexibility in sulfation suggests that sulfation is more 
likely to occur in the solvent-exposed and flexible CDR loops 
than in the framework regions.51 Zhao et al. reported tyrosine 
sulfation in the CDR-L1 loop,111 and Tyshchuk et al. reported 
sulfation in the CDR-L2 loop.112

There are multiple online tools for predicting sulfation, 
such as Sulfinator,118 PredSulSite,119 and Sulfotyrosine.120 

However, the accuracy of online tools is limited by the 
training set used to develop machine learning algorithms 
to predict PTMs.34 The training sets for most online 

Table 2. Comparison of online carbonylation predictors used for machine learning methods. Abbreviations: KNN, k-nearest neighbor; ROC, Receiver Operating 
Characteristic.

Carbonylation 
predictor

Machine 
learning 

algorithm Parameters Data Set
Area under 

the ROC1 Reference

CarSPred Weighted 
support 
vector 
machine

Position-specific propensity of amino acid, k-spaced 
amino acid pair, KNN scores, physicochemical 
properties (electric properties, hydrophobicity, 
alpha and turn propensities, etc.)

331 lysine, 131 arginine, 128 threonine, and 129 
proline carbonylation sites were extracted from 
230 carbonylated human proteins. 
In addition, 22 lysine, 3 arginine, 6 threonine, 
and 15 proline carbonylation sites were 
extracted from carbonylated mouse, rabbit and 
bovine proteins.

Lysine: 0.6704 
Arginine: 

0.5345 
Threonine: 

0.6800 
Proline: 
0.7873

106

iCar-PseCp Random 
forest

pseudo amino acid composition Data was derived from 230 human carbonylated 
protein sequences and 20 carbonylated proteins 
from Photobacterium and Escherichia coli.

Lysine: 0.8728 
Arginine: 

0.8668 
Threonine: 

0.8603 
Proline: 
0.8484

108

iCarPS Random 
forest

3-D conical coordinates and physicochemical 
properties (hydrophobicity, hydrophilicity, mass,  
pK1, pK2, pI, rigidity, flexibility, and 
irreplaceability)

Same benchmark dataset as Lv, et al. (2014).109 Lysine: 0.789 
Arginine: 

0.726 
Threonine: 

0.790 
Proline: 

0.814

109

1Area under the curve was derived for the ROC. The ROC plots the sensitivity (i.e., true positive rate) versus selectivity.
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predictors include experimentally identified tyrosine sulfa-
tion sites from databases like Swiss Prot. However, mAbs 
are underrepresented, and an overtrained machine learning 
algorithm may fail to identify sulfation sites in mAbs. 
Hence, sulfation predictors have to be used with caution 
for assessing the risk of tyrosine sulfation in mAbs. 
Tyrosine sulfation needs to be identified in a broader 
panel of antibodies to improve tyrosine sulfation prediction 
for mAbs. Future studies could also explore the impact of 
structural features such as dihedral angles, pKa of sur-
rounding residues, and position within IgG (i.e., CDR or 
framework region) on tyrosine sulfation.

Hydroxylation

Hydroxylation is an enzymatic modification that is catalyzed 
by hydroxylases. Hydroxylation can occur at arginine, tyrosine, 
Trp, and phenylalanine, but it is more common for Pro and 

Lys.121 During hydroxylation, a hydroxyl (OH) group is added 
to Pro or Lys residues. As a result, Pro is converted to 
3-hydroxyPro or 4-hydroxyPro, whereas Lys is converted to 
5-hydroxyLys.122 Hydroxylation of Lys and Pro residues at 
consensus motifs (Xaa-Lys-Gly or Xaa-Pro-Gly) is common 
in collagen, where hydroxylation helps stabilize the collagen 
triple-helix.123 Common parameters for designing hydroxyla-
tion predictors include solvent exposure, intrinsic disorder, 
hydrophilicity, and sequence.122,123 Hydroxylation sites tend 
to be disordered, exposed, and enriched with Pro and Gly 
residues.124

There are multiple online predictors for hydroxylation sites 
such as PredHydroxy, HydPred, and ModPred.123 Online 
hydroxylation predictors are suitable for collagen. However, 
most hydroxylation predictors have limited training sets, 
which leads to a high number of false positives and false 
negatives for non-collagen proteins and uncommon hydroxy-
lation motifs. To date, two studies have reported hydroxylation 
in antibodies. Xie et al. reported Lys hydroxylation for an IgG1 
antibody,125 and Tyshchu et al. observed Pro hydroxylation for 
a bispecific antibody.112 Using consensus motifs can lead to the 
overestimation of hydroxylation sites. For example, Xie et al. 
did not report Lys hydroxylation at all of the consensus 
motifs.125 Most hydroxylation predictors are not specific to 
mammalian and human proteins, limiting their utility for 
therapeutic antibodies.123 Tyshchuk and colleagues used 
hydroxylation sites for mammalian proteins to generate 
sequence logos (Figure 5(b)) and develop a kNN model:112 

the in silico prediction correlated well with the experimental 
data for the bispecific antibody. Huang et al. used a similar 
approach to create HydLoc, which had a training set composed 
of human proteins and had better accuracy for predicting 
hydroxylation of human proteins.124 Machine learning meth-
ods for predicting hydroxylation can be improved with more 
experimental data for uncommon hydroxylation sites, as well 
as hydroxylation sites for mammalian proteins, human pro-
teins, and antibodies.123

Perspectives and future directions

In the past decade, in silico prediction of PTMs has evolved 
from simple sequence-based approaches to more sophisticated 
approaches incorporating antibody modeling, MD, and 
machine learning.12 Although the structure- and physics- 
based approaches have better accuracy than sequence-based 
approaches, there is still a gap between the in silico prediction 
and experimental data from forced degradation studies. 
External factors such as formulation and cell culture conditions 
can contribute to the gap between in silico predictions and 
forced degradation results.3 The quality of predicted structures 
is a limiting factor for structure- and physics-based 
approaches. Homology modeling is suitable for modeling the 
conserved framework regions. Recent advances in loop model-
ing have provided more accurate predictions for the L1, L2, L3, 
H1, and H2 loops.126 However, modeling the CDR-H3 loop is 
still challenging due to the length and structural variation.127 

Future advancements in antibody modeling will improve the 
accuracy in silico prediction of PTMs. In addition, MD 

Figure 5. Sequence logos showing the most conserved amino acids around (a) 
sulfotyrosine (sTyr). (b) Sequence logos showing the most conserved amino acids 
around 4-hydroxyproline (4Hyp) residues. Reproduced from Tyshchuk, O. et al.112 

(Creative Commons Attribution License).
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simulations can provide more representative SASA values for 
predicted and crystal structures and refine the quality of pre-
dicted structures.

Machine learning algorithms such as random forest and 
decision trees have been used to predict the risk of deamida-
tion, isomerization, and oxidation. However, machine learning 
models are limited by the training set and selection of para-
meters. Building a training set can require a lot of in-house 
experimental data. Experimentally confirmed liable sites for 
publicly available antibody sequences are essential for devel-
oping better machine learning models in the future. Selecting 
the best parameters is complicated by contradictory findings 
for the impact of structural features (e.g., pKa values) on PTMs. 
Studies investigating the effect of different structural features 
on PTMs for a broad panel of antibodies are crucial for 
improving in silico prediction of PTMs. 42,67 Moreover, the 
selection parameters for machine learning models should 
account for different mechanisms for chemical modifications 
(e.g., oxidation) under different types of stress conditions, such 
as forced oxidation by peroxides66 and photolysis.

Therapeutic antibodies can also undergo in vivo chemi-
cal modifications (e.g., deamidation and oxidation) due to 
rapid temperature and pH changes after drug 
administration.128 In vivo chemical modifications can 
impact the safety and efficacy of therapeutic antibodies. 
For example, in vivo deamidation can lead to a loss in 
activity and cause immunogenicity. 57 Few studies have 
investigated in vivo modifications by monitoring PTMs 
for IgG in serum or by using in vitro conditions to 
mimic in vivo degradation.57 Monitoring in vivo modifica-
tions is difficult because the human serum is a mixture of 
endogenous proteins and the administered therapeutic anti-
bodies. It is challenging to separate and distinguish thera-
peutic antibodies from endogenous proteins. Fluorescence 
labeling techniques or affinity purification with anti-Fc 
antibodies are required for mass spectrometry (MS) analysis 
of in vivo samples. The harsh purification conditions (e.g., 
low pH elution) can introduce artifacts in liquid chromato-
graphy-MS analysis.129 Computational approaches for 
improving the stability of therapeutic antibodies focus on 
preventing chemical degradation under the types of stresses 
(e.g., thermal stress) encountered during manufacturing 
and storage.27 In silico prediction of in vivo modifications 
remains relatively unexplored. Developing computational 
approaches to predict in vivo chemical modifications pro-
vides opportunities for improving in vivo stability of ther-
apeutic candidates.

The impact of PTMs on heterogeneity, safety, and efficacy 
can vary depending on the location of the liable residue. 
A more holistic approach to engineering mAbs could identify 
PTM hotspots and predict the impact of PTMs on binding 
affinity and physical stability. Removing liable sites is not 
always feasible, especially if the amino acid residue plays 
a role in antigen binding. Paratope prediction and molecular 
docking of IgG-antigen complex can guide antibody engi-
neering for developability.130 The surface charge distribution 
and surface hydrophobicity131 could be used to predict the 
impact of modifications of liable residues on colloidal 
stability.

Substantial strides have been made in silico prediction of 
deamidation, isomerization, and Met oxidation.22,30,46 

However, the in silico prediction of glycation, sulfation, hydro-
xylation, and carbonylation mAbs is underdeveloped com-
pared to other PTMs. Another understudied area is in silico 
prediction of in vivo chemical modifications.57 Advances in 
analytical characterization of novel modifications (e.g., sulfa-
tion) and in vivo modifications are crucial for developing 
computational approaches for predicting PTMs.

After two decades of establishing a solid foundation for in 
silico prediction of chemical modifications, future studies can 
focus on tailoring in silico predictions to more specific stress 
conditions and formulations.

Abbreviations

AAPH 2,2�-Azobis(2-amidinopropane) dihydrochloride
Asn asparagine
Asp aspartic acid
CDR complementary-determining region
CHO Chinese hamster ovary
Gly glycine
HC heavy chain
His histidine
kNN K-nearest neighbor
LC light chain
Lys Lysine
mAbs monoclonal antibodies
MCO metal-catalyzed oxidation
Met methionine
MD molecular dynamics
PAPS phosphoadenosine-5�-phosphosulfate
Pro proline
PTM post-translational modification
QM/MM quantum mechanics/molecular mechanics
RMSF root-mean-square fluctuations
SASA solvent-accessible surface area
SVM support vector machine
TPST tyrosylprotein sulfotransferases
Trp tryptophan
WCN water coordination number.
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