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Abstract: A constitutive model for automobile steel with high elongation needs to be established to
predict the dynamic deformation behavior under hydroforming applications. In order to clarify the
confusing discrepancy in the essential parameters of the classical Cowper-Symonds (C-S) model, a
series of automobile structural steels have been employed to investigate the strain rate response by
conducting tensile dynamic deformation. Metallographic microscopy and orientation distribution
functions were used to characterize the microstructure and texture components of the steels. The
microstructure observation discloses that the matrix of all steels is mainly of ferrite and the texture
constituent provides a framework for steel to withstand external deformation. The C-S model can
be applied to simulate the dynamic deformation with satisfied expectations. It is concluded that
the essential parameters D and p in the model show a specific relationship with the steel grade,
and the parameter D is proportional to the steel grade and related to material anisotropy, while the
parameter p is inversely proportional to the steel grade and has close links with the grain boundary
characteristics.

Keywords: dynamic deformation behavior; Cowper-Symonds model; texture; Hall–Petch relationship;
microstructure

1. Introduction

The mechanical behavior of automotive structural steels ensures the safety of automo-
bile components during the occurrence of extreme collisions by the absorption of impact
energy; therefore, the dependent variables of not only the quasi-static deformation but also
the dynamic response to collision must be taken into account in order to predict the failure
process under varied strain rate conditions [1,2]. A high-speed servohydraulic testing
machine and modified Hopkinson bar system can be employed to record the mechanical
behavior of materials over a wide range of strain rates [3,4]. Furthermore, researchers have
designed different Hopkinson-like rods or employed resistance strain gauges to reduce
the influence of stress fluctuation at high strain rates, and these attempts can reduce the
fluctuation amplitude to a certain degree [5–9]; standard testing method has been estab-
lished to obtain valid stress–strain data in the dynamic test with the consideration of stress
equilibrium to avoid system ringing [10].

Since steel structure is very sensitive to the change of strain rate, diverse models have
been established to predict the dynamic deformation behavior of structural steels [11–15].
The Johnson-Cook (J-C) model defines the constitutive relation of the effective yield stress
with strain, strain rate and temperature [11]. In order to obtain an accurate rate-prediction
model, Chen et al. [12,13] studied the mechanical behavior of Q420 and Q345 steels with
strain rates from 0.001 s−1 to 288 s−1 and 0.001 s−1 to 330 s−1, respectively. Compared
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with the J-C models, a modified Hollomon-Voce model is proposed to predict the rate-
dependent response. According to the dynamic response of S235, S690QL and S960QL,
Alabi et al. [14,15] proposed the strain hardening exponent and strain sensitivity to explain
the mechanical performance of these materials even in the presence of flaws. Neverthe-
less, the classical Cowper-Symonds (C-S) constitutive model has been widely applied to
describe the performance of materials under dynamic deformation situations with good
reliability [16,17].

Automobile steel plate with higher total elongation and moderate strength is required
for some hydroforming applications [18,19], in which the deformation rate of different
parts varies. Therefore, a constitutive model for such steels needs to be established to
predict the dynamic deformation behavior under hydroforming conditions. However,
confusing significant discrepancy has been found in the essential parameters D and p of
the C-S model after conducting dynamic deformation of the steels in comparison with
former research [20–24], and the influence factors seems to be in close relation with the
material microstructural character, in which limited research studies have mentioned before.
Whereas this paper firstly builds the C-S model of a series of structural steels by using a
Zwick/Roell HTM5020 testing machine to minute the dynamic response, and then discloses
the inherent regularity of the observed microstructure to the parameters of the C-S model.

2. Experimental

All test steels were prepared subsequently by vacuum melting, casting and hot rolling.
The cast ingots were reheated to 1210–1235 ◦C, followed by hot-rolling to the thickness of
about 2 mm with the finish temperature (FT) of 840 ◦C and the coiling temperature (CT) of
about 550–570 ◦C. The chemical composition and rolling temperature of the steels are listed
in Table 1; it can be seen that the steel sheets were characterized by low carbon content of
0.07 wt.% and were prepared from the viewpoint of economical use of alloying elements by
gradually increasing the contents of Nb and Ti for heightened steel grade matching with
controlled rolling and controlled cooling process. The varied steel grades in Table 1 are
expected to help understand the effect of orientation on the mechanical response of such
type of automotive steels.

Table 1. Chemical composition and rolling temperature of the prepared steels.

Steel Grade
Chemical Composition/wt. % Roll Temperature/◦C

C Si + Mn + Al Nb Ti FT CT

Q380 0.07 ≤1.0 0.015 0.013 840 570
Q420 0.07 ≤1.0 0.03 0.013 840 570
Q460 0.07 ≤1.5 0.04 0.02 840 560
Q500 0.07 ≤1.5 0.05 0.02 840 550

All tensile specimens used in this study were spark cut from the prepared steel sheet
along the rolling and the transvers directions, respectively, and the geometry of quasi-static
(EN ISO 6892-1 2009) and dynamic specimens (ISO 26203-2 2011) are shown in Figure 1,
guaranteeing that the round-trip number of the stress wave is higher than 10 times to
assure the validity of the stress–strain data [5,20–22]. It is noted that the different sampling
norms are considered from engineering practice, and the elongation of small-size specimen
is slightly higher than that of the large-size one, while yield strength and tensile strength
are identical.

A standard tensile test was conducted under a strain rate of 0.001 s−1 using a universal
electromechanical testing machine (ZwickRoell, Ulm, Germany), and dynamic tests were
carried out at 1, 2, 3, 4, 5, 10 and 18 m/s tensile speed corresponding to the nominal strain
rates of 33, 66, 100, 133, 167, 333 and 600/s, respectively.
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Figure 1. The geometry of (a) quasi-static and (b) dynamic tensile specimens.

Before the dynamic test, the surface of the deformation area of the samples was
sprayed with a white background and then decorated by random black spots to be sure that
the speckle patterns were of appropriate gray distribution for recording. That is, the subset
size is a 20 × 20 pixel square, the distance between two elements is 12 pixels. According to
the image resolution of 40–45 pixels/mm, an approximate 0.5–0.6 mm element size which
is equivalent to two-times the subset distance. The tensile deformation was instantaneously
recorded by a high-speed camera (Vision Resesarc Inc., Wayne, NJ, USA) [25]. The load
data recorded by the weight sensor (ZwickRoell, Ulm, Germany) is used to calculate the
engineering stress. The sampling frequency of the weighing sensor matches that of the high-
speed camera (60,000 frames per second) to maintain synchronization. The engineering
stress–strain curves under each strain rate are obtained by computer software processing.

The microstructures were observed by metallographic microscopy (OM) (Leica, Solms,
Germany) at the 1/4-thickness position of the hot rolled sheets along the longitudinal
section. The specimens were firstly planning machined to the target plane and then etched
after mechanical polishing by using a 4% nital solution. Samples for texture measurements
were spark cut with the dimensions of 20 × 10 mm, and a Bruker™ D8 Discover system
(Bruker, Karlsruhe, Germany) with a CuKa target were employed under a scanning speed
of 8◦/min and operating at voltages of 40 kV and 40 mA current.

3. Results and Discussion
3.1. Microstructure Characteristics

Figure 2 shows the microstructures at the 1/4-thickness position along the longitudinal
section. All the microstructures exhibit a slab-like bright white phase and black areas. The
white areas are of ferrite while the black ones are of pearlite in Q380 and Q420 steels. As
for Q460 and Q500, the black areas consist of pearlite and a small quantity of bainite. The
ferrite grain of Q380 is more multi-scaled with an average size of 4.59 µm; with the increase
of steel grade, the grain becomes finer and finer. The grain sizes of Q420, Q460 and Q500
are about 3.24 µm, 2.82 µm and 2.70 µm, respectively.

According to the Hall–Petch equation [23,24]:

σ = σ0 + kHPd−0.5 (1)

where σ is the yield stress, σ0 is constant and d is the grain size, kHP is the Hall–Petch
coefficient related to the grain boundary strengthening effect.

According to the measured yield stress and grain size in this paper and that in the
Refs. [18,19], the σ0 and kHP parameters for different steels can be calculated as listed
in Table 2, in which can be seen that the σ0 and kHP linearly increase with the rise in
steel grade.
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Table 2. Calculated parameters of Hall–Petch relationship for different steels.

Steel Type Yield Stress/MPa Grain Size/µm σ0/MPa kHP/MPa×µm0.5

Q380
429 4.59

249 386
407 [18] 5.96 [18]

Q420
493 3.24

271 401
455 [18] 4.74 [18]

Q460
556 2.82

293 442
565 [19] 2.64 [19]

Q500
592 2.70

310 464
537 [18] 4.17 [18]
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Figure 2. Microstructures of the hot rolled sheets along the rolling direction (a) Q380, (b) Q420,
(c) Q460 and (d) Q500.

It is easy to understand that the fine grain can more efficiently hinder the dislocation
movement and thus owe a better strengthening effect. It has been disclosed that kHP
depends on the steel composition [26,27]. Nevertheless, the microstructure distribution,
phase constitution and grain boundary characteristic (fraction and distribution of defects
and grain boundary misorientation) also contribute to the kHP. It is safe to say that kHP
corresponds to the key microstructural parameter on mechanical property of steels.

Figure 3 shows the texture components in the ϕ2 = 45◦ sections of Euler space, where
the variation regularity can be clearly identified. The texture constituent of the four steels
is similar, and mainly consists of the {011}<111>, {001}<100> and the {111} fiber texture
with a maximum intensity of about 2.00. With the increase of steel grade, the intensity of
{001}<100> cube texture increases gradually, as well as that of the {011} texture. All steels
possess the {111} γ fiber, where {111}<112> texture is obvious for steels Q380, Q420 and
Q460, while {111}<110> texture is stronger for Q500. In comparison with the lower steel
grades, Q460 and Q500 have stronger {011}<112> and {011}<111>, respectively [28].
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Figure 3. The texture distribution of the hot rolled sheets (a) Q380, (b) Q420, (c) Q460 and (d) Q500.

3.2. Tensile Behavior along Rolling Direction
3.2.1. Characteristic of Stress–Strain Curves

Figure 4 represents the stress–strain curves of the steels along a rolling direction under
different strain rates from 10−3 to 600 s−1. The standard test gives a typical engineering
stress–strain curve with an obvious yield plateau. As the strain rate (

.
ε) increases, the

plastic stage of stress–strain curve shows an overall upward trend of uplift, and appears
to fluctuate in a periodic decay mode when the loading strain rate reaches higher than
100 s−1. With the increase of steel grade from Q380 (Figure 4a), to Q420 (Figure 4b), to Q460
(Figure 4c), and then to Q500 (Figure 4d), the variation of stress–strain curves exhibits a
similar tendency, except the decrease in total elongation.

Figure 5 shows the characteristic of fluctuation, of which the stress–strain curve can
be approximately fitted as a sine attenuation function (σ = A0e−ξε sin(ωε + φ) + C0),
where C0 is the constant, and the distance between the first two crests and the distance
between the first crest and the trough is taken as the cycle (T) and the amplitude (A0), as
shown in Figure 5a. In the high speed dynamic tensile test, the stress signal oscillation will
inevitably occur owing to the increase of loading rate, and Alabi believed that it was the
stress wave generated by the imbalance between internal friction and external force at high
strains that caused the loading signal to be noisy [5–7,14,26–29]. Anyway, we assign the
first appeared maximum stress σU as upper yield stress to consider the strain-rate response
of all specimens.
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3.2.2. Strain Rate Response

Figure 6 represents the dynamic response of the defined σU and the total elongation
of different steels. It can be seen in Figure 6a that the σU value gradually increases to
saturation with the increase of strain rate, while the σU curve lifts up with the increase of
steel grade (Q380: from 400 to 711 MPa, Q420: from 492 to 825 MPa, Q460: from 563 to
896 MPa and Q500: from 591 to 913 MPa). The variation tendency of εT exhibits obvious
discrepancy, as shown Figure 6b, the overall εT curve shifts down with the increase of
steel grade. With the increase of

.
ε, the εT value first rapidly increases and then tends to

a maximum value when
.
ε reaches about 100 s−1 and then remains stabilized afterward.
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The stabilization εT is about 37.8% for Q380, 34.7% for Q420, 25.8% for Q460 and 24.6% for
Q500, respectively.
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Then, the C-S constitutive model is introduced to further describe the above phe-
nomenon. The dynamic increase factor (DIFy) was defined as the ratio of the yield stress at
each intermediate strain rate (σi) to the yield stress at the quasi-static strain rate (σq):

DIFy = 1 +
( .

ε

D

) 1
p

(2)

where D and p are the coefficient in the relation of stress with strain rate.
Figure 7 shows the longitudinal dynamic increase factor dependence of strain rate.

Using the C-S model fitting (Figure 7a), the four steels can be well fitted and are described
as DIF = 1 +

( .
ε/933

)1/1.81 for Q380, DIF = 1 +
( .
ε/1042

)1/1.73 for Q420, DIF = 1 +( .
ε/1139

)1/1.56 for Q460 and DIF = 1 +
( .
ε/1249

)1/1.49 for Q500 with satisfied accuracy,
respectively. It is noted that in the fitting process, the p value is continuously adjusted to
seek for the best goodness-of-fit, and the highest R2 is determined to correspond to the
right regression coefficients, as shown in the Figure 7b.
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of grain deformation. The substitutive C-S model can be employed to estimate the dy-
namic response of a material according to the Hall–Patch coefficient. 

3.3. Anisotropy on Strain Rate Response 

Figure 7. The C-S model fitting curves of Q380, Q420, Q460 and Q500 steels, (a) fitting results,
(b) determination method for the p solution.
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3.2.3. Parameters Dependence

The graphs for the linear regression analysis based on the above data depending
on steel grade are shown Figure 8a; the essential parameter D is proportional while p is
inversely proportional to the steel grade, showing an amazingly strong contrast.
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By comparing the parameter p in C-S model, we can see that there is a certain relation-
ship p = 693.97/kHP between them, as shown in Figure 8b.

Since the Hall–Petch equation is very essential for materials, and the kHP is easily
available in the literatures, the C-S model can be replaced as:

DIFy = 1 +
( .

ε

D

) KHP
673.79

(3)

and then the relationship between the dynamic growth factor of material and the influence
coefficient of grain boundary on deformation is established, which shows that the dynamic
growth factor may be related to the adhesion between grains and the coordination of
grain deformation. The substitutive C-S model can be employed to estimate the dynamic
response of a material according to the Hall–Patch coefficient.

3.3. Anisotropy on Strain Rate Response

Considering the anisotropy of the material, a tensile test was conducted using speci-
mens prepared along the steel transverse direction to compare the dynamic tensile behavior
with that along the longitudinal rolling direction.

Figure 9 shows the stress–strain curves of specimens along a transverse direction at
different strain rates from 0.001 s−1 to 333 s−1. As for the same steel, the total elongation
decreases for the specimen along transverse direction, which is different with that along
the rolling direction. Similar to that along the longitudinal direction, with the increase of
strain rate, the variation tendency of stress–strain curve is similar.
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Figure 10 shows the transverse dynamic increase factor dependence of strain rate.
Using the C-S model fitting (Figure 10a), the four steels can be well fitted with satisfied
accuracy and are described as DIFy = 1 +

( .
ε/527

)1/2.25 for Q380, DIFy = 1 +
( .
ε/581

)1/1.87

for Q420, DIFy = 1 +
( .
ε/644

)1/1.49 for Q460 and DIFy = 1 +
( .
ε/689

)1/1.37 for Q500,
respectively.
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Based on the linear regression analysis of the above data (Figure 10b), the model
parameter D is proportionate to the steel grade, while p is inversely proportionate to the
steel grade.

3.4. Factors on Dynamic Deformation

The C-S model has been employed to simulate the dynamic response of different steels,
as listed in Table 3 [12–14,17,30]. There exists significant difference in the characteristic
parameters D and p, in particular, a vast gap can be found between the D values of different
steels. It can be seen in Table 3 that all the steels are of low carbon type, and as for S355 steel,
the metallurgical microstructure is of well-developed ferrite and pearlite [17]. Therefore, it
is inferred that factors, such as material composition, microstructure and crystallographic
texture determine the D and p values of materials.

Table 3. Chemical composition and the C-S model parameters of different steels.

Steels
Chemical Composition The C-S Modeling

C Si Mn P S Ni V Nb D p

Q420 [12] 0.19 0.24 1.35 0.021 0.006 22305 3.9
Q345 [13] 0.16 0.19 1.28 0.025 0.011 3781 4.33
S690 [14] 0.14 0.29 1.19 0.008 <0.002 0.084 0.031 0.016 2.06 × 107 5.18
S960 [14] 0.16 0.21 1.39 0.008 <0.002 0.077 0.021 0.013 4.90 × 107 4.59
S355 [17] 0.22 0.55 1.60 0.025 0.025 4945 2.69
Q235 [30] 0.22 0.35 1.4 0.045 0.05 306 2.75

Note: the parameters for S690 and S960 are deduced from the original data in Ref. [14].

The matrix of all the tested steels here is mainly of ferrite, and the comparison of
tensile test along two different directions discloses that the main parameters of the C-S
model exhibit a specific relationship with the microstructure, i.e., the parameter D is related
to anisotropy while p has close links with the grain boundary characteristics.

In the process of plastic deformation, the stresses on the crystals of different orienta-
tions are not consistent owing to the anisotropy of crystal. The crystal grains do not deform
at the same time, and their slip system orientation and slip direction are also different. As
we all know, the {011} crystal plane of ferrite steel is densely packed, and it is the main slip
plane of the bcc crystals, while the <111> direction is its main sliding direction. Therefore,
the stronger {011} texture is beneficial to the dislocation slip, and thus is helpful to improve
the ductility of the material. In contrast, the Burgers vector a<100> is a kind of immobile
dislocation, and the texture of {001} is harmful to deformation at most cases. It has been
pointed out that the {111} fiber texture is good for material forming but has little effect
on improving the elongation of the material [19]. Therefore, there exists a competitive
mechanism on plasticity between the textures {011} and {001}, and obviously the effect
of {001} texture prevails for the steels in this study, and the increase in the intensity of
{001}<100> cube texture leads to the decrease of total elongation with the increase of steel
grade (Figure 6b). Additionally, it can be seen that the texture constituent provides a
framework for steel to withstand external deformation.

The plastic deformation requires a certain amount of time for the movement of crystal
dislocations, for the rotation of the slip plane from the unfavorable to the favorable ori-
entation and the rotation between individual crystals. As large strain rate applies, only
elastic deformation of the movement of the atoms away from their equilibrium position
occurs owing to the insufficient duration for deformation, resulting in a persistent increase
of yield stress with the increase of strain rate [31].

The change of elongation under high strain rate conditions might be related to the
combined effect of thermal activation of dislocation movement and suppression of necking.
Since plastic strain is mainly carried out by the slip of dislocations, on the one hand, high
strain rate constrains the process of thermal activation of dislocations, dislocation multi-
plication should be dominant to increase the uniform elongation; on the other hand, high
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strain rate may harden the local constriction zone and expand the subsequent deformation
to adjacent area; therefore, the ductility of material increases with the increase of strain rate.

4. Conclusions

A series of Q380, Q420, Q460 and Q500 steels have been prepared to investigate their
dynamic deformation behavior. The main results are concluded as follows.

(1) The microstructures for Q380 and Q420 steels consist of ferrite and pearlite, while
that for Q460 and Q500 consist of ferrite, pearlite and a small quantity of bainite.
All steels mainly consist of the {011}<111>, {001}<100> and the {111} fiber texture
with a maximum intensity of about 2.00. The ferrite texture constituent provides
a framework for steel to withstand external deformation, and the increase in the
intensity of {001}<100> cube texture leads to the decrease of total elongation with the
increase of steel grade;

(2) Specimens for all the steels along both the rolling and the transverse directions show
similar tensile behavior. As the strain rate increases, the stress–strain curve fluctuates
in a periodic decay mode. The upper-yield stress increases with the increase of strain
rate from 10−3 to 600 s−1, meanwhile, the total elongation first rapidly increases and
then tends to be stabilized at certain values. The C-S model can be employed to well fit
the strain rate response of the four steels both along transverse and rolling directions;

(3) Under the specific experiment conditions, the main parameters of the C-S model
exhibit a certain relationship with the microstructure, the parameter D is proportional
to the steel grade and related to material anisotropy, while p is inversely proportional
to the steel grade and has close links with the grain boundary characteristics. The C-S
model can be considered to estimate the dynamic response of a material according to
the Hall–Patch coefficient.
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