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Accurate volumetric assessment in non-small cell lung cancer (NSCLC) is critical for adequately informing
treatments. In this study we assessed the clinical relevance of a semiautomatic computed tomography
(CT)-based segmentation method using the competitive region-growing based algorithm, implemented in
the free and public available 3D-Slicer software platform. We compared the 3D-Slicer segmented volumes
by three independent observers, who segmented the primary tumour of 20 NSCLC patients twice, to manual
slice-by-slice delineations of five physicians. Furthermore, we compared all tumour contours to the
macroscopic diameter of the tumour in pathology, considered as the “gold standard”. The 3D-Slicer
segmented volumes demonstrated high agreement (overlap fractions > 0.90), lower volume variability (p =
0.0003) and smaller uncertainty areas (p = 0.0002), compared to manual slice-by-slice delineations.
Furthermore, 3D-Slicer segmentations showed a strong correlation to pathology (r = 0.89, 95%ClI, 0.81-
0.94). Our results show that semiautomatic 3D-Slicer segmentations can be used for accurate contouring
and are more stable than manual delineations. Therefore, 3D-Slicer can be employed as a starting point for
treatment decisions or for high-throughput data mining research, such as Radiomics, where manual
delineating often represent a time-consuming bottleneck.

ung cancer is a disease that affects about 1.6 million individuals worldwide every year'. Non-small cell lung
cancer (NSCLC) accounts for 85% of all lung cancer cases and it is characterized by poor prognosis and low
survival rates, due to high incidence of loco-regional and distant recurrences’.

In lung cancer, tumour delineation is critical for accurate volumetric assessment to evaluate response to
therapy, which can inform treatment decisions. However, tumour delineation can be a source of uncertainty,
since typically, the tumour delineation process involves an experienced physician, interpreting and manually
contouring computed tomography (CT) alone or combined with Fluorodeoxyglucose (FDG) - positron emission
tomography (PET) imaging, on a slice-by-slice basis**°. Despite efforts in standardization of CT or FDG-PET-CT
image acquisition and standardized guidelines for tumour delineation, definition of lung tumours remains prone
to inter-observer variability and is time consuming®™’.

To reduce these problems, a number of CT or FDG-PET based semi-automatic methods have been investi-
gated, that aim to provide equivalent segmentations to those delineated manually by physicians, or to provide a
starting point for the manual delineation process, thereby reducing the overall required time. The various
segmentation methods, that range from simple threshold based methods to complex level set, watershed, or
region growing-context based methods, have been compared to manual delineations provided by physicians and
compared to the pathological measurements of tumour size, with varying success rates'*'®. However, the
application of these methods is limited, often due to accessibility of the method within the clinical delineation
process.

In this study we evaluated the utility of the GrowCut algorithm to segment lung tumours, implemented in 3D-
Slicer — a free open source software platform for biomedical research?. This cellular automaton-based algorithm
performs automatic tumour segmentation after drawing boundaries within the image volume. It provides an
alternative to the manual slice-by-slice segmentation process and is found to be significantly faster and less user
intensive'”. Our hypothesis is that 3D-Slicer contours are more stable for inter-observer variation compared to
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manual contouring. To evaluate the accuracy of the 3D-Slicer segmen-
tations, three independent observers segmented 20 NSCLC patients
twice using 3D-Slicer. We compared these six 3D-Slicer segmentations
to manual delineations provided by five physicians. Furthermore, the
segmented volumes were compared with the maximum diameter
measured from the tumour after resection, considered as the gold
standard. Because 3D-Slicer is publicly available and easily accessible
by download, its application in NSCLC could be useful for the clinical
investigations where tumour contours are necessary for assessing ther-
apy response, therapy planning, or in high-throughput data mining
research of medical imaging in clinical oncology (Radiomics)'®>.

Results

Clinical reliability of the 3D slicer’s semi-automatic segmentations
was measured in terms of its agreement with the CT/PET manual
tumour delineations of five independent observers and with patho-
logical measurements after surgery. To quantify the agreement
between the manual and 3D-Slicer segmentations, we performed an
uncertainty analysis. The uncertainty region was defined as the region
that varied between the segmentations of the different observers. In
figure 1, the uncertainty region of five manual and six 3D-Slicer
segmentations (three observers segmented twice with different seed-
point initialisation) is illustrated. This example shows that the uncer-
tainty region is larger for manual delineations compared to 3D-Slicer.

Overlap fractions. To examine the spatial agreement of the manual
and 3D-Slicer contours, Overlap Fractions (OF) were calculated. OFs
were computed between each of the six 3D-Slicer segmentations with
the uncertainty region of the manual delineations. The intersection is
defined as the inner boundary of the uncertainty region (ie. the
region that all manual observers delineated), and the union as the
outer boundary of the uncertainty region (i.e. the region at least one
of the manual observers delineated). High OFs were observed with
the observers’ intersection (mean * SD: 94.3 = 4.4%, range: 76.8—
99.8) and union (mean * SD: 97.2 * 5.1%; range: 72.6-100) [See
figure 2]. In the Supplementary Figure S1, a heat map depicting the
overlap fractions for each patient between the GrowCut segmenta-
tions and manual delineations’ union and intersection are shown.
The results demonstrate a high spatial agreement of the manual and
3D-Slicer segmentations.

Uncertainty regions. To investigate the robustness of 3D-Slicer
segmentations we compared its uncertainty region against the man-
ual uncertainty region [Figure 1]. The analysis showed that the
uncertainty region, defined as the difference between uncertainty
region inner and outer boundaries, was smaller for the 3D-Slicer
segmentations [See Figure 3A]. Manual delineations had significan-
tly larger uncertainty areas compared to 3D-Slicer segmentations
(Wilcoxon test p = 0.0002).

\ Uncertainty Region

)
U

Figure 1| Segmentation uncertainty. Left: representative example showing differences in CT/PET manual delineations (top) and 3D-Slicer
segmentations (bottom). Right: This variability is quantified with the uncertainty region, defined as the difference between the observers’ agreement and
observers’ union (highlighted in green). The smaller the uncertainty region is, the lower the variability among multiple contours.
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Figure 2 | Overlap fractions between the 3D-Slicer segmented volumes
and the observers’ intersection and union volumes. High overlap fraction
indicates high agreement (spatial overlap) between volumes.

Segmented volumes. We then investigated the volumes of the
segmentations. There was a high agreement between the volumes
of the manual and 3D-Slicer contours, as we found no statistically
significant difference between the volumes of the five manual
delineations (82.03 * 94.31 cm®) and six 3D-Slicer (72.27 =
86.62 cm®, mean * SD) segmentations, using Kruskal-Wallis one-
way analysis of variance (p = 0.98). Figure 3B, displays the tumour
volume variability, for both manual and 3D-Slicer for all patients. In
17 cases (85%), the volume variability was significantly lower for 3D-
Slicer segmentations (p = 0.0003).

3D-Slicer segmentation process. To investigate the stability of 3D-
Slicer algorithm against user seed-points initialization, we compared
the intra-observer variability for each of the 3D-Slicer users. High
overlap fractions were observed for the 3D-Slicer users: 95.01% *
5.33%, 94.11% * 3.95 and 97.08% * 2.54% [mean * SDJ,
respectively.

To assess the duration of the 3D-Slicer segmentation process, we
recorded the duration of all segmentation phases. The total seg-
mentation times were in average 10.6 min (range: 4.85-18.25 min),
9.97 (range 6.39-13.83 min) and 9.94 min (range: 4.38-20.25 min),
for the three 3D-Slicer users respectively. In average, the times mea-
sured for each 3D-Slicer segmentation phase were: loading (28 sec-
onds), algorithm initialization (2.79 min), running the 3D-Slicer
algorithm (32 seconds) and editing final phase (6.52 min).

Pathology. Further validation was provided by comparing the
maximum diameter of the 3D slicer segmentations with that of
the surgical specimen. Strong correlations were observed between
the maximum diameter of 3D-Slicer volumes and the macroscopic
diameter of the surgical tumours (spearman r, mean = SD = 0.89 *
0.05, range: 0.81-0.94). Similarly, the maximum diameters of the
manual CT/PET delineations were highly correlated with the
macroscopic diameter (spearman r, mean * SD = 0.92 * 0.02,
range: 0.91-0.95). Figure 4 displays the scatter plot between
macroscopic diameter and the diameters of CT segmentations
(manual and 3D slicer). The diameters of surgery had a range of
1.8-9 and average of 45 * 2.03 (mean * SD). The manual
delineations had a range of 1.42-12.53 and average of 6.09 * 2.71
(mean * SD). The semi-automatic delineations were: range 1.41-
12.20 and average of 6.17 = 2.89. These twelve different diameter

vectors were also compared using the Kruskal-Wallis test and no
statistically significant difference was observed (p = 0.97).

Discussion

Despite the efforts in CT-PET imaging standardization and tumour
delineation protocols, target definition remains subjected to observer
variation. With respect to manual delineations, the addition of PET
information to CT imaging in standardized delineation protocols has
reduced the observer variability, however, human interaction and
interpretation of medical images is still a considerable source of
variation>>”*. Furthermore, slice-by-slice manual contouring of
two-dimensional images is a time consuming process.

Here, we evaluated the utility of a freely accessible 3D-Slicer algo-
rithm, a cellular automaton-based algorithm, by performing a volu-
metric comparison with tumour delineations made by five
independent oncologists following standardized protocols™, as well
as by comparing it with the maximal diameter obtained from patho-
logical measurements.

The volumetric comparison showed that the 3D-Slicer algorithm
provides tumour segmentations, statistically equivalent to physicians
CT/PET manual contours. To evaluate the accuracy of the 3D-Slicer
segmentations, the overlap fraction (%) was calculated and resulted
in high values between the semi-automatically segmented volumes
and the intersection (mean = SD: 94.3 * 4.4%, range: 76.8-99.8) and
union (mean * SD: 97.2 * 5.1%; range: 72.6-100) of the manual
delineations. Importantly, semi-automatic segmentations showed
overall lower volume variability (p = 0.0003) and smaller uncertainty
areas (p = 0.0002) compared to manual delineations. 3D-Slicer seg-
mentations showed robustness towards user initialization, the OF’s
between the first Slicer segmentation and the second slicer segmenta-
tion were for each user in average: 95.01% * 5.33%, 94.11% * 3.95
and 97.08% = 2.54%, respectively.

Additionally, we observed a strong correlation between the 3D-
Slicer segmentations and the maximal diameter as measured on
pathological examination (r = 0.89; 95% CI, 0.81-0.94). The average
time to perform a complete segmentation was 9.8 minutes using
Slicer. Loading the images and running the algorithm takes in aver-
age half a minute respectively. Due to the retrospective nature of our
analysis we were not able to compare the 3D-Slicer segmentation
times with the manual delineation times, since those were not avail-
able. However 3D slicer’s volume segmentation has been shown to be
substantially faster and less user intensive compared to manual delin-
eation in other tumour sites!”. Furthermore, manual delineation is
well known to be a very time consuming task.

To minimize observer variability and reduce user interactions,
several CT and PET semi-automatic segmentation methods have
been introduced. Simple methods such as threshold-based segmen-
tations are widely available but often fail to accurately define the
tumour borders'®'"'*. Various more complex methods have been
investigated, including signal-to-background ratio individualized
thresholding, watershed-based methods or complex fuzzy locally
adaptive thresholding methods''*'>***. These methods have
showed generally better correlations with pathology and manual
delineations than the simple fixed threshold methods; however they
often require significant tuning of algorithm parameters and are not
widely available. PET-based methods are intrinsically better choices
to segment the highly active metabolic areas of the tumour. In con-
trast, CT-based methods provide an anatomical segmentation with
higher spatial resolution. In radiation therapy, CT is the reference
imaging modality for treatment planning, and an accurate gross
tumour volume definition is fundamental to assure adequate target
coverage. Therefore, we believe that CT-based semi-automatic seg-
mentations have clinical utility, if they provide segmentations as
accurate as those generated manually by the medical experts, despite
the intrinsic CT limitations to distinguish areas of the tumour that
are metabolically more active.
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Figure 3| (A): Comparison of volume uncertainty (as defined as the region that varied between the contours of multiple observers) of manual
delineations and 3D-Slicer segmentations. See figure 2 for an illustrative example of the uncertainty region. (B): Comparison of volume variability (cm’)

of observers’ manual delineations and 3D-Slicer segmentations.

Cheebsumon et al, compared several commonly used PET-based
segmentation methods with pathology and with a CT manually deli-
neated volume''. They reported PET-based methods to have a better
agreement with pathology compared to CT delineation. In their
study, CT manual delineation significantly overestimated the
tumour size compared to pathology. CT manual delineation is
known to be prone to inter-observer variation and usually overesti-
mates tumour dimensions. In their exhaustive methods comparison,
they lacked a comparison with semi-automatic CT-based segmenta-
tion methods, which have shown better correlations with pathology
than manual delineations®. We previously evaluated a CT-based
click-and-grow ensemble segmentation (SCES) algorithm, which
showed good overlap with medical expert’s tumour delineations
and with pathological measurements®. The SCES also showed
robustness towards user initialization, as it involved an iterative seg-
mentation process, with a bootstrapping routine with multiple initi-
alizations, which resulted in highly reproducible final
segmentations™. Unfortunately, this algorithm is only available in
commercial packages and therefore not available for the broader
community.

A comparison of CT-based and PET-based methods with patho-
logical measurements and manual delineations is still lacking
though. We anticipate that methods combining CT and PET
information will be the winner in the lung tumour segmentation

race, though not all centers are equipped with integrated PET-CT
scanners. However, intrinsic differences between CT and PET
information should be taken into account. The present 3D-Slicer
algorithm, provided accurate tumour segmentations for 85% of the
cases. In three cases the 3D-Slicer failed to define accurately the
border, these cases showed larger volume variability with 3D-Slicer
compared to manual delineations; two of these cases were large
masses with pleural attachment, however only one had a central
location. The third case was a very small isolated tumour, adjacent
to a main blood vessel, in this case due to the volume size, small
variations in border definition due to the adjacent vessel, resulted in
significant volume variations. Nevertheless, a medical expert should
supervise auto-segmentation algorithms in all cases.

The current correlation between the 3D-Slicer delineation and
pathology could possibly be improved if the CT and PET-CT would
have been performed in 4D-mode. It is well recognized that a free-
breathing CT and even more PET scan will result in blurred edges of
the tumour and erroneous CT densities or SUV values. In further
research, 4D scans should be used.

A general drawback when comparing segmentation algorithms
with pathological dimensions is that often only tumour sizes in
one dimension are available (maximal diameter). Furthermore,
pathological measurements can be affected by tumour shrinkage
and deformation after surgery. In this study only the maximal dia-
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Figure 4 | Scatter plot between maximal diameter of surgical specimen and the maximal diameter of computed tomography (CT) segmented volumes
for both manual and semiautomatic 3D-Slicer diameters. Spearman’s correlation coefficient was 0.89 (95%CI, 0.81-0.94).

meter on pathology was compared, which is less prone to error than
volumetric comparisons with pathology. The timing-span between
the image acquisition and surgery may impact the comparison of the
segmentation methods with pathology due to tumour growth. Given
the correlation observed with pathological tumour diameter, this
time difference may not have a strong impact in the evaluated cases.

In conclusion, the open source 3D-Slicer algorithm, provided
tumour segmentations comparable to those manually delineated
by physicians and with lower variability. Since the semi-automatic
segmentations are statistically comparable to manual delineations
and correlated well with pathology, they could be used as a starting
point for treatment planning delineations and in high-throughput
data mining research, such as Radiomics'®*!, where manual tumour
delineations are often not available, or represent a considerable time
consuming bottleneck.

Methods

CT-PET scans. The imaging data was acquired at MAASTRO Clinic in The
Netherlands, as reported previously by Baardwijk et al’. In short, twenty consecutive
patients with histologically verified non-small cell lung cancer, stage IB-IIIB, were
included in this study. All patients received a diagnostic whole body positron
emission tomography (PET)-computed tomography (CT) scanning (Biograph,

B & B

SOMATOM Sensation 16 with an ECAT ACCEL PET scanner; Siemens, Erlangen,
Germany). Patients were instructed to fast at least six hours before the intravenous
administration of '*F-fluoro-2-deoxy-glucose (FDG) (MDS Nordion, Liége,
Belgium), followed by physiologic saline (10 mL). The total injected activity of FDG
was dependent on the patient weight expressed in kg: (weight * 4) + 20 Mbq. Free-
breathing PET and CT images were acquired after a period of 45 minutes, during
which the patient was encouraged to rest. The whole thorax spiral CT scan was
acquired with intravenous contrast. The PET images were obtained in 5-min bed
positions. The CT data set was used for attenuation correction of PET images. The
complete data set was then reconstructed iteratively with a reconstruction increment
of 5 mm. Imaging data are available on www.cancerdata.org. This study was
conducted according to national laws and guidelines and approved by the appropriate
local trial committee at Maastricht University Medical Center (MUMC+),
Maastricht, The Netherlands. For more details see Baardwijk et al’.

GrowCut semi-automatic segmentation method in 3D-Slicer. GrowCut is an
interactive region growing segmentation method. Given an initial small set of label
points the algorithm automatically segments the remaining image by using cellular
automation. The algorithm uses a competitive region growing approach and is
considered as having good accuracy and speed for the 2D and 3D image
segmentation. For N-class segmentation the algorithm needs N initial sets of pixels
(one set corresponding to each class) from user. Using these pixel sets, the algorithm
automatically generates the region of interest (ROI), which is the convex hull of the
user-labelled pixels with an additional margin. In the next step, it iteratively labels all
the pixels in the ROI using the user-given pixel labels. The algorithm converges when
all the pixels in the ROI have unchanged labels across several iterations. Pixel labelling
is done using a weighted similarity score, which is a function of the neighbouring pixel

Figure 5 | Initialization step of 3D-Slicer segmentation. Marked foreground (green) and background (yellow) are shown. Axial (a), sagittal (b) and

coronal (c) views are shown.
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Figure 6 \ Semi-automatically segmented tumour (green) using 3D-Slicer. Axial (a), three dimensional (b), sagittal (c) and coronal (d) views are

shown.

weights. An unlabelled pixel is labelled corresponding to the neighbouring pixels that
have the highest weights.

NSCLC tumour GrowCut segmentation in 3D-Slicer. 3D-Slicer gives a user friendly
GUI as the frontend and an efficient algorithm as the backend for the GrowCut
segmentation. After loading the patient data, the process began with the initialization
of the foreground and background by marking the area inside and outside the tumour
region with few initial seed pixels [Figure 5]. The next step was automatic competing
region-growing, which segmented the region of interest into foreground and
background. Background and surrounding isolated foreground pixels were removed
after visual inspection. Figure 6 displays the final segmented tumour region. In
Supplementary Figure S2 four representative tumour segmentations generated using
the 3D-Slicer algorithm are compared with the manual delineations of five
independent observers. Visual comparison shows a high agreement of the manual
delineations with the semiautomatic one.

We performed Slicer GrowCut segmentations by three independent users, which
repeated the process two times, with a three day interval between each time.
Segmentation times using GrowCut were recorded for every step of the analysis.

Manual tumour delineations. To validate the semiautomatic segmentation method,
five radiation oncologist have manually delineated the gross tumour volume (GTV)
of the primary tumour, based on fused PET-CT images using standard delineation
protocol, which includes fixed window-level settings of both CT (lung W 1,700; L
—300, mediastinum W 600; L 40) and PET scan (W 30,000; L 15,000)>”**. Radiation
oncologists were mutually blind of each other’s delineations. The primary GTV was
defined for each patient based on combined CT and PET information in the axial
plane. The radiation oncologists were given transversal, coronal, sagittal and 3D views
simultaneously. A treatment planning system (XiO; Computer Medical System, Inc.,
St. Louis, MO), was used for performing delineations.

Pathology. The examination of surgical specimen was carried out according to
national guidelines’. Surgical resections were performed on all the patients. Before
slicing, the maximal diameter of the primary tumour was measured by macroscopic
examination. The interval time between the CT scan and the surgery or biopsy was in
average 39 days (range: 7-112).

Statistical analysis. Overlap Fraction (OF) was used to evaluate the 3D slicer’s
segmentations in terms of its spatial overlap with manual delineations. Intersection
and union volumes were defined for manual delineations (Figure 1). OFs were
calculated between the semiautomatic segmentations and these intersection and
union delineations. OF was defined as the as the volume of overlap divided by the
smallest volume™:

OFinter = m * 100, and
min{SV,0Bi}
SV OBu
OFunion= ————————x% 100
O = in{SV,0Bu}

SV, OBi and OBu are the semiautomatic, observers’ intersection and union volumes
respectively. OF value 100 suggests perfect match while OF value 0 points to two disjoint
volumes and thus no match. OF; ., indicates whether the semiautomatic-segmentation

method covers the common agreement (intersection volume) of the manual delinea-
tions while OF,,,,;,,, indicates whether the algorithm falls within the inter-observer
variability (union volume).

Furthermore, using the above described concept of union and intersection
volumes, we calculated and compared the uncertainty of the GrowCut segmentations
and the manual delineations. The uncertainty was defined as the difference between
the union and intersection volumes, which is the area that belongs to the union but
not to the intersection volumes. This region can be seen in Figure 1, highlighted in
green. The lower the difference between union and intersection volumes the lower the
uncertainty. If all contours were equal, with no variation, the union and intersection
volumes would be identical with no uncertainty areas.

Overlap fractions were used to compare the first 3D-Slicer segmentation against
the second 3D-Slicer segmentation for the same observer.

A volume (cm’) comparison was also carried out. Volumes calculated from dif-
ferent segmentation methods were compared using the Kruskal-Wallis test. Two
methods were considered to be significantly different when the p-value was lower
than 0.05.

We compared the volume variability of the 3D-Slicer segmentations against
manual delineations using the standard deviation of the 3D-Slicer and manual
volumes. The Wilcoxon test was used to compare the volume variability and uncer-
tainty differences between the two types of segmentations.

Spearman correlation coefficient was used to compare the maximal diameter of
pathology with the maximal diameter of 3D-Slicer and the manual segmentations.
Further we also compared all these twelve maximal diameter groups: 3D-Slicer (three
observers twice), pathology, and five manual using the Kruskal-Wallis one-way
analysis of variance. Again groups were considered significantly different when the p-
value was lower than 0.05. All data are expressed as mean * SD. All the analyses were
performed in Matlab (The MathWorks Inc., Natick, MA, USA) and R (R Foundation
for Statistical Computing, Vienna, Austria).

1. Jemal, A. et al. Global cancer statistics. CA Cancer J Clin 61, 69-90 (2011).

2. van Baardwijk, A. et al. Mature results of an individualized radiation dose
prescription study based on normal tissue constraints in stages I to III non-small-
cell lung cancer. J Clin Oncol 28, 1380-1386 (2010).

3. Steenbakkers, R. J. et al. Observer variation in target volume delineation of lung
cancer related to radiation oncologist-computer interaction: a ‘Big Brother’
evaluation. Radiother Oncol 77, 182-190 (2005).

4. Van de Steene, J. et al. Definition of gross tumor volume in lung cancer: inter-
observer variability. Radiother Oncol 62, 37-49 (2002).

5. Bowden, P. et al. Measurement of lung tumor volumes using three-dimensional
computer planning software. Int ] Radiat Oncol Biol Phys 53, 566-573 (2002).

6. Caldwell, C. B. et al. Observer variation in contouring gross tumor volume in
patients with poorly defined non-small-cell lung tumors on CT: the impact of
18FDG-hybrid PET fusion. Int ] Radiat Oncol Biol Phys 51, 923-931 (2001).

7. van Baardwijk, A. et al. PET-CT-based auto-contouring in non-small-cell lung
cancer correlates with pathology and reduces interobserver variability in the
delineation of the primary tumor and involved nodal volumes. Int ] Radiat Oncol
Biol Phys 68, 771-778 (2007).

8. Steenbakkers, R.J. et al. Reduction of observer variation using matched CT-PET
for lung cancer delineation: a three-dimensional analysis. Int ] Radiat Oncol Biol
Phys 64, 435-448 (2006).

| 3:3529 | DOI: 10.1038/srep03529



9. De Ruysscher, D. PET-CT in radiotherapy for lung cancer. Methods Mol Biol 727,
53-58 (2011).

10. Nestle, U. et al. Comparison of different methods for delineation of 18F-FDG
PET-positive tissue for target volume definition in radiotherapy of patients with
non-Small cell lung cancer. ] Nucl Med 46, 1342-1348 (2005).

. Cheebsumon, P. et al. Assessment of tumour size in PET/CT lung cancer studies:
PET- and CT-based methods compared to pathology. EINMMI Res 2, 56 (2012).

12. Daisne, J. F. et al. Tri-dimensional automatic segmentation of PET volumes based
on measured source-to-background ratios: influence of reconstruction
algorithms. Radiother Oncol 69, 247-250 (2003).

. Dehmeshki, J., Amin, H., Valdivieso, M. & Ye, X. Segmentation of pulmonary
nodules in thoracic CT scans: a region growing approach. IEEE Trans Med
Imaging 27, 467-480 (2008).

14. Schaefer, A. et al. PET-based delineation of tumour volumes in lung cancer:
comparison with pathological findings. Eur ] Nucl Med Mol Imaging 40,
1233-1244 (2013).

15. Hatt, M. et al. Accurate automatic delineation of heterogeneous functional
volumes in positron emission tomography for oncology applications. Int | Radiat
Oncol Biol Phys 77, 301-308 (2010).

16. Wu, K. et al. PET CT thresholds for radiotherapy target definition in non-small-
cell lung cancer: how close are we to the pathologic findings? Int ] Radiat Oncol
Biol Phys 77, 699-706 (2009).

17. Egger, J. et al. GBM volumetry using the 3D Slicer medical image computing
platform. Sci Rep 3, 1-7 (2013).

18. Kumar, V. et al. Radiomics: the process and the challenges. Magn Reson Imaging

30, 1234-1248 (2012).

. Lambin, P. et al. Radiomics: extracting more information from medical images
using advanced feature analysis. Eur ] Cancer 48, 441-446 (2012).

. Buckler, A. J., Bresolin, L., Dunnick, N. R. & Sullivan, D. C. A collaborative
enterprise for multi-stakeholder participation in the advancement of quantitative
imaging. Radiology 258, 906-914 (2011).

. Buckler, A.J. et al. Quantitative imaging test approval and biomarker
qualification: interrelated but distinct activities. Radiology 259, 875-884 (2011).

. Greco, C., Rosenzweig, K., Cascini, G. L. & Tamburrini, O. Current status of PET/
CT for tumour volume definition in radiotherapy treatment planning for non-
small cell lung cancer (NSCLC). Lung Cancer 57, 125-134 (2007).

. Sonke, J. J. & Belderbos, J. Adaptive radiotherapy for lung cancer. Semin Radiat
Oncol 20, 94-106 (2010).

24.van Baardwijk, A. et al. Individualized radical radiotherapy of non-small-cell lung
cancer based on normal tissue dose constraints: a feasibility study. Int ] Radiat
Oncol Biol Phys 71, 1394-1401 (2008).

. Ye, X,, Beddoe, G. & Slabaugh, G. Automatic Graph Cut Segmentation of Lesions
in CT Using Mean Shift Superpixels. Int ] Biomed Imaging 2010, 1-14 (2010).

1

—

1

w

1

\o

2

[=1

2

—_

2

0o

2

[

2

w

26. Daisne, J.-F. o. et al. Tri-dimensional automatic segmentation of PET volumes
based on measured source-to-background ratios: influence of reconstruction
algorithms. Radiotherapy and Oncology 69, 247-250 (2003).

27. Wanet, M. et al. Gradient-based delineation of the primary GTV on FDG-PET in
non-small cell lung cancer: a comparison with threshold-based approaches, CT
and surgical specimens. Radiother Oncol 98, 117-125 (2010).

28. Rios Velazquez, E. et al. A semiautomatic CT-based ensemble segmentation of
lung tumors: comparison with oncologists’ delineations and with the surgical
specimen. Radiother Oncol 105, 167-173 (2012).

29. Gu, Y. et al. Automated Delineation of Lung Tumors from CT Images Using a
Single Click Ensemble Segmentation Approach. Pattern Recognit 46, 692-702
(2013).

30. Aerts, H. J. et al. Identification of residual metabolic-active areas within individual
NSCLC tumours using a pre-radiotherapy (18)Fluorodeoxyglucose-PET-CT
scan. Radiother Oncol 91, 386-392 (2009).

Acknowledgments

Authors acknowledge financial support from the National Institute of Health (NIH-USA
U01 CA 143062-01, Radiomics of NSCLC), the CTMM framework (AIRFORCE project,
grant 030-103), EU 6th and 7th framework program (METOXIA, EURECA, ARTFORCE),
euroCAT (IVA Interreg - www.eurocat.info), Kankeronderzoekfonds Limburg from the
Health Foundation Limburg and the Dutch Cancer Society (KWF UM 2011-5020, KWF
UM 2009-4454). Authors also acknowledge financial support from the QuIC-ConCePT
project (Grant Agreement No. 115151).

Author contributions

H.J.W.L.A,,E.R.V.and C.P. conceived of the project, analysed the data, and wrote the paper.
MJ,RHM, AB, FEMF, ] HL, D.D.R, RK. and P.L. provided expert guidance, data, or
analysis tools and reviewed the manuscript.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/
scientificreports
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Velazquez, ER. et al. Volumetric CT-based segmentation of
NSCLC using 3D-Slicer. Sci. Rep. 3, 3529; DOI:10.1038/srep03529 (2013).

@@@@ This work is licensed under a Creative Commons Attribution-
v No_ND

NonCommercial-NoDerivs 3.0 Unported license. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc-nd/3.0

| 3:3529 | DOI: 10.1038/srep03529


www.eurocat.info
http://www.nature.com/scientificreports
http://www.nature.com/scientificreports
http://creativecommons.org/licenses/by-nc-nd/3.0

	Title
	Figure 1 Segmentation uncertainty.
	Figure 2 Overlap fractions between the 3D-Slicer segmented volumes and the observers’ intersection and union volumes.
	Figure 3 
	Figure 4 Scatter plot between maximal diameter of surgical specimen and the maximal diameter of computed tomography (CT) segmented volumes for both manual and semiautomatic 3D-Slicer diameters.
	Figure 5 Initialization step of 3D-Slicer segmentation.
	References
	Figure 6 Semi-automatically segmented tumour (green) using 3D-Slicer.

