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Abstract

Background: Estimating assemblage species or class richness from samples remains a challenging, but essential, goal.
Though a variety of statistical tools for estimating species or class richness have been developed, they are all singly-
bounded: assuming only a lower bound of species or classes. Nevertheless there are numerous situations, particularly in the
cultural realm, where the maximum number of classes is fixed. For this reason, a new method is needed to estimate richness
when both upper and lower bounds are known.

Methodology/Principal Findings: Here, we introduce a new method for estimating class richness: doubly-bounded
confidence intervals (both lower and upper bounds are known). We specifically illustrate our new method using the Chao1
estimator, rarefaction, and extrapolation, although any estimator of asymptotic richness can be used in our method. Using a
case study of Clovis stone tools from the North American Lower Great Lakes region, we demonstrate that singly-bounded
richness estimators can yield confidence intervals with upper bound estimates larger than the possible maximum number
of classes, while our new method provides estimates that make empirical sense.

Conclusions/Significance: Application of the new method for constructing doubly-bound richness estimates of Clovis stone
tools permitted conclusions to be drawn that were not otherwise possible with singly-bounded richness estimates, namely,
that Lower Great Lakes Clovis Paleoindians utilized a settlement pattern that was probably more logistical in nature than
residential. However, our new method is not limited to archaeological applications. It can be applied to any set of data for
which there is a fixed maximum number of classes, whether that be site occupancy models, commercial products (e.g.
athletic shoes), or census information (e.g. nationality, religion, age, race).
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Introduction

The concept of richness, defined as the number of species or

classes in a biological assemblage, is the simplest and the most

intuitive concept for characterizing assemblage (community)

diversity ([1];[2];[3];[4]). The measurement of richness, however,

is not always straightforward ([5]). Researchers who sample

biological assemblages must face the problem of how well a sample

reflects a community’s ‘‘true’’ (asymptotic) richness ([6];[7]). For

this reason, extrapolating from the known to the unknown is now

an essential objective in ecology, paleontology, and conservation

biology ([8]). For this reason, a variety of statistical tools for

estimating species or class richness have been developed, including

rarefaction ([4];[9];[10];[11];[12]), extrapolation from accumula-

tion curves ([3]), parametric estimators ([13]), and nonparametric

estimators (e.g. [2];[14]).

In ecological and biogeographic assessments of richness,

established upper limits for the number of species that can be

found in a particular region are rarely, if ever, known. This is

because species can immigrate, emigrate, speciate, become extinct,

hide, get lost, or simply be too rare to be observed with practical

levels of sampling effort. New species are constantly being

discovered (e.g. [15]), even primates ([16]). There are always

more species lurking somewhere in a study region, even if just

vagrants from elsewhere. As such, biological richness estimators

have been universally constructed without a known upper bound

as a constraint. In contrast, most richness estimators have a lower

bound set, sensibly enough, by the observed number of species or

classes.

For the past thirty years it has been commonplace for

archaeologists to apply these singly-bounded (a lower, but no

upper bound) richness estimators to samples of stone artifacts in

order to estimate the ‘‘true’’ artifact richness of an assemblage (e.g.

[17];[18];[19];[20];[21];[22];[23], and papers therein; [24];[25]).

Archaeologists often treat stone tools like biological entities, in the

sense that new classes ( = species) can always be discovered (e.g.

[26];[27];[28];[29]). Fieldwork and excavation in new geographic
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areas and/or time periods may yield unique, novel forms.

Moreover, with an increased understanding of stone tool

production techniques (called flintknapping) and tool uses, new

‘‘technological’’ and ‘‘functional’’ classes that previously went

unnoticed can be discovered and described by reexamining

previously studied artifact assemblages (e.g. [30];[31];[32]). In this

sense, there is no logical incongruity in the application of singly-

bounded richness estimators to archaeological stone tools.

A number of criticisms have been persuasively leveled against

the standard practice of stone tool classification (called typology),

however, including its subjective, non-quantitative nature ([33])

and the unavoidable inter-observer variability that it yields

([34];[35]). Our purpose here is not to further criticize subjective

approaches to classifying stone tools, but to contrast them with an

objective, logical alternative: paradigmatic classification. Dunnell

([36]) defined paradigmatic classification as a dimensional

classification procedure in which the classes are defined by

intersection, with each dimension being a set of mutually exclusive

alternative features. However, all features belonging to a single

dimension share the ability to combine with attributes of each

other dimension. Dunnell ([36]) specified, ‘‘In paradigmatic

classification all of the class definitions are drawn from the same

set of dimensions of features. Individual classes are distinguished

from one another by the unique product obtained in the

combination, permutation, or intersection of features from the

set of dimensions.’’ Figure 1 provides a visual representation of

paradigmatic classification (see also [37];[38]).

Significantly, because a paradigmatic classification is produced

by the intersection of dimensions of features, the maximum of

classes possible for the assemblage under examination is fixed (see

Figure 1 and caption), given the classification. In other words, the

upper bound of richness is fixed and known a priori. In terms of

estimating assemblage richness from a sample, this constraint is a

fundamentally different one from what ecologists or biologists

usually face because biological and ecological taxa are usually

‘‘extensionally’’ defined ([36]: 15). An extensional unit is derived

by enumerating selected attributes shared by the unit’s members;

the criteria comprising the unit are based on observed attributes of

the actual members already placed in the unit. The characteristics

of extensionally derived units are not theoretically informed in an

explicit manner. As Dunnell ([36]: 15) notes, extensionally defined

units are restricted in their utility to defining what is already

known, i.e., extensional units are dependent on the specimens

examined. Dunnell ([36]: 15) used the following example:

To define the term ‘‘dog’’ extensionally requires that you

already know what dogs are in order to make the definitional

listing. Ultimately, then, an extensional definition of a term simply

means that something is that something because it is, and nothing

more.

Alternatively, ‘‘intensionally’’ defined units, such as those

created by paradigmatic classification, ‘‘specify a set of features

which objects, whether known or unknown, must display in order

to be considered referents for a given term’’ ([36]: 16). An

intensional definition comprises the necessary and sufficient

conditions for membership in a unit; it explicitly lists the distinctive

attributes that a phenomenon must display to be identified as a

member of the unit. The definitive attributes of the unit are

derived from theory; there is no necessary reference to real,

empirical specimens when the unit is constructed. The fact that

something might not exist has no bearing on unit construction.

An Example of Incompatibility
In a study by Eren ([39]), a non-parametric estimator, Chao1

([14]), was used to estimate richness of paradigmatic classes of

stone tools from seven late Pleistocene archaeological sites in the

Lower Great Lakes region of North America. Here, ‘‘non-

parametric’’ means that we do not need to specify a class

abundance distribution. Thus a non-parametric estimator can be

applied to all types of class distributions. The Chao1 estimator,

developed for ecological applications, is based on the concept that

rare species carry the most information about the number of

species present in the assemblage, but not observed in a sample

from it. Thus Chao1 uses only the singletons (species represented

in the sample by only one individual) and doubletons (species

represented in the sample by exactly two individuals) to estimate

the number of unobserved species ([2];[14]). Importantly, a 95%

confidence interval can be calculated for this richness estimator

([40]). (See Section 3 for details and formulas for the Chao1

estimator and its associated confidence interval.).

The stone tools under analysis are known as ‘‘unifacial stone

tools,’’ a family of tools used by Clovis Paleoindians in Late

Pleistocene North America (<11,570 – 10,800 BP, [41:254]) for a

variety of scraping, cutting, and engraving tasks (for examples, see

Figures S1, S2, S3, S4, S5). Criteria for two paradigmatic

classifications were devised to classify, first, the overall shape of a

stone tool and, second, the shape of its constituent parts (its edges).

An analogous situation would be the creation of two classification

schemes for, first, the shape of Swiss Army knives and, second, the

gadgets contained within each one. The ‘‘tool shape’’ paradig-

matic classification consisted of three dimensions with three, six,

and six, features, respectively, for a total of 108 possible classes

(3*6*6 = 108). The ‘‘edge shape’’ paradigmatic classification

included four dimensions, with four, three, three, and three

features, respectively, also for a total of 108 possible classes

(4*3*3*3 = 108). (For details on the dimensions and features of the

paradigmatic classifications used here, see the Materials S1 and

Figures S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16.).

When the Chao1 estimator was used to estimate paradigmatic

class richness, an impossible estimate emerged: the upper 95%

confidence interval of class richness sometimes exceeded the

Figure 1. A three-dimensional representation of a paradigmat-
ic classification of three dimensions (upper case letters, Roman
numerals, and Arabic numerals). For example, any item possessing
the attributes ‘‘I’’, ‘‘C’’, and ‘‘20 would fall into the blue square class,
while any item possessing the attributes ‘‘II’’, A’’, and ‘‘10 would fall into
the green square class. Redrawn and modified from (Figure 4 in [36]:
72).
doi:10.1371/journal.pone.0034179.g001

Doubly-Bounded Class Richness Confidence Intervals
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maximum number of possible classes (Tables 1 and 2, column 8)

This discrepancy indicated to us that a new method was needed to

address richness estimation when both upper and lower bounds

are known. We introduce here doubly-bounded confidence

intervals (both lower and upper bounds fixed) for class richness.

Methods

Chao 1 Estimator
In this paper, we specifically illustrate our new method using the

Chao1 estimator ([14]), although any estimator of class richness

can be used in our method. Let S be the true unknown class

richness of the assemblage and let Sobs be the number of observed

classes in an empirical sample of size n from the assemblage, which

we call the reference sample. We assume the fixed maximum for S

is U (in our archaeological example, U = 108, as described earlier).

If an assemblage includes a non-negligible proportion of rare

classes that may remain undetected in a sample of limited size,

then the observed richness in the sample is likely to substantially

underestimate the true richness. The abundant classes, which are

virtually certain to be detected in samples, contain almost no

information about the undetected classes, whereas rare classes,

which are likely to be either undetected or infrequently detected,

contain almost all the information about the number of undetected

classes. We define the abundance frequency count fk as the

number of classes each represented by exactly k artifacts in the

reference sample, 0# k # n. The number of classes present in the

assemblage but not detected in the reference sample is thus

represented as f0.

The Chao1 estimator uses only the number of singletons (f1) and

doubletons (f2) and the observed richness to obtain the following

estimator for the class richness ([14]):

ŜS~
Sobszf 2

1 =(2f2), if f2w0

Sobszf1(f1{1)=2, if f2~0

(
: ð1Þ

with an associated variance estimator of (if f2.0):

var(ŜS)~f2
1

2

f1

f2

� �2

z
f1

f2

� �3

z
1

4

f1

f2

� �4
" #

: ð2Þ

If f2 = 0, the variance formula (2) becomes:

var(ŜS)~
f1(f1{1)

2
z

f1(2f1{1)2

4
{

f 4
1

4ŜS
: ð2aÞ

Chao et al. ([42]) showed that, under many class abundance

distributions, the Chao1 estimator, originally derived as an

estimate of minimum possible richness, is very sharp if the

Table 1. The Chao1 estimate for tool class data, its standard error, and the 95% confidence interval for each of the seven sites (see
Section 3 for notation and formulas).

Site n Sobs Singletons Doubletons Chao1 estimate Standard error 95% confidence interval

Arc 134 31 12 7 41.28 7.78 33.74 – 69.48

Butler 63 23 9 6 29.75 5.88 24.54 – 52.44

Gainey 31 23 16 6 44.33 14.52 29.36 – 94.51

Leavitt 33 20 14 2 69.00 43.99 30.85 – 241.14

Paleo Crossing 159 25 8 4 33.00 7.48 26.69 – 62.84

Potts 41 20 10 3 36.66 14.84 32.72 – 94.54

Udora 97 31 17 6 56.08 16.03 39.34 – 110.96

The last column, obtained from Eq. (4), shows that the upper limits of the 95% confidence intervals for Leavitt and Udora Sites (boldfaced) exceeded the maximum
possible value of 108.
doi:10.1371/journal.pone.0034179.t001

Table 2. The Chao1 estimate for edge class data, its standard error, and the 95% confidence interval for each of the seven sites
(see Section 3 for notation and formulas).

Site n Sobs Singletons Doubletons Chao1 estimate Standard error 95% confidence interval

Arc 834 36 14 2 85.99 43.99 46.85 – 257.14

Butler 272 24 10 1 74.00 59.58 31.95 – 339.63

Gainey 203 25 8 4 33.00 7.48 26.69 – 62.84

Leavitt 222 26 9 1 66.50 48.08 32.28 – 287.05

Paleo Crossing 1220 43 16 3 85.66 33.23 54.06 – 207.54

Potts 351 25 5 2 31.25 7.55 25.97 – 65.13

Udora 634 37 15 3 74.50 29.68 46.55 – 184.15

The last column, obtained from Eq. (4), shows that the upper limits of the 95% confidence interval of all sites except for Gainey and Potts (boldfaced) exceed the
maximum possible value of 108.
doi:10.1371/journal.pone.0034179.t002

Doubly-Bounded Class Richness Confidence Intervals
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reference sample size is large enough. This justifies the use of the

Chao1 estimator as a valid estimator for large n. Since sampling

variation is unavoidable, a confidence interval, which indicates the

possible range of class richness based on the Chao1 estimator,

should be reported to reflect sampling uncertainty. From a

statistical point of view, the information about a fixed maximum

does not help find a more accurate nonparametric point estimator

for class richness, but it can be incorporated into the construction

of a confidence interval such that the upper limit of the resulting

interval is at most the maximum value U.

Bootstrapping is an approximation method that is widely used

to assess sampling variability and to obtain confidence intervals for

complicated estimators ([43];[44]). If we were to regard the

reference sample of n artifacts that we collected as an ‘‘assem-

blage’’ and generate a series of bootstrap samples by randomly

selecting n artifacts, with replacement, from the reference sample,

we could calculate a Chao1 estimate of class richness, called a

bootstrap estimate S*. Repeating this resampling procedure many

times would produce many bootstrap estimates, forming a

distribution that could be used for statistical inference in estimating

at confidence interval.

In fact, we do not need to do bootstrap resampling because the

bootstrap idea suggests an analytic method to obtain a confidence

interval when both minimum and maximum bounds on the true

class richness are known. We first review the method to construct a

singly-bounded confidence interval with the lower bound no less

than the observed richness. In most applications, the distribution

for the undetected number of classes is right skewed, thus it is

reasonable to assume a log-normal distribution for the number of

undetected classes. Thus, we can assume that Y = log(S* 2 Sobs) is

a normal distribution with mean my~ log (ŜS{Sobs) and variance

s2. It follows from the properties of a log-normal distribution that.

s2~ log½1zvar(ŜS)=(ŜS{Sobs)
2�: ð3Þ

Then a 95% confidence interval for class richness is ([41]).

½Sobsz(ŜS{Sobs)=c, Sobsz(ŜS{Sobs)c�: ð4Þ

where

c~ exp (1:96 s)~ exp 1:96 log 1z
var(ŜS)

(ŜS{Sobs)
2

" #( )1=2
0
@

1
A,

and var(ŜS) is given in Eq. (2). The lower limit of the resulting

confidence interval is not lower than the observed class richness. In

the last column of Tables 1 and 2, we show the confidence interval

computed from Eq. (4) for each site. However, as explained earlier,

some of the upper limits (boldfaced entries in the tables) exceed the

maximum value of 108.

Here we propose a new analytic method based on the bootstrap

idea to incorporate the maximum value U in the construction of

confidence intervals, yielding a doubly-bounded confidence

interval. Since any sensible estimate S* should satisfy Sobs # S*

# U, equivalently, all reasonable values of Y = log(S* 2 Sobs)

should be less or equal to V = log(U 2 Sobs). Therefore, instead of

the usual normal distribution, the distribution of Y follows a

Table 3. Comparison of traditional (singly-bounded) and new (doubly-bounded) confidence intervals for tool class data (the
doubly-bounded interval is obtained from Eq. 5).

Site Traditional 95% confidence interval New 95% confidence interval

Arc 33.74 – 69.48 33.75 – 68.90

Butler 24.54 – 52.44 24.55 – 52.31

Gainey 29.36 – 94.51 29.34 – 87.14

Leavitt 30.85 – 241.14 30.01 – 103.80

Paleo Crossing 26.69 – 62.84 26.69 – 62.08

Potts 32.72 – 94.54 23.71 – 83.88

Udora 39.34 – 110.96 39.29 – 96.05

doi:10.1371/journal.pone.0034179.t003

Table 4. Comparison of traditional (singly-bounded) and new (doubly-bounded) confidence intervals for edge class data (the
doubly-bounded interval is obtained from Eq. 5).

Site Traditional 95% confidence interval New 95% confidence interval

Arc 46.85 – 257.14 45.65 – 105.36

Butler 31.95 – 339.63 30.92 – 104.06

Gainey 26.69 – 62.84 26.69 – 62.08

Leavitt 32.28 – 287.05 31.66 – 103.29

Paleo Crossing 54.06 – 207.54 53.11 – 105.62

Potts 25.97 – 65.13 25.97 – 63.24

Udora 46.55 – 184.15 46.02 – 104.36

doi:10.1371/journal.pone.0034179.t004

Doubly-Bounded Class Richness Confidence Intervals
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Figure 2. Rarefaction and extrapolation curves (upper panel) for tool class data from seven sites, with symmetric 95% confidence
intervals (lower panel) based on Colwell et al. [3]. Black dots: the reference (empirical) samples. Solid lines: rarefaction curves. Dashed lines:
extrapolation curves. Shaded area for each solid line: 95% confidence interval for the expected rarefied class richness. Shaded area for each dashed
line: 95% confidence interval for the expected extrapolated class richness up to a sample size of 350.
doi:10.1371/journal.pone.0034179.g002

Doubly-Bounded Class Richness Confidence Intervals
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Figure 3. Rarefaction and extrapolation curve (upper panel) of seven sites for edge class data with symmetric 95% confidence
intervals (lower panel) based on Colwell et al. [3]. Black dots: the reference (empirical) samples. Solid lines: rarefaction curves. Dashed lines:
extrapolation curves. Shaded area for each solid line: 95% confidence interval for the expected rarefied class richness. Shaded area for each dashed
line: 95% confidence interval for the expected extrapolated class richness up to a sample size of 1500.
doi:10.1371/journal.pone.0034179.g003

Doubly-Bounded Class Richness Confidence Intervals
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‘‘truncated’’ distribution with the following density function (here

‘‘truncated’’ means that we only consider those Y values less than

or equal to V.).

hY (y)~
Q(

y{my

s
)

W(
V{my

s
)

,

where w and W denote, respectively, the probability density

function and cumulative distribution function of the standard

normal distribution. Let p~W( V{my
s ), then a 12a confidence

interval for log(S 2 Sobs) is

½myzs zpa=2, myzs zp(1{a=2)�,

where za is a lower percentile point of a standard normal

distribution, i.e., W(za) = a and s is defined in Eq. (3). As a result,

the 12 a confidence interval for S is

½Sobsz(ŜS{Sobs) exp (s zpa=2), Sobsz(ŜS{Sobs) exp (s zp(1{a=2))�: ð5Þ

The intervals in Equations (4) and (5) are both non-symmetric with

respect to the richness estimate due to the log-transformation.

In the online Supporting Information (see Appendix S1 and Table

S1 (spreadsheet)), using the edge class data for the Udora site

(Table 2), we provide full calculation details to illustrate how to

compute the new, doubly-bounded confidence interval. The

traditional (singly-bounded) interval, Eq. (4), yields a 95% confidence

interval of (46.55, 184.15) for which the upper limit exceeds 108. The

new method, Eq. (5), yields a 95% confidence interval of (46.02,

104.36). Hence this example shows that the lower limit of the new

interval is at least the observed class richness, while, simultaneously,

the upper limit is less than 108. The doubly-bounded confidence

interval for each site is shown in Tables 3 and 4.

Interpolation (Rarefaction) and Extrapolation
Species richness estimators aim to estimate an asymptotic value,

approached as the sample size tends to infinity. Colwell et al. ([3])

recently linked interpolation and extrapolation curves as a smooth

curve. This curve provides useful information on comparing species

richness for finite sample sizes. The goal of rarefaction is to estimate

the expected number of classes S(m) in a random set of m individuals

from the reference sample (m , n). Suppose the observed class

abundance for the ith class is denoted by Xi. Then a minimum

variance unbiased estimator (Smith and Grassle 1977) for S(m) is.

~SS mð Þ~Sobs{
X

Xiw0

n{Xi

m

� ��
n

m

� �� �
:

Figure 4. Comparison of the symmetric intervals (wider intervals, as in Figure 2) and the doubly-bounded confidence interval for
tool class data from Leavitt Site. The symmetric intervals were obtained based on Colwell et al. [3] and the doubly-bounded intervals were
computed from Equations (7) and (8). The intervals unavoidably tend to be wide due to the small sample size (n = 33) for the site. Long-range
extrapolation is applied only to illustrate the behavior or the bounded confidence interval.
doi:10.1371/journal.pone.0034179.g004
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Colwell et al. ([3]) obtained an approximate unconditional

variance estimator var(~SS(m)) of the rarefied richness ~SS(m). A

traditional, symmetric 95% confidence interval is constructed by

using ~SS(m)+1:96 se(~SS(m)).

The goal of extrapolation is to estimate the expected number of

classes S(n+m*) in an augmented sample of n + m* individuals

from the assemblage (m* .0). Shen et al. ([46]) derived the

following estimator of S(n+m*):

~SS(nzm � )~Sobszf̂f0 1{ 1{
f1

nf̂f0

 !m�" #
&

Sobszf̂f0 1{ exp {
m�

n

f1

f̂f0

 !" #
,

ð6Þ

where f̂f0~f 2
1 =(2f2), based on the Chao1 estimator. A variance

estimator var~SS(nzm � ) was also derived by Shen et al. ([45]). A

symmetric 95% confidence interval for extrapolation is construct-

ed as ~SS(nzm � )+1:96 se(~SS(nzm � )).

In Figure 2, we show the plots of rarefaction and extrapolation for

tool class data from seven sites. The corresponding plots for edge

class data are shown in Figure 3. In Figure 2, the upper limit of the

traditional symmetric 95% confidence interval of the predicted class

richness for the Leavitt Site is greater than the maximum value of

108 when sample size exceeds 200. We now briefly describe the

modifications required for the confidence interval of the extrapo-

lation part of the curve, when when there is a fixed maximum value

for class richness. If we assume that the logarithm of bootstrap

estimates of S(n+m*) is a normal distribution truncated by log(U),

then a parallel derivation to that in Section 3 for obtaining Equation

(5) yields a 12 a confidence interval for S(n+m*) given by.

½~SS(nzm � ) exp (s1 zp1 a=2), ~SS(nzm � ) exp (s1 zp1(1{a=2))�, ð7Þ

where

s2
1~ logf1zvar~SS(nzm � )=½~SS(nzm � )�2g, ð7aÞ

and we define p1 as p1~W(
log U{ log ~SS(nzm � )

s1
). A similar

approach can be also applied to the rarefaction part of the curve

simply by replacing ~SS(nzm � ) and its variance by ~SS(m) and its

variance. Thus, the 12 a confidence interval for S(m) is

½~SS(m) exp (s2 zp2 a=2), ~SS(m) exp (s2 zp2(1{a=2))�, ð8Þ

where

Figure 5. Rarefaction and extrapolation curves for tool class data from seven sites with doubly-bounded 95% confidence intervals
based on Equations (7) and (8). Black dots: reference samples. Solid lines: rarefaction curves. Dashed lines: extrapolation curves. Shaded area for
each solid line: 95% confidence interval for the expected rarefied class richness. Shaded area for each dashed line: 95% confidence interval for the
expected extrapolated class richness up to a sample size of 350.
doi:10.1371/journal.pone.0034179.g005

Doubly-Bounded Class Richness Confidence Intervals
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s2
2~ logf1zvar~SS(m)=½~SS(m)�2g, ð8aÞ

and p2 is defined as p2~W(
log U{ log ~SS(m)

s2

).

In Figure 4, we single out the Leavitt Site to compare the

original symmetric and the modified confidence intervals. The

sample size for tool class in Leavitt Site is only 33, thus the

variance of the Chao1 estimator is the largest of the seven sites.

When we extrapolate to 350, it is unavoidable that the confidence

intervals become wide. The comparison of seven sites with the

modified confidence intervals are shown in Figure 5 for tool class

data and in Figure 6 for edge class data. It is clear that for any

finite sample sizes, all seven intervals overlap substantially.

Although slight overlap may not imply significance, the consid-

erable overlap among these confidence intervals indicates that the

current data do not support any significant difference in class

richness, among the seven sites.

Results and Discussion

Based on the work of Bettinger ([46]), Schiffer ([47]), and Surovell

([48]), Eren ([39]) proposed that different forager base camp

settlement patterns would be corroborated by different levels of tool

class and edge class richness, by the pattern of relative abundance

among classes, and by the classes represented in artifact assemblages

(see also [49];[50];[51];[52];[53];[54]). In regard to richness only, a

residential forager settlement pattern (moving a base camp across the

landscape short distances, but frequently, to complete different

subsistence tasks) would be supported if the unifacial stone tool class

and edge class richness differed significantly among the seven base

camp sites. The rationale behind this inference is that a sample of base

camp sites used by a group of foragers following a residential mobility

strategy would be less likely to exhibit the same scope of tool-using

activities (and thus tool class and edge class richness) at all sites, since

each is positioned in a unique location across a landscape for a

different subsistence purpose. Alternatively, a logistical forager

settlement pattern (moving a base camp far across the landscape,

but less often) would be supported if tool class and edge class richness

varied little among sites. In a logistical mobility strategy, base camps

are occupied for much longer periods, requiring relatively more

subsistence tasks to eventually be completed at a single location. If so, a

sample of logistical base camp sites is more likely to reveal similar

spectra of tool-using activities (and thus tool and edge class richness), as

the same wide scope of activities will be eventually carried out at each.

The original (singly-bounded) 95% confidence intervals of the seven

base camp sites’ tool and edge class richness (Table 3 and 4, column 1,

Figures 2 and 3) did not allow any inference about forager settlement

patterns because they did not make any empirical or logical sense.

However, with confidence intervals constrained by the maximum class

richness (Table 3 and 4, column 1, Figures 5 and 6), it is now clear that

the new 95% confidence intervals overlap substantially, suggesting that

tool class and edge class richness do not vary significantly among the

sites. Our conclusion is justified from both asymptotic richness

estimation (Table 3 and 4) and rarefaction-extrapolation methodology

Figure 6. Rarefaction and extrapolation curves for edge class data from seven sites with doubly-bounded 95% confidence intervals
based on Equations (7) and (8). Black dots: reference samples. Solid lines: rarefaction curves. Dashed lines: extrapolation curves. Shaded area for
each solid line: 95% confidence interval for the expected rarefied class richness. Shaded area for each dashed line: 95% confidence interval for the
expected extrapolated class richness up to a sample size of 1500.
doi:10.1371/journal.pone.0034179.g006

Doubly-Bounded Class Richness Confidence Intervals

PLoS ONE | www.plosone.org 9 May 2012 | Volume 7 | Issue 5 | e34179



(Figures 5 and 6). On its own this result supports the notion that Late

Pleistocene Clovis foragers in the Lower Great Lakes used a base camp

settlement pattern that was probably more logistical in nature than

residential, though future assessments should consider this result

among a suite of other diversity measures and archaeological evidence.

The applicability of our new method is not limited to

archaeology or paradigmatic classification. Indeed, it can be

applied to any set of data for which there is a fixed maximum

number of classes:

Site Occupancy Models
In site occupancy models ([55]), a fixed maximum number of U

sites may either be occupied or unoccupied by a member of each

class. The site occupancy rate can be estimated by Sest/U, where

Sest is interpreted as the estimated number of sites at which the

class is present. Therefore, because an upper bound for any

estimate is the number of sites, our method can be applied to site

occupancy models. In the previous literature, the estimated upper

limit of a confidence interval of the occupancy rate may exceed

one because the estimate may exceed the number of sites. By

contrast, the new method avoids this obvious impossibility.

A Marketing Example
Suppose a manufacturer of athletic shoes has a current range of

products that includes exactly U shoe styles. To efficiently target

company advertising, the manufacturer’s marketing division wants

to estimate the relative abundance and the total number of the

company’s shoe styles currently worn on university campuses in

different regions of several countries. Because students may well

have purchased shoes far from the campus, even in a different

country, for students at highly international universities, local sales

data from shops near campuses are not reliable.

Instead, the marketing department hires local observers at each

campus to count the number of students they observe over a

specified period wearing each of the U styles. The relative

abundance of the styles recorded at each campus can be

approximated, for these purposes, from the proportions observed,

but the total number of styles actually worn on a campus may lie

anywhere between the observed number (Sobs) and U. Our new

method (Equations 1 and 5) can provide an appropriate estimate

with sensible confidence intervals.

A Census Example
Suppose a social/political scientist is conducting research on the

sociocultural richness (as measured by the number of distinct

sociocultural groups represented) of people in geographic regions

or neighborhoods where that information would be difficult to

obtain by an exhaustive census, for practical or logistical reasons

(war zones, hazardous terrain, cost of surveying an entire

population). Characteristics such race, religion, nationality, or

socio-economic status could be assessed from the sample of people

who are most easily and/or safely accessible, from which a fixed

number of sociocultural categories (classes, in the statistical sense)

could be defined. The application of our estimators would allow

for an assessment of true sociocultural richness for each place,

based on limited sampling, that would not otherwise be practical.
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Figure S5 A hafted unifacial stone tool.
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‘‘thickness category.’’

(TIF)

Figure S10 Schematic examples of unifacial stone tool
morphological classes.

(TIF)
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sections.
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Figure S12 Edge angle measurements.
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Figure S14 Unifacial stone tool edge notches.
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Figure S15 Unifacial stone tool edge spurs.
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Figure S16 Schematic examples of unifacial stone tool
edge morphological classes.
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