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Background: Causal research concerning the consumption of tea and the risk of
chronic kidney disease (CKD) is limited. This study identified the potential causal effects
of tea intake on CKD, the estimated glomerular filtration rate (eGFR), and albuminuria.

Methods: Genome-wide association studies (GWASs) from UK Biobank were able to
identify single-nucleotide polymorphisms (SNPs) associated with an extra cup of tea
each day. The summary statistics for the kidney function from the CKDGen consortium
include 11,765 participants (12,385 cases of CKD) and 54,116 participants for the
urinary albumin-to-creatinine ratio who were mostly of European descent. A two-sample
Mendelian randomization (MR) analysis was performed to test the relationship between
the selected SNPs and the risk of CKD.

Results: A total of 2,672 SNPs associated with tea consumption (p < 5 × 10−8) were
found, 45 of which were independent and usable in CKDGen. Drinking more cups of tea
per day indicates a protective effect for CKD G3-G5 [odds ratio (OR) = 0.803; p = 0.004]
and increases eGFR (β = 0.019 log ml/min/1.73 m2 per cup per day; p = 2.21 × 10−5).
Excluding two SNPs responsible for directional heterogeneity (Cochran Q p = 0.02), a
high consumption of tea was also negatively correlated with a lower risk of albuminuria
(OR = 0.758; p = 0.002).

Conclusion: From the perspective of genes, causal relationships exist between daily
extra cup of tea and the reduced risk of CKD and albuminuria and increased eGFR.

Keywords: tea consumption, chronic kidney disease (CKD), SNPs, albuminuria, Mendelian randomization

Frontiers in Nutrition | www.frontiersin.org 1 March 2022 | Volume 9 | Article 801591

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2022.801591
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnut.2022.801591
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2022.801591&domain=pdf&date_stamp=2022-03-29
https://www.frontiersin.org/articles/10.3389/fnut.2022.801591/full
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/
https://www.frontiersin.org/journals/nutrition#articles


fnut-09-801591 March 25, 2022 Time: 12:33 # 2

Zhang et al. Tea Consumption and Kidney Function

INTRODUCTION

Chronic kidney disease (CKD) is an increasingly serious public
health issue, which affects 9–16% of the world’s population (1).
Globally, the number of deaths attributed to CKD has increased
to approximately 1.2 million, and the mortality rate in all ages
has increased by 41.5% from 1990 to 2017 (2). The time-series
model from the global burden of disease (GBD) group indicated
an increasing trend in the number of years of life lost, from
around 26 million annually in 2016 to 52.5 million in 2040 (3).
Although treatment has been shown to slow the progression,
CDK may proceed at different paces over time (4). CKD can
progress to kidney failure and early cardiovascular disease in
the end stage, namely, end-stage renal disease (ESRD). Dialysis
or kidney transplant is necessary for survival on account of
dysfunctional kidneys (4). CKD is associated with an increased
risk of many other conditions, including cognitive impairment,
renal bone disease, chronic anemia, and death by sepsis and
cardiovascular disease (5, 6). Empirical studies have found
that lifestyle factors, such as smoking, alcohol consumption,
and obesity, are related to a higher risk of the disease (7–9).
Aside from these factors, an increasing interest is being paid
to the important role of diet (10). As an essential part of the
diet, beverages can influence the maintenance of general health
and renal function and inhibit/abet the high-risk factors that
may lead to CKD (e.g., hypertension, obesity, and diabetes)
(10, 11).

Tea is one of the most popular beverages in the world (12).
Many longitudinal and cross-sectional studies have investigated
the association between tea consumption and the risk of CKD
and the estimated glomerular filtration rate (eGFR), and studies
on the association between tea intake and albuminuria are
limited (12–16). Nevertheless, these studies failed to reach a
robust and consistent conclusion. This discrepancy may be
due to diverse tea types (e.g., green, black, and oolong tea)
and demographic heterogeneity (e.g., sex) (16). For example,
no evidence showed that extra tea intake could improve renal
function or delay the stage of nephropathy in Iran, Singapore,
and Netherlands (12, 14, 16). However, another follow-up survey
reported that tea intake can exert positive effects on patients
with metabolic syndrome (MetS) (13). Additionally, a study
from China found that oolong tea could obviously promote the
efficiency of eGFR compared to black tea and green tea (15).
In view of the inconsistent results and different indicators of
previous studies, the effects of tea consumption on the different
indicators of renal function need to be investigated. Additionally,
considering the limitations of observational studies and the
potential influence of confounding factors or reverse causality,
a causal relationship between tea consumption and the risk
of abnormal CKD indicators cannot be concluded. Therefore,
whether a causal relationship exists between tea intake and kidney
function remains unclear.

Mendelian randomization (MR) is a genetic epidemiology
design, which improves the power of causal inference by applying
proxy germline genetic variants as instrumental variables for
exposure (e.g., tea intake) on an outcome (e.g., CKD) (17). Single-
nucleotide polymorphism (SNP) sites are randomly assigned in

the beginning, so the bias of reverse causation and residual
confounding is avoided (18). The two-sample MR design
has not yet been used to determine the causal association
between tea intake and the risk of abnormal renal function.
Thus, a conventional MR method was performed in this
study to estimate whether tea intake is causally associated
with the risk of abnormal renal function (e.g., CKD, eGFR,
and albuminuria).

MATERIALS AND METHODS

Genetic Instrument Selection
The genome-wide association study (GWAS) summary data set
for tea consumption (Phenotype Code:1488_raw) based on UK
Biobank was downloaded from Neale Lab1 (GWAS round 2),
including over 349,376 samples of European ancestry. GWAS
was adjusted for sex, age, age2, sex × age, sex × age2, and
first 20 ancestry principal components. The data of habitual
tea consumption were obtained as a baseline from a dietary
questionnaire. In the questionnaire, the following question
was asked: “How many cups of tea do you drink each day
(including black and green tea)?” GWAS summary statistics for
unconverted daily tea consumption were used to identify SNPs
associated with tea drinking. Detailed information regarding the
phenotype and the process of quality control in UK Biobank
is available on the Neale Lab website.2 We selected autosomal
biallelic SNPs with p < 5 × 10−8 and performed further
quality control based on minor frequency >1%, ending up
with 2,672 unique SNPs. Furthermore, based on the European
sample reference data from the 1000 Genomes Project (19), we
clumped these 2,672 SNPs with linkage disequilibrium r2 < 0.001
at a 10,000 kb window, confirming the independence of the
selected genetic variants. Finally, 45 independent SNPs were
associated with tea consumption. The proportion of variance in
tea consumption explained by each SNP was estimated using the
R2 value (20), and the instrumental strength of each SNP was
assessed using the F-statistic (21). Detailed information on the
relationship between the selected SNPs and exposures is shown
in Table 1.

Genetic Summary Data of Kidney
Function
We extracted summary statistics for CKD and eGFR from the
CKDGen consortium. The meta-analyses of GWAS of the kidney
function comprised 43 studies of European ancestry (n = 117,165,
12,385 cases) (22). Participants were diagnosed with CKD GFR
categories 3–5 (G3–G5) based on eGFR < 60 ml/min/1.73 m2

(23). Except the two studies that reported data, all definitions
of CKD G3-G5 came from a single assessment of eGFR (22).
eGFR is calculated by the Schwartz formula (<18 years) (24)
and the Chronic Kidney Disease Epidemiology Collaboration
equation for adults (>18 years) (25). Wuttke et al. reported the
characteristics of the CKDGen alliance study (26). Albuminuria

1http://www.nealelab.is/uk-biobank
2https://github.com/Nealelab/UK_Biobank_GWAS
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TABLE 1 | Characteristics of SNPs associated with tea consumption.

SNP Position EAF EA BETA SE P N R2 F-statistic

rs1030510 7:17100273 0.45 G −0.0436 0.0069 3.6E-10 349376 0.000114 40

rs10741694 11:16286183 0.63 C 0.0404 0.0071 1.53E-08 349376 0.0000927 32

rs11022751 11:13307613 0.27 C 0.0497 0.0078 1.83E-10 349376 0.000116 41

rs112476491 7:17204040 0.03 A −0.1186 0.0194 8.88E-10 349376 0.000107 37

rs11487328 1:174601659 0.38 C −0.0493 0.0071 5.16E-12 349376 0.000138 48

rs11636222 15:75515312 0.23 G −0.0557 0.0089 3.79E-10 349376 0.000112 39

rs12591786 15:60902512 0.16 T −0.0609 0.0096 2.32E-10 349376 0.000115 40

rs12600469 17:40834073 0.62 T 0.0406 0.0071 1.22E-08 349376 0.0000936 33

rs12901092 15:75374145 0.39 A −0.0654 0.0071 3.2E-20 349376 0.000243 85

rs12916473 15:75321999 0.04 A 0.1233 0.0185 2.63E-11 349376 0.000127 44

rs140775622 20:62962869 0.17 T 0.0707 0.0099 9.33E-13 349376 0.000146 51

rs1481012 4:89039082 0.11 G −0.0778 0.0109 9.41E-13 349376 0.000146 51

rs149375687 5:152034989 0.27 T −0.0449 0.0078 7.26E-09 349376 0.0000948 33

rs1601409 12:17066769 0.46 G 0.0382 0.0069 3.67E-08 349376 0.0000877 31

rs1669433 12:11349732 0.84 G 0.0551 0.0093 3.33E-09 349376 0.0001 35

rs17645813 7:17419697 0.08 A −0.1058 0.013 3.32E-16 349376 0.00019 66

rs199621380 1:150700614 0.41 G 0.0413 0.007 4.53E-09 349376 0.0000996 35

rs200062544 7:17260246 0.47 A 0.049 0.007 2.64E-12 349376 0.00014 49

rs2315024 19:19423817 0.33 A 0.0434 0.0073 2.98E-09 349376 0.000101 35

rs2465018 6:51241140 0.23 A 0.0635 0.0082 1.38E-14 349376 0.000172 60

rs2472297 15:75027880 0.27 T 0.1576 0.0078 3.82E-91 349376 0.00117 408

rs28548701 15:74346021 0.8 C −0.0502 0.0086 5.82E-09 349376 0.0000975 34

rs28676340 15:75449794 0.16 G −0.0564 0.01 1.96E-08 349376 0.000091 32

rs34591452 15:74492585 0.24 T 0.0759 0.0081 5.48E-21 349376 0.000251 88

rs34606716 7:75820449 0.24 A −0.0453 0.0082 2.7E-08 349376 0.0000873 31

rs3815455 7:75611756 0.29 T 0.0647 0.0076 1.74E-17 349376 0.000207 72

rs397074 15:74599997 0.31 C −0.0521 0.0075 2.8E-12 349376 0.000138 48

rs4410790 7:17284577 0.63 C 0.1215 0.0072 1.89E-64 349376 0.000814 285

rs4817505 21:34343828 0.39 C 0.0411 0.0071 6.22E-09 349376 0.0000959 34

rs4887165 15:74889356 0.81 C 0.0539 0.0089 1.22E-09 349376 0.000105 37

rs60223362 7:17459648 0.2 C −0.0747 0.0086 5.35E-18 349376 0.000216 75

rs6495129 15:75196717 0.2 T −0.0582 0.0086 1.35E-11 349376 0.000131 46

rs6697410 1:26756209 0.74 T 0.0436 0.0079 4.1E-08 349376 0.0000872 30

rs6965666 7:17177312 0.28 C −0.0503 0.0078 9.14E-11 349376 0.000119 42

rs7174381 15:75613289 0.31 C 0.0522 0.0075 3.85E-12 349376 0.000139 48

rs73071153 7:17545964 0.03 A −0.1312 0.0194 1.32E-11 349376 0.000131 46

rs73075157 7:17566844 0.13 A −0.0678 0.0103 5.42E-11 349376 0.000124 43

rs73169830 22:24885208 0.08 C 0.1027 0.0131 3.81E-15 349376 0.000176 61

rs73424602 22:41461176 0.4 T −0.0432 0.007 7.84E-10 349376 0.000109 38

rs77821156 7:17331450 0.11 G 0.0643 0.0113 1.39E-08 349376 0.0000927 32

rs79217743 15:75117912 0.14 T −0.0602 0.0102 3.34E-09 349376 0.0000997 35

rs79413667 7:17399486 0.03 G −0.1171 0.0201 6.03E-09 349376 0.0000971 34

rs79694830 7:17286087 0.06 T 0.0951 0.015 2.26E-10 349376 0.000115 40

rs7999399 13:89233505 0.55 T 0.0379 0.0069 4.96E-08 349376 0.0000863 30

rs9624470 22:24820268 0.58 A 0.0729 0.007 3.06E-25 349376 0.00031 108

SNP, single-nucleotide polymorphism; EAF, effect allele frequency; EA, effect allele; SE, standard error. R2 was calculated as follows:
2*beta2*EAF*(1-EAF)/(2*beta2*EAF*(1-EAF) + se2*2*N*EAF(1-EAF)). The F-statistic for each SNP was calculated as follows: F = (N − 2)*R2/(1 − R2).

was also extracted from the CKDGen consortium, which
enrolled a total of 54,116 participants of European ancestry
(27). Albuminuria is defined as a condition where the urinary
albumin–creatinine ratio is >17 mg/g (>1.92 mg/mmol) in men
and >25 mg/g (>2.83 mg/mmol) in women (27). Sex differences
in albuminuria were obtained from the study of Warram et al.

(28). All summary data can be obtained from the UK Medical
Research Council Integrative Epidemiology Unit Open GWAS
Project database.3

3http://gwas.mrcieu.au.uk
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All research analyses were based on publicly available GWAS
summary statistics, and no additional ethics approval and
informed consent were required.

Statistical Analyses
The conventional MR method was applied in this study4 (29). The
fixed-effect inverse-variance-weighted (IVW) model was used
to examine a causal association, and it was considered as the
main analytical method (30, 31). The IVW method included
individual MR effects of SNPs to derive overall weighted effects
of the potential causal association. Multiplicative random IVW
was used as a supplement if necessary. Furthermore, the forest
plots showed the MR-derived odds ratio (OR) of CKD and
albuminuria, and log odds of eGFR were predicted by genes
when an additional cup of tea is consumed daily. “Leave-one-
out” analyses were performed to determine whether a causal
association was reliant on any single SNP. Causal Analysis Using
Summary Effect estimates (CAUSE) account for uncorrelated and
correlated pleiotropy simultaneously (32).

The IVW method assumes that all genetic variants satisfy
the three assumptions of the instrumental variables: (1) closely
associated with tea intake; (2) not associated with confounders of
the association between tea intake, CKD, eGFR, and albuminuria;
and (3) risk factors associated with the risks of CKD, eGFR, and
albuminuria, which could only be induced via tea consumption
(33, 34). F-statistics were used to test weak instrumental variables,
F-statistics = (N − 2) × R2/(1 − R2), where R2 is the variance
in tea consumption explained by the genetic instrument, k
is the number of genetic variants, and n is the sample size.
F > 10 proved to be a strong genetic instrument in the
MR study. Cochran’s Q test was used to quantify the size of
heterogeneity effect between the genetic instruments (35), which
might indicate that the potential horizontal pleiotropy violated
the third MR assumption. Potential violation of the second
and third MR assumptions was tested using several approaches,
such as the MR-Egger regression (36) and the weighted median
(37) methods. The intercept from MR-Egger also provides a
formal test for directional pleiotropy. The association between the
selected SNPs and exposures was validated in the PhenoScanner
database5 (Supplementary Table 1). SNPs associated with the
traits other than tea intake were recorded at the significance level
(p < 5 × 10−8).

MR-Egger is an adaption of Egger regression, which realizes
directional pleiotropy by introducing an intercept in the weighted
regression model. When the value of the intercept term is away
from 0, it indicates horizontal pleiotropy (38). Based on this
approach, unbiased estimates are performed in the presence
of pleiotropic instruments, assuming that the magnitude of
pleiotropic effects is independent of the size of the instrumental
variables—SNPs associated with tea intake (38).

The weighted median method uses each instrumental variable
to weigh the estimated value of the reciprocal of its variance
to rank them in MR. The median result is selected, and the

4https://mrcieu.github.io/TwoSampleMR/articles/perform_mr.html#mr-
methods-1
5http://www.phenoscanner.medschl.cam.ac.uk/

single MR estimated value and CIs based on the bootstrapping
technique are displayed (39). The weighted median requires and
assumes that at least half of the instruments are effective (40).

Steiger-MR was used to test whether the SNPs explained
significantly more variance in exposure than the outcome (the
opposite may indicate reverse causation) (41).

Bonferroni correction (p = 0.05/3 outcomes/3 methods) was
applied to adjust multiple testing (p = 0.006) in univariable MR.
The “TwoSampleMR” package (version 0.5.5), “CAUSE” package
(version 1.2.0), and R software version 3.6.1 were used for all
statistical analyses.

RESULTS

Causal Association Between Tea
Consumption and CKD G3-G5
The estimation of the causal effect of tea consumption on
CKD G3-G5 from the MR analyses is shown in Figure 1.
In the IVW MR analyses, the OR of CKD for an additional
daily cup of tea was 0.803 (p = 0.004). The MR-Egger test
detected no directional pleiotropy (p = 0.732). In the leave-
one-out analyses, the estimates ranged from 0.779 to 0.830,
suggesting that the observed result was not the effect of a single
SNP (Supplementary Figure 1). The weighted median analysis
(OR = 0.824; p = 0.031) of the estimated values was concordant
and similar in size, but it could not confirm the protective
effect of tea against CKD G3-G5 in the adjusted value of p
(Figure 1). The estimates from the MR-Egger (OR = 0.758;
p = 0.187) were not statistically significant, suggesting limited
effectiveness. Additionally, there was no indication of pleiotropy
when the intercept was derived from the MR-Egger regression
(Egger intercept: 0.006, the value of p: 0.732). The value of
p for the MR-Egger method was 0.146, which also suggested
no significant sign of heterogeneity. The causal effect of tea
intake on the CKD estimated by CAUSE was unsupported
(p = 0.132). The scatter plot of the SNP—CKD associations
against SNP—tea associations is shown in Figure 2. The forest
plots of tea—CKD estimates in each SNP are presented in
Supplementary Figure 2.

Causal Association Between Tea
Consumption and eGFR
Inverse-variance-weighted analyses of tea consumption and
eGFR provided correlative evidence for an association (β = 0.019
log ml/min/1.73 m2 per cup per day; p = 2.21 × 10−5) (Figure 1).
In the leave-one-out analyses, β ranged from 0.015 to 0.020
(Supplementary Figure 3). There was no evidence of directional
pleiotropy (MR-Egger intercept p = 0.183) and horizontal
pleiotropy (heterogeneity p = 0.521). This was consistent with the
estimates from the weighted median (β = 0.020; p = 1.00 × 10−4)
and MR-Egger (β = 0.029; p = 1.34 × 10−2) analyses (original
p < 0.05; adjusted p > threshold value), which were more
robust to pleiotropy (Figure 1). The causal effect of tea intake
on eGFR estimated by CAUSE was insignificant (p = 0.141). The
scatter plot of the SNP—eGFR associations against the SNP—tea
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FIGURE 1 | Forest plots of Mendelian randomization (MR) study using genetically predicted tea consumption with chronic kidney disease (CKD), glomerular filtration
rate (GFR), and albuminuria. Inverse-variance-weighted (IVW), MR-Egger, weighted median, simple, and weighted mode were used in this study. *Denotes the
removal of two single-nucleotide polymorphism (SNPs; rs1030510 and rs4410790) that might give rise to significant heterogeneity (MR-Egger intercept p = 0.02).

associations is shown in Figure 3. The forest plot of tea—eGFR
estimates in each SNP is presented in Supplementary Figure 4.

Causal Association Between Tea
Consumption and Albuminuria
Initial IVW analyses of tea consumption and albuminuria did
not provide strong evidence for their correlation (OR = 0.749;
p = 0.009) (Figure 1). There was evidence of directional
pleiotropy (MR-Egger intercept p = 0.019) and no horizontal
pleiotropy (heterogeneity p = 0.575). Based on the leave-one-out

method, these outlying SNPs (rs1030510 and rs4410790), which
mainly caused heterogeneity, were removed. Then, through the
random-effect IVW (OR = 0.758; p = 0.002) and weighted
median (OR = 0.701; p = 0.027) methods (original p < 0.05;
adjusted p > threshold value), the estimate of the causal effect
of tea consumption on albuminuria was similar in direction
and magnitude to CKD G3-G5 (Figure 1). In the leave-one-out
analyses, ORs ranged from 0.723 to 0.894, showing a consistency
in the entire estimate (Supplementary Figure 5). There was
neither significant horizontal pleiotropy (heterogeneity p = 0.893)
nor directional pleiotropy (MR-Egger test p = 0.383). The scatter
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FIGURE 2 | Scatter plot of the effect size for each SNP on tea consumption
and CKD G3–G5.

FIGURE 3 | Scatter plot of the effect size for each SNP on tea consumption
and the estimated glomerular filtration rate (eGFR).

plot of the SNP—albuminuria associations against the SNP—tea
associations before and after removing two SNPs is shown in
Figures 4A,B. The causal effect of tea intake on albuminuria
estimated by CAUSE was insignificant (p = 0.620). The forest
plots of tea—eGFR estimates in each SNP after removing outlying
SNPs are presented in Supplementary Figure 6.

Sensitivity Analyses
A GWAS involving CKD diagnosis in European men and women
from the NHGRI-EBI GWAS Catalog6 was used to further
validate the reliability of results. The MR analysis was conducted
using SNP sites associated with CKD exposure in EBI, indicating
the similar causal associations of the diagnosed CKD with IVW

6https://www.ebi.ac.uk/gwas/downloads/summary-statistics

(OR = 0.803, p = 0.004). However, weighted median (OR = 0.824,
p = 0.039) and MR Egger (OR = 0.758, p = 0.187) could not
confirm a casual association (Supplementary Figure 7).

The Steiger-MR analysis was used to identify the presence
of horizontal pleiotropy and the robustness of the causal effect
estimates. There was no sign of heterogeneity, and Steiger-MR
indicated that the SNPs explained more variance in exposure than
the outcome (p > 0.05) (e.g., CKD, eGFR, and albuminuria).

DISCUSSION

This two-sample MR study used summary-level data from
UK Biobank and the CKDGen consortium to estimate the
potential causal association of tea consumption with CKD, eGFR,
and albuminuria. A total of 2,672 SNPs associated with tea
consumption were found in UK Biobank, and 45 independent
and available SNPs were found in CKDGen. The MR analyses
showed that an increase in tea consumption appeared to be
protective against CKD, eGFR, and albuminuria. The effects were
generally similar in magnitude across diverse sensitivity analyses.
Therefore, tea intake may be beneficial to renal function.

The association between tea intake and the risk of CKD
remains inconsistent in previous longitudinal and cross-sectional
studies. In an Iranian longitudinal study covering 1,780 adult
Iranians (2006–2008 to 2012–2014), high tea intake was not
associated with the risk of CKD (12). In the Doetinchem
Cohort Study, including 4,722 individuals aged 26–65 years, tea
consumption was not significantly associated with the changes in
eGFR (14). However, in another Spanish cohort, including 5,851
overweight/obese elderly with MetS, overweight/obese adults
with Mets, and high tea intake (>at least 1 cup/day) had a greater
decline in eGFR in 1 year (13). Apart from this, the relationship
between the intake of different types of tea (black tea, oolong
tea, or green tea) and kidney function is also heterogenous.
A Guangzhou Biobank cohort study including 12,428 elderly
people did not find a significant association of green or black
tea with eGFR. Nevertheless, a negative association between an
intake of oolong tea and eGFR was found (15). The Singapore
Chinese Health Study, a prospective cohort study of 63,257
participants aged 45–74 years, identified that tea intake is not
associated with the risk of ESRD over an average follow-up of
17 years (16). Compared with previous studies, our study found
that genetically predicted tea intake was causally associated with
the decrease of CKD and albuminuria and the increase of eGFR.
This MR study, in which confounding bias and reverse causality
were avoided and a large number of individuals were from two-
sample designs, is different from previous observational studies.

Several potential biological mechanisms may underlie an
inverse association between tea intake and the risk of renal
impairment. Growing evidence has shown that the generation
of reactive oxygen species (ROS) plays an important role in
the pathogenesis of kidney disease (42). Several interventional
studies in humans have reported that the consumption of
black and green tea improves vasodilator effects and decrease
ROS concentrations in patients with renal failure (43, 44).
Ardalan et al. reported that short-term intake of black tea
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FIGURE 4 | Scatter plot of the effect size for each SNP on tea consumption and albuminuria. (A) No SNP was excluded. (B) Two SNPs were removed (rs1030510
and rs4410790) due to potential horizontal pleiotropy.

could improve endothelial function and endothelium-dependent
arterial vasodilation in renal transplant recipients (43). Hsu
et al. revealed that the decaffeinated green tea extract (catechins)
reduced hemodialysis-induced production of hydrogen peroxide
and hypochlorous acid, the risk factors of atherosclerotic disease,
and proinflammatory substances (44).

Previous studies have shown that tea catechins improve the
metabolic mechanism of endothelial function. For example,
the most abundant catechins in tea are epigallocatechin-3-
gallate (EGCG), epigallocatechin, and epicatechin (45). These
substances have been identified to be fairly strong antioxidants
and free radical scavengers (46). Additionally, some murine
and in vitro studies found the potential effects of EGCG on
renal function. Yamabe et al. suggested that EGCG may reduce
urinary protein excretion and serum glucose in mice with
diabetic nephropathy (47). In rodent models with induced
renal failure, tea catechins (including EGCG) have shown
uniquely beneficial effects in decreasing nephrotoxicity (48, 49).
The potential signal pathway mechanisms demonstrated that
tea catechins could increase antioxidant activity, prostaglandin
levels in the kidney, changes in transforming growth factor-
β1 expression, and the regulation of nuclear factor-κβ (47,
48, 50, 51). Furthermore, compared with black tea, green
tea has shown positive associations with renal function. The
intake of green tea has been reported to reduce urinary
oxalate excretion and deposition in rat models (52). In
addition, green tea is very rich in catechins, including EGCG,
which exerts an in vivo antiproliferative effect on renal cell
carcinoma cell lines (53). Chinese green tea (CGT) has also
been demonstrated for its protection against ROS, which
causes apoptosis, inflammation, and damage in the lung tissue,
among rats exposed to tobacco smoke for long periods; at
the same time, CGT could also relieve nicotine toxicity,
exerting antioxidant and anti-inflammatory properties (54,
55). Caffeine intake has been identified to exacerbate renal
failure in a rat model (56). A cup of pure green tea usually

contains around 25 mg of caffeine per 8 oz serving, which
is considered to be a low amount (57). It is roughly one-
fourth of the amount of caffeine in a typical cup of coffee
and roughly half of the amount of caffeine in a typical cup of
black tea (58).

The main advantage of this study is the two-sample method,
which has a large summary-level genetic data that is able to
avoid potential confounding factors and reverse causation in
observational studies. The second advantage is that genetically
predicted consumption of tea has been identified in a large
GWAS of 349,376 European individuals, to diminish weak
instrument bias (F-statistic > 10). However, this study has some
limitations. First, the results did not apply to other populations
on account of deviations from the data limited in European
populations. Second, there were no non-linear relationships
or stratification effects due to the summary-level data. Lastly,
the type of tea and the amount of intake are important for
exploring their causal association with the exposed genes. Further
studies should take into consideration the overall impact of
tea consumption.

CONCLUSION

It can be genetically predicted that there is a causal relationship
of an extra cup of tea a day with the reduced risk of CKD and
albuminuria and the increased level of eGFR. This MR study
conducted a complete and detailed analysis of tea intake and renal
function, which provided new evidence for the prevention and
treatment of CKD.
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