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Effectof B. aulophytius IGPEB 33, and AMF on growth in ginger

ABSTRACT: Co-inoculation with beneficial microbes has been suggested as a
useful practice for the enhancement of plant growth, nutrient uptake, and soil
nutrients. For the first time in Uzbekistan the role of plant-growth-promoting
Bacillus endophyticus IGPEB 33 and arbuscular mycorrhizal fungi (AMF) on plant
growth, the physiological properties of ginger (Zingiber officinale), and soil
enzymatic activities was studied. Moreover, the coinoculation of B. endophyticus
IGPEB 33 and AMF treatment significantly increased the plant height by 81%, leaf
number by 70%, leaf length by 82%, and leaf width by 40% compared to the -
control. B. endophyticus IGPEB 33 individually increased plant height significantly ¥
by 51%, leaf number by 56%, leaf length by 67%, and leaf width by 27% as
compared to the control treatment. Compared to the control, B. endophyticus
IGPEB 33 and AMF individually significantly increased chlorophyll a by 81—58%,
chlorophyll b by 68—37%, total chlorophyll by 74—53%, and carotenoid content

by 67—55%. However, combination of B. endophyticus IGPEB 33 and AMEF significantly increased chlorophyll a by 86%, chlorophyll
b by 72%, total chlorophyll by 82%, and carotenoid content by 83% compared to the control. Additionally, plant-growth-promoting
B. endophyticus IGPEB 33 and AMF inoculation improved soil nutrients and soil enzyme activities compared to the all treatments.
Co-inoculation with plant-growth-promoting B. endophyticus and AMF could be an alternative for the production of ginger that is
more beneficial to soil nutrient deficiencies. We suggest that a combination of plant-growth-promoting B. endophyticus and AMF
inoculation could be a more sustainable and eco-friendly approach in a nutrient-deficient soil.
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Physiological traits of ginger plants as affected by
Beallus audophyticus IGPEB 33 and AME

H INTRODUCTION B. subtilis BEB-13bs promoted fruit weight and length in

Beneficial plant growth-promoting bacteria that root colonize tomatoil‘B?}lelﬁcilal soil micrg9rgani§nfls lsuchA als) arli)iu.sclu}ar
plants and improve plant development are usually referred to mycorrhizal fungi (AMF) symbiosis with plants is beneficial for

as PGPB.'™® Indole-3-acetic acid (IAA), gibberellin, and plant gzrf—‘A’tzah’ plant nutriti(?n, and ph}'fsio'logical properties of
cytokinin production by PGPB is one of the well-studied Plants. o Several stuc'lles. have indicated Rhizophagus
mechanisms of plant growth stimulation, leading to architec- zr.regularls increased colonization rate, shoot dry n?altter, root
tural and morphological changes in different plants.6_8 PGPB Plo@ass, water contents, stomatalAconduct'fmce, lipid pef'ox—
directly improve plant growth through solubilizing phos- idation, chlo.rophyll content, osm9t1c potential, and-pot.assmm
phate,g_13 enhancing nutrients, *~'° biological control of plant (K), magnesium (Mg), N’ P, e.md tron (F e) .content m d1ﬁ'§rent
pathogens,'” and nitrogen fixation."* Bacteria from genera ple'mts sggl_lze;s Leymus chlr;gnsts, Digitaria eriantha, and Cajanus
Bacillus synthesize phytohormones such as cytokinins, IAA, cajan L. Chen et al.. reported that AMF p romqted the
and gibberellins'® and improve plant development.'” Bacillus root morphology that stimulated the N and P absorption and
species, particularly B. methylotrophicus, B. insolitus, and B.
subtilis, enhance shoot biomass, root biomass, and shoot and Received: April 14, 2022 O
root lengths in wheat and fenugreek.”””" Alori et al.”* reported Accepted:  September 2, 2022

that Bacillus species could also enhance the nitrogen (N) and Published: September 23, 2022
phosphorus (P) in soil. Bacillus subtilis JW1 can improve plant

height, nutrient uptake, and chlorophyll content in Chinese

cabbage.”” Mena-Violante and Olalde-Portugal** reported that
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physiological properties in Catalpa bungei C.A.Mey. Liu et al
and Liu et al.** reported that AMF enhanced photosynthetic
activities and uptake of N and P promoted plant growth.
Mathur et al.>> observed that AMF stimulated plant growth
(the leaf length, plant height, leaf number), and physiological
properties (stomatal conductance, transpiration rate, photo-
synthetic rate, chlorophyll a) in Zea mays and improved the
phosphorylation status, root hydraulic conductivity, aquaporin
abundance, and photosynthetic capacity in Solanum lycopersi-
cum.”* Inoculation of AMF promoted the root biomass, proline
biosynthesis, and plant nutrients such as Mg, Fe, P, and N in
Trigonella foenum-graecum L.>° Asrar et al.’® reported that
AMF improved plant growth parameters (leaf number per
plant, shoot diameter, root diameter) and the chlorophyll
content and water content in Antirrhinum majus L. AMF
promoted soil nutrients, microbial activity, and soil enzyme
activities.”’ *” Figueiredo et al.*’ indicated that AMF
improved the colonization rate of AMF.

A combination of PGPB and AMF plays a major role in
promoting plant development, plant nutrition, and yield in
different plants.”"** El-Sawah et al.*> reported that combina-
tion of PGPB and AMF significantly increased shoot length,
root length, the number of branches per plant, and the number
of pods and seeds of guar (Cyamopsis tetragonoloba (L.)) in
field conditions.

Wahid et al.** reported that the combination of phosphate-
solubilizing bacteria (PSB) and AMF can result in enhanced P
uptake and development in maize (Zea-mays L.). Kavatagi and
Lakshman® reported that coinoculating with Rhizophagus
fasciculatus, Pseudomonas fluorescens, and Azotobacter chrococ-
cum significantly increased plant growth parameters, percent-
age root colonization, spore number, and leaf number in
tomato. PGPR and AMF coinoculation supported other
interms of the improvement of plant development, nutrient
solubility, and nutrient uptake informed by Zhang et al.*®
Yousefi et al.*’ reported that the combination of PGPB and
AMF enhanced the shoot biomass and seed yield of wheat.

The Zingiberaceae family is the largest family; it is separated
into about 52 genera and more than 1300 species of aromatic
perennial medicinal plants.”® Ginger and turmeric belong to
the Zingiberaceae family; their rhizomes contain a rich amount
of minerals like P and Ca, which are beneficial for health.**~>!
Rhizomes of ginger are found in compounds such as gingerol,
gingerdiol, and gingerdione, vitamin C, flavonoids, and
sesquiterpenes used traditionally for numerous health con-
ditions including antioxidant, antipyretic, sedative, analgesic,
cancer, insecticidal, vomiting, nausea, antidiabetic, and
rheumatic diseases.’> >* Ghayur et al.” reported that ginger
rhizomes are used in cardiovascular diseases and traditional
medicine. Chemical fertilizers have a negative impact on the
environment and human health. At present, the production of
organic products in the world is increasing year by year. This
research will help to increase the organic production of ginger.
There is very little information about the interaction of Bacillus
and AMF on ginger. We aimed to test the following three
hypotheses: (1) B. endophyticus and AMF can promote growth
of ginger; (2) B. endophyticus and AMF can improve
physiological properties of ginger; (3) B. endophyticus and
AMEF can interact to improve soil nutrients and soil enzymatic
activities.

B MATERIALS AND METHODS

Soil, AMF, and B. endophyticus IGPEB 33. The soil
(typical irrigated gray soil) collected from Durmon Exper-
imental Field Station of the Institute of Genetics and Plant
Experimental Biology, Uzbekistan, was used for the experi-
ment. The studied soil had the following agrochemical
properties: soil organic carbon —0.960%, nitrogen —0.091%,
phosphorus —0.170%, and potassium —0.69%.”° The AMF
(Funneliformis mosseae) fertilizer was purchased from the
“Division of Microbiology”, IARI, India. B. endophyticus IGPEB
33 strain was obtained from the “Laboratory of Medicinal
Plant Genetics and Biotechnology”. B. endophyticus IGPEB 33
was cultured nutrient broth and inoculated for the rhizome. B.
endophyticus IGPEB 33 strain was isolated from ginger planted
in Uzbekistan.

Phosphate Solubilization. Ability of bacteria phosphate
to solubilize was determined by spot inoculating pure strain B.
endophyticus IGPEB 33 on the Pikovskaya medium®® and
incubated at 28 °C. B. endophyticus IGPEB 33 inoculation was
done in triplicate.

IAA Production. B. endophyticus IGPEB33 was grown for
48 h on nutrient broth at 28 °C. The grown B. endophyticus
IGPEB 33 was centrifuged at 3000 rpm (revolutions per
minute) for 30 min. Then the supernatant was mixed with
orthophosphoric acid and Salkowski reagent. A pink color
showed TAA production.”’

Production of Enzymes. Protease production of B.
endophyticus IGPEB33 was conducted on “sterile skim milk
agar”. The B. endophyticus IGPEB 33 strain was spot inoculated
and grown at 28 °C for 2 days. Then incubation plates were
observed for the appearance of the zone of clearance around
the colony showing production of protease in B. endophyticus
IGPEB 33.%°

Lipase production of B. endophyticus IGPEB 33 strain was
determined using the following medium (sodium chloride S g,
calcium chloride 0.1 g, 10 mL of Tween 20, peptone 10 g, agar
1S g, water 1 L). B. endophyticus IGPEB33 was streaked in the
medium described above and incubated at 27 °C for 2 days.
Depositions around the B. endophyticus IGPEB 33 colonies
indicted the production of lipase.”

ACC deaminase production of B. endophyticus IGPEB33
strain was grown for 48 h at 28 °C in a DF medium minimum
saline medium with the addition of 2 g of (NH,),SO,. The
appearance of B. endophyticus IGPEB33 colonies in minimal
saline DF medium after the incubation period was taken as a
positive result for the synthesis of ACC deaminase.’’

To determine the amylase activity, the strain was cultured on
the starch agar and incubated at 28 °C. After incubation, a 1%
iodine solution was poured into Petri dishes and held for 1 min
after which it was discarded. The iodine solution with the
starch initially formed a blue color, and then the color quickly
disappeared and colorless zones formed around the bacterial
colonies. The formation of colorless zones around bacterial
colonies indicates the presence of amylase activity of the
isolates.”

The catalase was tested qualitatively.”’ H,0, (6%) was
added to the B. endophyticus IGPEB 33 colonies grown on NA
(nutrient agar) in plates. After effervescences of O, released
from the strain, colonies indicated the presence of catalase
activity.

Experimental Design. The influence of B. endophyticus
IGPEB 33 and AMF on the development of ginger was

https://doi.org/10.1021/acsomega.2c02353
ACS Omega 2022, 7, 34779—-34788


http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c02353?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Omega

http://pubs.acs.org/journal/acsodf

Table 1. Responses of Ginger Growth Indicators to B. endophyticus IGPEB 33 Alone, AMF Alone, and a Combination of B.

endophyticus IGPEB33 and AMF“

Treatment Height of ginger (cm)
Control (uninoculated) 8.620 + 0.75

B. endophyticus IGPEB 33 13.02 + 0.59*
AMF 9.38 £ 0.71

B. endophyticus IGPEB 33 + AMF 15.64 + 1.22%%*

Number of leaves per plant

Length of leaf (cm) Width of leaf (cm)

5.40 + 0.34 8.02 + 043 0.80 + 0.01
8.42 + 0.41%* 10.20 + 1.18* 1.34 + 0.02%*
6.00 + 0.15 8.88 + 0.12 0.90 + 0.01
9.20 + 1.10%* 11.20 + 0.45* 1.46 + 0.02°%*

“The asterisk indicates significant differences compared to control treatment at P < 0.05, P < 0.01. The error values specify standard deviation.

conducted under net house at the Institute of Genetics and
PEB. The study was conducted from April to August 2021.
“Experimental treatments” included four treatments such as
control, B. endophyticus IGPEB 33 alone, AFM alone, and
combination with B. endophyticus IGPEB 33 and AMF. The
AMEF inoculum consists of 100 spores/g and 1200 inoculum
potential (IP)/g. The AMF (Funneliformis mosseae) inoculum
was placed at a depth of S cm from the surface of soil as a layer
ensuring 10 spores for each rhizome. The B. endophyticus
IGPEB 33 strain was used for inoculation of the sterilized
rhizome of ginger. B. endophyticus IGPEB 33 inoculation was
adjusted to approximately 107 cells/mL. Rhizome was planted
in pots (diameter 26 cm, depth 22 cm) containing 8.0 kg of
soil. Two ginger rhizome were planted per pot. Each pot was
watered every 3 days. All treatment was replicated five times.
After four months, plant height, leaf length, leaf width, and
number of leaves were measured.

Physiological Parameters Measurement. Physiological
parameters “total chlorophyll, chlorophyll a, chlorophyll b, and
carotenoid contents in %inger were measured by the method of
Hiscox and Israelstam.”” A fresh leaf (50 mg) of the ginger
sample was cut, and dimethyl sulfoxide (S mL) was added to
the test tubes. The test tubes were incubated at 37 °C for 4 h.
Then absorbance of the extract was determined using a
spectrophotometer. The relative water content of leaves in
ginger was analyzed by the method of Barrs and Weatherly.**
A fresh leaf (100 mg) of ginger sample was placed in petri
plates and added water in plates for 4 h. After 4 h, the water
content of leaf in ginger was measured. The samples were then
taken out and blot dried, and the turgid weight (TW) was
recorded. After that, the samples were kept in an oven at 70 °C
overnight and the dry weight was recorded (DR). Relative
water content was calculated as

RWC (%) = [(FW — DW)/(TW — DW)] x 100

Estimation of Agrochemical Properties of soil. The
agrochemical parameters of the soil were analyzed after
harvest. The carbon (C) content and humus content were
analyzed using the modified method by Tyurin.* The
phosphorus, potassium, and total nitrogen contents in soil
were analyzed by the method.*>%

Determination of Soil Enzyme Activities. Enzyme
(urease) activity in soil was determined using the method of
Pancu and Gautheyrou.”” Soil samples (2.5 g) were added with
toluene (0.5) mL for 1S min. After mixing, urea (2.5 mL) and
citrate buffer (5 mL) were added to the incubator at 38 °C for
24 h. Then, 4.0 mL of sodium phenate and 3.0 mL of sodium
hypochlorite were added into 1.0 mL of filtrate and the mixture
diluted with S0 mL and kept for 20 min at room temperature.
The urease activity was determined at wavelengths of 578 nm
using a spectrophotometer.

Soil enzyme (invertase and catalase) activities in soil were
also assayed the method by Xaziev.”® An invertase activity,

dried soil (5.0 g) was used in the experiment. Then the dried
soil, sucrose solution (8.0%) with 5.0 mL of double distilled
water were added. After quantification of glucose content was
performed using the colorimetric method at the wavelength of
508 nm on spectrophotometer. For soil catalase activity, a total
of soil (2.0 g) was mixed with H,0, (5.0 mL) and double-
distilled water (40.0 mL). After this soil mixture with this
solution was shaken for 20 min at 150 rpm. The remaining
hydrogen peroxide (H,0,) was stabilized using 5.0 mL of
sulfuric acid (1.5 M H,SO,) followed by centrifuging at 4000
rpm for 5 min. Then, the supernatant was used for titration
with 0.05 M KMnO,. The catalase activity of soil was
determined at a wavelength of 480 nm in spectrophotometer.

The soil sample (2 g) was taken to which were added CaCl,
(5 mL) and p-nitrophenyl phosphate (pNP) (1 mL) for
phosphatase activity. The mixture was shaken, incubated at 30
°C for 1 h and centrifuiged (5000 rpm for S min). All
suspensions were filtered through Whatman No. 1 filter paper
quickly, and the yellow color intensity was measured at a 440
nm wavelength in spectrophotometer.

B STATISTICAL ANALYSES

The experimental data were analyzed with the StatView
Software using ANOVA. The significance of the effect of
treatment was determined by the magnitude of the p-value (p
< 0.05 < 0.01).

B RESULTS

B. endophyticus IGPEB 33 strain has indicated positive results
for plant growth-promoting traits (P-solubilization, protease,
amylase, catalase, IJAA and ACC deaminase production). B.
endophyticus IGPEB 33 strain showed no ability in producing
lipase.

Inoculation with B. endophyticus IGPEB 33 alone increased
plant growth parameters in Table 1. The B. endophyticus
IGPEB 33 significantly developed plant height by 51%,
respectively, compared with the control. When the B.
endophyticus IGPEB 33 and the AMF inoculation were applied
together, ginger growth indicators were significantly improved
compared to B. endophyticus IGPEB 33 and AMF inoculation
alone. The combined with B. endophyticus IGPEB33 and AMF
significantly enhanced plant height by 81% than the control.
Compared to the control, B. endophyticus IGPEB 33 ginger
growth indicators (leaf width, leaf number and leaf length)
were significantly promoted. The number of leaves (56%), the
length of leaves (67%), and the width of leaves (27%)
increased significantly with B. endophyticus IGPEB 33 treat-
ment alone as compared to the control. Combination with B.
endophyticus IGPEB 33 and AMF treatment increased the
number of leaves, the length of leaves, and the width of leaves
compared to other treatments. In comparison to the control,
combination of B. endophyticus IGPEB 33 and AMF treatment
significantly enhanced the number of leaves, the length of
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Figure 1. Physiological traits of ginger plants as affected by B. endophyticus IGPEB 33 and AMF: (A) chlorophyll a; (B) chlorophyll b; (C) total
chlorophyll; (D) carotenoid content. Columns marked with an asterisk differed significantly compared to control treatment at P < 0.05, P < 0.01.

The error bars shows standard deviation.

leaves, and the width of leaves by 70%, 82%, and 40% as shown
in Table 1.

Data on the physiological properties as affected by B.
endophyticus IGPEB 33 alone, AMF alone, and a combination
of B. endophyticus IGPEB 33 and AMF are presented in Figure
1. As compared to the control, B. endophyticus IGPEB33
significantly promoted the chlorophyll a by 81%, chlorophyll b
by 68%, total chlorophyll by 74%, and carotenoid contents by
67%. Inoculation by AMF alone promoted chlorophyll a
(58%), chlorophyll b (37%), total chlorophyll (53%), and
carotenoid content (55%). However, combination of B.
endophyticus IGPEB 33 and AMF significantly promoted the
chlorophyll a (86%), chlorophyll b (72%), total chlorophyll
(82%), and carotenoid content (83%) compared to the
control.

Data regarding relative water content of leaf as affected by B.
endophyticus IGPEB 33 and AMF treatments alone and
combination are presented in Figure 2. Compared to the
control, B. endophyticus IGPEB 33 and AMF treatments alone
stimulated the relative water content of leaf in ginger.
However, the maximum relative water content of ginger was

34782

detected in combination of B. endophyticus IGPEB 33 and
AMEF, respectively.

The beneficial function of B. endophyticus IGPEB 33 and
AMF treatments to improve soil agrochemical traits (total P,
total K, total N, humus, and C content) in soil were studied
(Table 2). The nutrients of total P and N contents in soil were
stimulated by the application of B. endophyticus IGPEB 33 and
AMF alone treatments. The P content increased by 16% and
13% B. endophyticus IGPEB 33 and AMF alone treatments
compared to the control, respectively. The B. endophyticus
IGPEB 33 and AMF treatments individually documented a
significant increase in total N content by 62% and 50%,
respectively, compared to the control. However, the highest
total P and N content was observed with a combination of B.
endophyticus IGPEB 33 and AMF treatment. Moreover, dual
treatment of B. endophyticus IGPEB33 with AMF had a greater
impact on increasing total P content (22%) and total N
content (75%) as compared to the control. B. endophyticus
IGPEB 33 and AMF together increased the humus content
compared to the all treatments. In compared to the control, the

https://doi.org/10.1021/acsomega.2c02353
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Figure 2. Relative water content of leaf as affected by B. endophyticus
IGPEB 33 and AMF treatments. The asterisk differed significantly
compared to control treatment at P < 0.05.

C content increased by 15% when coinoculated with AMF and
B. endophyticus IGPEB 33 treatment, respectively.

Inoculation with B. endophyticus IGPEB 33 alone influenced
soil enzyme (the catalase, invertase, urease, and phosphatase)
activity to a significantly greater extent compared with the
control (Table 3). Compared to the control, soil enzymes (the
catalase, invertase, urease, and phosphatase) activities
increased by 19%, 48%, 59%, and 48% compared to
inoculation with B. endophyticus IGPEB 33 alone, respectively.
In comparison to the control, the AMF treatment individually
documented a significant enhance in the catalase activity by
19%, respectively. Application of AMF alone significantly
promoted invertase activity by 35%, urease activity by 45%,
and phosphatase activity by 40% as compared with the control.
However, maximum values of the catalase and invertase
activities of soil were observed in dual inoculation of B.
endophyticus IGPEB 33, respectively. The combination of B.
endophyticus IGPEB3 3 and AMF treatment further increased
the catalase activity by 26% and the invertase activity by 74%.
Both inoculation of B. endophyticus IGPEB 33 and AMEF
together increased the urease and phosphatase activities in soil
compared with the all treatments. However, as compared to
the control, dual application of B. endophyticus IGPEB 33 and
AMF was more effective in enhancing the urease activity
(84%) and phosphatase activity (55%).

B DISCUSSION

Several PGPB benefits N fixation, phosphate solubilization,
phytohormones, and enzymes production.'”®” Phosphate-
solubilizing bacteria releasing organic acids into the soil

which solubilize the phosphate complexes converting them
into orthophosphate which is available for plant uptake.”’
Similar scientists informed that PGPB exhibited plant
beneficial properties.”"”’> The results agreed with the previous
report on IAA phytohormone production by Bacillus sp.”
Similarly, the B. endophyticus, B. altitudinis, and B. megaterium
were detected to PGP properties (mineral solubilization,
phytohormone production IAA).”* Park et al.”> found that B.
aryabhattai was producing max1mum phytohormones (IAA
and gibberellins). Verma et al.” indicated production ability of
IAA and GA by PGPB. Panda et al.”’ informed that isolated
from maize rhizosphere in the eastern Himalayan, “B.
megaterium MS10” solubilize iron phosphate, aluminum
phosphate, and tricalcium phosphate.

In our study, the response of the phosphate-solubilizing B.
endophyticus IGPEB 33 strain inoculated on ginger plant
growth was found to be significantly higher. Several scientists
reported that Bacillus species promoted plant development and
yield in lettuce'® and tomato.”® Similarly, Karnwal and
Guleria” reported Bacillus ssp. enhanced the shoot length,
leaf number, root length and root dry weight in turmeric.
Dinesh et al.* investigated Bacillus increase in ginger plant
growth. According to Chauhan et al.*" B. endophyticus TSH42
significantly increased the shoot length (33.97%) and the
biomass of fresh rhizome (56.77%) in turmeric (Curcuma longa
L.).

Data regarding AMF alone treatment improved plant growth
(the number of leaves, length of leaves, and width of leaves).
Numerous studies have presented AMF-promoted plant
development, plant nutrition, and yield.*”*’ Similarly,
Kumar®® reported that AMF improved plant growth
parameters in Jatropha curcas L. These results are consistent
with the findings obtained by Yamawaki et al.*> who
investigated that the application of AMF enhanced plant
height, number of leaves, and number of stems in turmeric
(Curcuma longa L) than that in control treatment, respectively.
Similar findings were informed by Chen’® single AMF
significantly improved leaf area, plant height and the total
biomass in Catalpa bungei C.A.Mey. AMF inoculation
Cleopatra mandarin seedlings improved plant growth, biomass
production and plant nutrition (K, P, Fe and Cu) in Citrus
reshni Hort. Ex Tan. was documented Navarro.*® Yang et al.*’
investigated AMF-promoted number of leaves, N and P
concentrations in Robinia pseudoacacia L. under greenhouse
conditions.

Several scientists reported that combination of PGPB and
AMF promoted plant growth, plant nutrition, and yield in
different plants such as Solanum lycopersicum L.,*>* Eleusine
coracana L.,*° Sulla coronaria’® and Triticum aestivum.** Gao et
al.”" reported that combined application of the biofertilizer
mixture (A.chrocoocum, AMF, and B. circulans) with organic
fertilizers significantly increased the plant height, number of
leaves per plant and leaf and root dry weight in maize (Zea

Table 2. Agrochemical Properties in Soil as Influenced by B. endophyticus IGPEB 33 and AMF*

Treatment Total P (%)
Control 0.37 £ 0.003
B.endophyticus IGPEB 33 0.43 + 0.010°
AMF 0.42 + 0.003
B.endophyticus IGPEB 33 + AMF 0.45 + 0.002

Total K (%)
0.61 + 0.008
0.65 + 0.002
0.62 + 0.002
0.66 + 0.002

Total N (%) Humus (%) C (%)
0.08 + 0.002 1.64 + 0.015 0.94 + 0.004
0.13 + 0.015° 1.78 + 0.015 1.04 + 0.002
0.12 + 0.003“ 1.767 + 0.015 1.02 + 0.002
0.14 + 0.002%* 1.86 + 0.031 1.08 + 0.003“

“The asterisk indicates P < 0.05, P < 0.01. The error values specify standard deviation.
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Table 3. Soil Enzymes Activities as Influenced by B. endophyticus IGPEB 33 and AMF Treatments”

Activity of catalase

Activity of Invertase

Activity of urease (NH,/g  Activity of phosphatase (1 ug

Treatments (mL KMnO, g ~" soil h™") (ug glucose-g " soil-h™") of soil/h) pNP/h/g of soil)
Control 3.14 + 0.02 4.46 + 0.02 7.86 + 0.02 3.75 £ 0.03
B.endophyticus IGPEB 33 3.75 + 0.03 6.62 + 0.02° 12.49 + 0.05%* 5.55 + 0.06"

AMF 3.74 + 0.02“ 6.03 + 0.02¢ 1143 + 0.11° 524 + 0.05
B.endophyticus IGPEB 33 3.95 + 0.03° 7.76 + 0.05%* 14.46 + 1.01%* 5.82 + 0.08°
+ AMF
“The asterisk indicates P < 0.0S, P < 0.01. The error values specify standard deviation.
mays L.). Sheteiwy et al.”> reported significantly enhanced et al''' B. megaterium and B. pumilus solubilize the P in

plant height (22.53%), leaf area (14.89%), fresh weight
(49.76%), number of pods (35.15), and 100-seed weight
(16.94%) of soybean (Glycine max L. Merril) under well-
watered conditions. Similar results were informed by Nacoon”
where combined PSB and AMF significantly increased
development in Helianthus tuberosus L. Wahid et al.** showed
that AMF and “phosphate solubilizing bacteria” improved P
uptake and the growth in maize. AMF and PGPB together
improve development and the nutrient uptake in sorghum was
documented Dhawi et al.”*

Positive effects of B. endophyticus IGPEB 33 alone on
physiological traits in ginger were observed under net house
conditions (Figures 1 and 2) as previously reported in
turmeric.”> Several researchers noticed that Bacillus species
promoted the content of chlorophyll and relative water content
in various plants.”~*® Shi et al.”” reported that Bacillus pumilus
2-1,Chryseobacterium indologene 2-2, and Acinetobacter johnsonii
3-1 promoted the chlorophyll content in sugar beet plants
(Beta vulgaris). Similarly, Stefan et al.'”’ reported that IAA-
producing bacteria promoted chlorophyll content in bean
plants (Phaseolus coccineus). Inoculation of B. megaterium
stimulated the chlorophyll a, chlorophyll b, and carotenoids in
Lycopersicon esculentum.'®!

Our current study also found that AMF can effectively
increase physiological traits in ginger (Figures 1 and 2).
Numerous studies have shown that photosynthetic rate and
chlorophyll content in plants were enhanced by AMEF.'**'*?
Similarly, Hashem et al.'”* reported that inoculated AMF
increased physiological traits such as chlorophyll a (27.21%),
chlorophyll b (23.59%), and total chlorophyll (23.90) in
chickpea (Cicer arietinumL.). Our results are in agreement with
Chen et al.>® where chlorophyll a and chlorophyll b improved
in Catalpa bungei by AMEF. Single inoculation of AMEF
improved chlorophyll content in maize.” Similarly, Sheteiwy
et al.'” informed that single inoculation of AMF significantly
improved chlorophyll content of soybean plant. AMF
improved plant development and photosynthesis in citrus.'®

In this study, we found that dual inoculation with B.
endophyticus IGPEB 33 and AMF significantly increased the
physiological properties of ginger leaf (Figures 1 and 2).
Numerous studies have presented that together PGPB and
AMF improve plant physiological traits (the relative water
content, contents of chlorophyll and carotenoids) in different
plants.'*”'*® Similarly, Ma et al.'” reported that application of
AMEF or PGPB combination improved physiological traits in
cowpea. Similarly, Vafadar et al.''” reported that coinioculation
with AMF and P. putida and A. chroococcum and B. polymixa
significantly increased chlorophyll content in Stevia rebaudiana.
Similar trends were noticed by Gao in maize.”"

Inoculation of phosphate-solubilizing bacteria can improve
the absorption of P, N, and K as reported by Lopez-Arredondo

soil.”"’® Akhtar et al.''> found activities of urease and
phosphatase in the soil increased significantly after covering
the salty clay with straw. Ibarra-Galeana et al.''” showed that B.
megaterium and B. flexus improve phosphatase activities in soil.
Similarly, Qaiser et al.''* reported that B. amyloliquefaciens
increased the total N and P in soil and significantly improved
enzyme activity in soil.

In the present study, AMF alone improved soil nutrients and
significantly enhanced soil enzyme activities (Table 2, 3).
Numerous studies on soil enzymes such as catalase, invertase,
FDA, phosphomonoestrase, and urease enzymes were
enhanced by AMEF applications.***>''* Simlilarly, Li and
Cai’” and Ziheng et al.''® reported that AMF inoculation
improved soil the enzyme activities. Similar findings were
reported by Zai et al."'” AMF improved soil enzyme (urease
and protease) activities. Our findings revealed that AMF
application had the highest phosphatase and invertase activity.
Similarly, El-Sawah et al.*’ found that AMF actively enhanced
phosphatase and invertase enzymatic activities of soil. Many
previous studies found that coinculation of PGPB and AMF
improved soil nutrients and soil enzyme activities.""**
Similarly, Hidri et al”® reported that dual addition of B.
subtilis and AMF significantly increased urease and phospha-
tase enzyme activities in soil.

B CONCLUSIONS

From the present study, plant length, leaf length, number of
leaves, soil nutrients (N, P), soil enzyme (catalase, invertase,
urease, phosphatase) activities, and plant physiological proper-
ties of ginger were affected by the B. endophyticus IGPEB 33
and AMF alone and their combination of B. endophyticus
IGPEB 33 and AMF. Inoculation of plant-growth-promoting B.
endophyticus IGPEB 33 and AMF alone increased the plant
growth, which positively affected the chlorophyll a, chlorophyll
b, total chlorophyll, and carotenoid content. Combination of
plant-growth-promoting B. endophyticus IGPEB 33 and AMF
inoculation improved plant development and physiological
traits. The plant-growth-promoting B. endophyticus IGPEB 33
and AMF inoculation individually improved soil enzyme
activities (catalase, invertase, urease, phosphatase) and soil
nutrients such as total P and total N content. A positive impact
of inoculation was indicated with combination of B.
endophyticus IGPEB 33 and AMF. However, coinoculation of
plant-growth-promoting B. endophyticus IGPEB 33 and AMF
significantly increased the catalase, invertase, urease, and
phosphatase activities and total P and N content in soil. We
conclude that dual application of plant-growth-promoting B.
endophyticus and AMF is most effective for environmental
agricultural practices to promote ginger growth, soil enzyme
activities, and soil nutrients in typical irrigated gray soil.
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