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Abstract

Background: Tagged sequence mutagenesis is a process for constructing libraries of sequenced
insertion mutations in embryonic stem cells that can be transmitted into the mouse germline. To
better predict the functional consequences of gene entrapment on cellular gene expression, the
present study characterized the effects of a U3Neo gene trap retrovirus inserted into an intron of
the hnRNP A2/BI gene. The mutation was selected for analysis because it occurred in a highly
expressed gene and yet did not produce obvious phenotypes following germline transmission.

Results: Sequences flanking the integrated gene trap vector in | B4 cells were used to isolate a full-
length cDNA whose predicted amino acid sequence is identical to the human A2 protein at all but
one of 341 amino acid residues. hnRNP A2/BI transcripts extending into the provirus utilize a
cryptic 3' splice site located 28 nucleotides downstream of the neomycin phosphotransferase start
codon. The inserted Neo sequence and proviral poly(A) site function as an 3' terminal exon that is
utilized to produce hnRNP A2/B1-Neo fusion transcripts, or skipped to produce wild-type hnRNP
A2/BI transcripts. This results in only a modest disruption of hnRNPA2/B| gene expression.

Conclusions: Expression of the occupied hnRNP A2/BI gene and utilization of the viral poly(A)
site are consistent with an exon definition model of pre-mRNA splicing. These results reveal a
mechanism by which U3 gene trap vectors can be expressed without disrupting cellular gene
expression, thus suggesting ways to improve these vectors for gene trap mutagenesis.

Background

Gene entrapment has provided effective strategies for in-
sertional mutagenesis of mammalian cells in culture. The
mutagens permit direct selection of clones in which cellu-
lar genes have been disrupted and simplify the characteri-
sation of genes associated with recessive mutations [1].
Mutagenesis of embryo-derived stem (ES) cells, coupled
with in vitro genetic screens, has been widely used to ana-

lyse gene functions in mice [1]. These have included
screens for mutations in developmentally regulated genes
[2-5], in genes regulated by extracellular agonists [6,7],
and in genes encoding secreted and transmembrane pro-
teins [8,9]. Characterized mutations include genes in-
volved in intracellular trafficking [10], transcriptional
regulation [11,12], signal transduction [7,8,11,13-15],
neural development [16] and neural wiring [17], and axial
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patterning [18,19]. The rapid expansion of the nucleic
acid databases has had a tremendous impact on the iden-
tification of genes disrupted by gene entrapment. This has
led to the development of tagged sequence mutagenesis, a
process by which genes disrupted in ES cells are character-
ized at the nucleotide level prior to germline transmission
[20-24].

Gene trap retroviruses developed in our laboratory con-
tain a selectable marker in the U3 region of the long ter-
minal repeat (LTR) of a replication-defective Moloney
murine leukemia virus. Selection for U3 gene expression
generates clones in which the provirus is positioned in or
near exons of actively transcribed genes and is expressed
on transcripts originating in the flanking cellular DNA
[25]. The vectors appear to be effective mutagens. Single-
gene mutation frequencies are 100-1000 fold higher in
cells isolated after gene trap selection than in cells con-
taining randomly integrated retroviruses [26]. These tar-
geting frequencies also support the idea that retrovirus can
integrate throughout the genome and that most, if not all,
expressed genes can be disrupted. Finally, approximately
40% of inserts selected in ES cells result in obvious pheno-
types following transmission into the mouse germline
[27-29]. In the four cases examined, the virus appeared to
induce null mutations [10,30-32].

In order to best utilise gene traps in genetic studies, it is
necessary to understand the factors that allow expression
of the entrapment vectors and that determine whether ex-
pression of the occupied gene will be disrupted. This is
particularly true for tagged sequence mutagenesis, where
one would like to predict by sequence alone the effects of
the targeting vector on cellular gene expression. For this, a
representative number inserts must be characterised in-
cluding those not associated with any discernible pheno-
type. Most previously analysed mutations were selected
because of phenotypes observed after germline transmis-
sion, and thus are unlikely to reveal mechanisms that
could allow expression of the entrapment vector without
disrupting expression of the occupied gene.

The present study characterized a mutation in the 1B4 cell
line induced by the U3Neo gene trap retrovirus [29]. This
insert was selected for study because the provirus inserted
into a widely expressed gene and yet no phenotype was
observed in mice homozygous for the provirus. Further
analysis revealed that the provirus integrated into an in-
tron of murine homologue of the human hnRNP A2/B1
gene. The gene encodes two related nuclear ribonucleo-
proteins, hnRNP A2 and hnRNP B1, members of a large
family of RNA binding proteins found associated with
mammalian heterogeneous nuclear RNA [33].

http://www.biomedcentral.com/1471-2164/4/2

Results

The 1B4 Provirus integrates into the hnRNPA2/B| gene
The 1B4 cell line was isolated by infecting D3 ES cells with
the U3Neo gene trap retrovirus and selecting for G418 re-
sistant clones [29]. 1B4 cells contain a single, intact provi-
rus as assessed by Southern blot hybridization (data not
shown). Sequences flanking the virus, isolated by inverse
PCR, hybridized to a transcript of approximately 1.8 Kb,
and were used to screen a PCC3 embryonal carcinoma cell
cDNA library. A total of 55 positive plaques were identi-
fied among 1 x 106 plaques screened. Further analysis of
ten cDNAs revealed two overlapping clones covering the
entire 1.8 Kb transcript. The composite cDNA contained
an open reading frame encoding a polypeptide of 341
amino acids (Figure 1). Comparison of the translated se-
quence to the GenBank database using the BLASTP pro-
gram [34] revealed a significant match with human
hnRNP A2/B1 [35]. The human and mouse proteins are
identical except asparagine 287 in the human sequence
was replaced by a threonine (Figure 1). The mouse cDNA
sequence has been deposited in GenBank (accession
number AF073993).

In order to determine where the provirus inserted within
the hnRNP A2/B1 gene, genomic DNA flanking the 1B4
provirus was sequenced. The flanking DNA isolated by in-
verse PCR extended to a Hinfl site 226 nucleotides up-
stream and downstream of the provirus (Figure 2).
Sequences matching the cloned cDNA and the human hn-
RNP A2/B1 cDNA extended 64 nucleotides downstream
of the Hinfl site, while the remaining 159 nucleotides did
not match the cDNA sequence. A consensus 5' splice site
was located at the point where the genomic and cDNA se-
quences diverged. Therefore the 1B4 provirus appeared to
integrate 159 nucleotides into an intron of the hnRNP A2/
B1 gene. The flanking sequence has been submitted to
GenBank (accession number AF073990).

The fact that the flanking genomic DNA hybridized to a
single genomic DNA fragment suggested that the provirus
inserted into the hnRNP A2/B1 gene and not into a related
but uncharacterized gene. However, since the match was
based on a relatively short stretch of exon, several experi-
ments were performed to confirm linkage between provi-
rus and the hnRNP A2/B1 gene. First, two primers
complementary to hnRNP A2/B1 sequences located up-
stream of the provirus were used together with a neo spe-
cific primer in separate PCR reactions. In each case, the
size of the amplified product was consistent with inser-
tion of the provirus into the hnRNPA2/B1 gene (data not
shown). Second, cDNA sequences predicted to lie down-
stream of the integration site were used to probe Southern
blots. The 3' hnRNP A2/B1 cDNA probe hybridized to a
18 kB EcoR1 fragment corresponding to the wild type
gene and to a 22 kB fragment in DNA from mice
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CACAGCGCCAGGACGAGTCCCGTGCGCGTCCGTCCGCGGAGGTCTTTCTCATCTCGCTCGGCTGCGGGAAATCGGGCTGA 80
AGCGACTGAGTCCGCG ATG GAG AGA GAA AAG GAA CAG TTC CGA AAG CTC TTT ATT GGT GGC TTA 144
M E R E K E Q F R K L F I G G L 16

AGC TTT GAA ACC ACA GAA GAA AGT TTG AGA AAC TAC TAT GAG CAA TGG GGA AAG CTC ACA 204
S F E T T E E S L R N Y Y E Q w G K L T 36

GAC TGT GTG GTT ATG CGG GAT CCT GCA AGC AAA AGA TCA AGA GGA TTT GGC TTT GTA ACT 264
D Cc v v M R D P A S K R S R G F G F v T 56

TTC TCA TCC ATG GCC GAG GTT GAC GCT GCC ATG GCT GCA AGG CCT CAT TCC ATT GAT GGC 324
AGG GTA GTT GAG CCA AAA CGT GCT GTA GCA AGA GAG GAG TCT GGA AAA CCA GGA GCC CAT 384
GTG ACT GTG AAG AAG CTG TTT GTT GGT GGA ATT AAG GAA GAT ACT GAG GAA CAC CAC CTT 444

v T v K K L F v G G I K E D T E E H H L 116

AGA GAT TAC TTT GAA GAG TAT GGA AAA ATT GAT ACT ATT GAA ATA ATT ACC GAT AGG CAG 504
R D Y F E E Y G K I D T I E I I T D R Q 136

TCT GGA AAG AAA AGA GGC TTT GGC TTT GTT ACT TTT GAT GAC CAT GAT CCT GTG GAT AAA 564
S G K K R G F G F v T F D D H D P v D K 156

ATT GTC TTG CAA AAA TAT CAC ACC ATA AAT GGT CAC AAT GCA GAA GTT AGA AAG GCA TTG 624
I v L Q K Y H T I N G H N A E v R K A L 176

TCT AGA CAA GAA ATG CAG GAA GTC CAA AGT TCT AGG AGT GGA AGA GGA GGA AAC TTT GGT 684
S R Q E M Q E v Q S S R S G R G G N F G 196

TTT GGG GAT TCT CGT GGT GGC GGT GGC AAT TTT GGA CCA GGA CCA GGA AGC AAC TTT AGG 744
F G D S R G G G G N F G P G P G S N F R 216

GGG GGA TCT GAT GGA TAC GGA AGT GGA CGT GGA TTT GGG GAT GGC TAT AAT GGG TAT GGA 804
G G S D G Y G S G R G F G D G Y N G Y G 236

GGA GGA CCT GGA GGT GGC AAT TTT GGA GGT AGC CCT GGT TAT GGA GGA GGA AGA GGA GGA 864
G G P G G G N F G G S P G Y G G G R G G 256

TAT GGT GGT GGA GGA CCT GGA TAT GGC AAC CAG GGT GGG GGC TAC GGA GGT GGT TAT GAC 924
Y G G G G P G Y G N Q G G G Y G G G Y D 276

AAC TAT GGA GGA GGA AAT TAT GGA AGT GGA TAC AAT GAT TTT GGA AAT TAT AAC CAG 984
Y N D F G N Y N Q 296

CAG CCT TCT AAC TAT GGT CCA ATG AAG AGT GGA AAC TTT GGG GGT AGC AGG AAC ATG GGA 1044
Q P S N Y G P M K S G N F G G S R N M G 316

GGA CCA TAT GGT GGA GGG AAC TAT GGT CCT GGA GGA AGT GGA GGA AGT GGT GGC TAT GGT 1104
G P Y G G G N Y G P G G S G G S G G Y G 336

GGA AGG AGC AGA TAT TAA GCTTCTTCCTACTTACCATGGGCTTCACTGTATAAATAGGAGAGGATGAGAGCCC 1177
G R S R Y *k* 341

AGAGGTAACAGAACAGCTTCAGGTTATGGAAATAACAATGTTAAGGAAACTCTTACTCTCAGTCATGCATAAATATCAGT 1257
GGTATGGCAGAAGACACCAGAGCAGATGCAGACAGCCATTTTGTGAATGGATTGGATTATTTAATAACATTACCTTACTG 1337
TGGAGGAAGGATTGTAAAAAAAAATGCCTTTGAGACAGTTCTTAGGCTTTTTAATTGTTGTTTCTTTCTAGTGGTCTTTG 1417
TAAGAGTGTAGAAGCATTCCTTCTTTGATAATGTTAAATTTGTAAGTTTCAGGTGACATGTGAAACCTTTTTTAAGATTT 1497
TTCTCAAAAGTTTTGAAAAGCTATTAGCCAGGATCATGGTGTAATAAGACATAACGTTTTTCCTTCCCAATTTTAAGTGC 1577
GTGTGTAGAGTTAAGAAGCTGTTGTACATTTATGATTTAATAAAATATTCTAAAGGAAAAAAAAAAAAAAAAAAAAAAAA 1657
AAAAAAAAAAAAAAAAAAAA 1677

Figure |

Sequence of the murine hnRNP A2/B1 gene. The complete nucleotide sequence and predicted amino acid sequence of
the murine hnRNP A2/B| cDNA was determined from two overlapping clones. The predicted amino acid sequence is identical
to the predicted human protein with the exception of the substitution of threonine for asparagine at amino acid 287 (shaded).
The site of provirus integration in 1B4 cells is indicated. Flanking sequences isolated by inverse PCR colinerar with the cDNA
and a polyadenylation signal are underlined.
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159

691 754

[ U3 Neo

GATTCTCGTGGT GECGGT GECAAT TTTGCGACCAGGACCAGGAAGCAACT TTAGEGEGEEEA - 164

TCTGGTAAGTTTGT TTCTTAAGGGTGTGATTGCATTTTGAATCAGAATGTCTTCAGT GAG - 104

ATAAATTTTGCAGT TAGCCTGTAGT GTGTAGT GCGAGAAAGAAAGGAGACCCTGTGCTCA

-44

GACAAGGT TAAGATGT TGCCCTCTGACCACCATCATGTAAACT| U3 NEO

Figure 2

Integration of the 1B4 provirus occurs in an intron of the hnRNP A2/B| gene. (A) Schematic representation of
upstream flanking sequence isolated by inverse PCR (1B4 Flanking) shows that the |1B4 provirus integrated 159 nucleotides
into an intron of the hnRNP A2/BI| gene. Exon and intron sequences are indicated by the black box and thin line, respectively.
Nucleotide numbers correspond to the cDNA sequence in Figure |. (B) Genomic sequences are colinear with the cloned
cDNA sequences for 64 nt. (shaded region) until a consensus 5' splice site at which point they diverge.

containing the 1B4 provirus (data not shown). The differ-
ence in the size of the wild type and mutant alleles result-
ed from the inserted U3Neo provirus Finally, as described
below, U3Neo transcripts expressed in 1B4 cells are fused
to upstream hnRNP A2/B1 sequences.

Provirus integration does not disrupt expression of the hn-
RNP A2/BI gene

Of the sixteen U3 gene trap proviruses selected in ES cells
that we have introduced into the germline, six resulted in
obvious phenotypes (typically embryonic death) when
bred to homozygosity [10,21,28-32]. In cases where no
obvious phenotypes are observed, it is important to deter-
mine if the insert did not disrupt gene expression or if the
gene is dispensable. Inheritance of the 1B4 provirus fol-
lowed a Mendelian distribution and no phenotypic
changes were observed. Among the 58 offspring analyzed
after crossing mice heterozygous for the 1B4 provirus, 13
failed to inherit the provirus, while 32 and 13 were heter-
ozygous and homozygous for the provirus, respectively
(Figure 3). A representative Southern blot used to geno-
type offspring is shown in Figure 3.

To test whether the 1B4 provirus disrupts expression of
the hnRNP A2/B1 gene, RNA from wild-type mice and
mice homozygous for the 1B4 provirus were analyzed by
Northern blot hybridization, using hnRNP A2/B1 cDNA
probes derived from sequences upstream and down-
stream of the integration site. All tissues from wild type
mice expressed a single, 1.8 kb transcript, consistent with
previous studies [36,37]. Mice homozygous for the 1B4
provirus expressed the 1.8 kb transcript as well as an addi-
tional, larger transcript (Figure 4). The size of this larger
transcript, approximately 2.3 kb as compared to the mi-
gration of 18S and 28S RNAs, is consistent with fusion of
upstream hnRNP A2/B1 exons to the Neo gene. Sequences
derived from hnRNPA2/B1 sequences downstream of the
site of integration also hybridized to the 1.8 kb transcript
in both wild type and 1B4 homozygous mice indicating
that transcription of full-length hnRNP A2/B1 transcripts
is not completely disrupted by the 1B4 provirus.

Mouse embryonic fibroblasts (MEF) were isolated from
both wild type and homozygous mutant embryos. MEF
isolated from embryos homozygous for the 1B4 provirus
showed no obvious differences from those isolated from
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-l - 58

Inheritance
Total Offspring  +/+ (%) +- (%) -I- (%)
13 (22.4) 32 (55.2) 13 (22.4)

Figure 3

Inheritance of the 1B4 provirus. Mice heterozygous for the 1B4 provirus were crossed and their progeny were analyzed
by Southern blot analysis following EcoR | digestion and hybridization to the 1B4 flanking sequence. (A) Representative South-
ern blot hybridization patterns for wild-type (+/+), heterozygous (+/-), and homozygous mutant (-/-) mice. (B) Inheritance of
the 1B4 provirus follows a Mendelian distribution as assessed by the distribution of genotypes of progeny from intercrossing

I B4 heterozygotes.

heterozygotes or wild type embryos. RNA isolated from
these MEFs was used to quantify the extent of message re-
duction in 1B4 homozygous cells by Northern blot hy-
bridization. When using probes derived from cDNA
sequences downstream of the integration site northern
blot analysis revealed a 50% reduction of transcripts in
mutants compared to wild type using the glyceraldehyde
3-phosphate dehydrogenase (GAPDH) message as an in-
ternal standard (Figure 4).

Splicing and polyadenylation of hnRNP A2/BI-Neo fusion
transcripts

Each LTR of the U3Neo provirus contains sequences for 3'
processing and polyadenylation. Continued expression of
hnRNP A2/B1 transcripts suggests that use of the viral po-
ly(A) sites is less efficient than removal of the intron in
which the provirus resides. To determine whether muta-
tion of viral 3' processing signals was responsible for con-
tinued hnRNP A2/B1 expression, a 500 base pair region
spanning the polyadenylation signal in the 5' LTR was am-
plified from integrated provirus DNA and sequenced.
However, the sequence of the PCR product was identical
to the wild-type Moloney murine leukemia virus LTR (da-
ta not shown).

The question remained as to how hnRNP A2/B1-neo fu-
sion transcripts are expressed. Previous Northern blot
analysis found high levels of a 2.3 Kb fusion transcript in
1B4 cells [29], approximately the size expected for
hnRNPA2/neo fusion transcripts terminating in the 5'
LTR. One possibility is that fusion transcripts may com-
bine the proximal upstream hnRNP A2/B1 exon, 5' splice

site, flanking intron and 5' LTR into a single, terminal ex-
on. However, this possibility contradicts current models
of exon definition in which exons in pre-mRNA are first
defined by proteins interacting across exons and then
processed as relatively autonomous units. Alternatively,
the proximal hnRNP A2/B1 exon may maintain its auton-
omy and splice to a cryptic 3' splice site, located either in
Neo or in the adjacent intron.

To distinguish between these alternatives, hnRNP A2/B1/
Neo fusion transcripts expressed in MEF and ES cells were
analyzed by reverse transcriptase PCR (RT-PCR). A primer
complementary to the Neo gene (NeoA) was used to
prime first strand cDNA synthesis. Primers complementa-
1y to adjacent hnRNP A2/B1 exon sequences (PR1 or PR2)
and a neo-specific primer (NeoB) were used to amplify
transcripts extending from the hnRNP A2/B1 gene into
the provirus (Figure 5A). Transcripts extending through
the 5' splice site, proximal intron and into the provirus
would produce RT-PCR products of 917 and 598 nucle-
otides with PR1 and PR2, respectively. As shown in Figure
5B, the size of the major PCR product from each reaction
was significantly smaller than expected for transcripts co-
linear with the flanking DNA. Moreover, the major PCR
products did not hybridize to a U3-specific oligo probe
(Figure 5C). Three independent RT-PCR products were
cloned from separate amplification reactions and se-
quenced. As shown in Figure 5D, all of these transcripts
spliced from the proximal 5' splice site in the hnRNP A2/
B1 gene to a cryptic 3' splice site located in the Neo gene
(Figure 5D). Characteristic of 3' splice sites, the Neo splice
site contained PyAG and a potential branch point
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+/+

+/-

hnRNP A2/B1 . e
GAPDH Ml s

Figure 4

HnRNP A2/B| expression in tissues and cells from 1B4 homozygous and wild type mice. (A) Analysis of hnRNP
A2/BI expression in wild type (+/+) and homozygous mutant (-/-) mice. Approximately 20 ug of total RNA was fractionated on
a 1% formaldehyde agarose gel and hybridized to a 32P labelled probe corresponding to the flanking sequence isolated by
inverse PCR. The migration of the 18S ribosomal RNA is indicated. (B) Analysis of hnRNP A2/B| expression in embryonic
fibroblast cell lines derived from wild type (+/+), heterozygous (+/-), and homozygous mutant (-/-) mice. Approximately 20 g
of total RNA was fractionated on a 1% formaldehyde agarose gel and hybridized to a 32P labelled probe corresponding to
hnRNP A2/BI| exons located 3' of the site of provirus integration. Levels of GAPDH transcripts were used as an internal con-
trol for RNA loading. Homozygous mutant cells displayed a two-fold reduction in hnRNPA2/BI transcript levels, as determined

by phosphoimager analysis.

sequence but lacked a poly-pyrimidine stretch. The 3'
splice site is downstream of the initiation codon for neo-
mycin phosphotransferase. Therefore, hnRNPA2/B1-Neo
transcripts are expected to encode a fusion protein consist-
ing of the amino terminal 219 amino acids of hnRNP A2/
B1 fused to amino acid 10 of the neomycin phosphotrans-
ferase (NPT) protein.

The U3 probe also detected several minor RT-PCR prod-
ucts upon prolonged exposure (Figure 5C). We were una-

ble to clone these products due to their low abundance.
However, they were smaller than expected for transcripts
co-linear with the flanking DNA and may arise from cryp-
tic splice sites in the flanking intron.

Discussion

Several large scale screens of insertion mutations in
mouse embryo-derived stem (ES) cells rely on DNA se-
quence analysis to select mutations for germline transmis-
sion [21-24]. The process, designated "tagged sequence
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A
prl pr2 NeoA NeoB
—> —» i
hnRNP A2/B1 +
5'SS
B C
Template cDNA DNA cDNA DNA
RT + -+ - - - + -+ - - -
Primer 221 121M 221121M
-
673 —» -
355 —»
D
hnRNP A2/B1 Neo
Fusion Protein PheArgGyl Gl ySer G | ySer Pr oAl aAl aTr p
Genomic [RRVNCECECCONIGIEGTAAGTT. . .. ATTGAACAAGATGGAT TGCACGCAGGT TCTCCGGCCGCTTGG
AR [1 111 (1111
Consensus SS 5 CAGGTAAGT BP YNYTRAY 3" (Y) 11NCAGG
RT-PCR CCAGGAAGCAACT TTAGGGGGGGATCT TCTCCGGCCGCTTGG

Figure 5

Analysis of hnRNP A2/BI-neo fusion transcripts. (A) Strategy used to amplify fusion transcripts. The provirus is shown
downstream of a 5' splice site (5'SS) in the hnRNP A2/B| gene. The positions of the primers used for reverse transcriptase
PCR (RT-PCR) are indicated. (B) Gel analysis of RT-PCR products of. PCR reactions were performed before (-RT) or after
(+RT) first strand cDNAsynthesis with the neoA primer. PCR reactions using DNA templates were performed to provide
controls for products amplified from unspliced transcripts. PCR products were fractionated on a 1% agarose gel and stained
with ethidium bromide. Sizes of the RT-PCR products are indicated. (C) PCR products from B were analyzed by Southern blot
using a U3 oligo as a probe. Arrows indicate the mobility of RT-PCR products seen in C. (D) Sequence alignment of RT-PCR
products with genomic sequences. 5' splice site (5'), 3' splice site (3'), and branch point (BP) consensus sequences are shown

for comparison.
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mutagenesis”, involves sequencing short segments of
DNA isolated from each mutation to identify genes
disrupted by the targeting vector. Sequence-based screens
are faster and less expensive than phenotype-based
screens, and provide centralised collections of character-
ised mutations available for germline transmission. How-
ever, to maximise the utility of tagged sequence
mutagenesis, one would like to predict, from the sequence
alone, the functional consequences of the inserted target-
ing vector on cellular gene expression. Toward this end,
the present study characterised a mutation generated by
insertion of the U3Neo gene trap retrovirus into an intron
of the hnRNP A2/B1 gene. Expression of the Neo gene in-
volved splicing of some hnRNP A2/B1 transcripts to a
cryptic splice acceptor site located 28 nucleotides down-
stream of the neomycin phosphotransferase (NTP) initia-
tion codon. Other hnRNP A2/B1 transcripts splice
normally, removing the provirus along with other intron
sequences. Therefore, expression of the hnRNPA2/B1
gene was only reduced to about half of wild type levels,
and the mutation caused no obvious phenotype in mice.

U3 gene trap vectors were designed to disrupt cellular
gene function by usurping the promoter of the occupied
genes and by ablating transcription downstream of the
two poly(A) sites (one in each LTR) carried by the provi-
rus. Since poly(A) sites are not usually recognised when
located in introns [38-40], U3 gene traps were expected to
select for clones in which the provirus had inserted into
exons of transcriptionally active genes. However, in ap-
proximately half of the targeted genes we have analysed
[21], the provirus has inserted into introns.

The present study identified a mechanism that allows ex-
pression of a U3Neo gene from a provirus positioned
within an intron. The majority of hnRNP A2/B1-Neo fu-
sion transcripts utilised a cryptic 3' splice site within the
NPT coding sequence. This places the 5' proviral poly(A)
site at the end of an alternative exon that can be utilised to
produce fusion transcripts, or excluded to produce wild
type transcripts. Since the initiation codon for NPT lies
upstream of the Neo 3' splice site, NTP is expressed as a fu-
sion protein in which the first 219 amino acids of hnRNP
A2/B1 are appended to codon 10 of NTP.

Because of these results, we have analyzed the expression
of 6 other U3Neo proviruses located in the introns of dif-
ferent genes. Transcripts in all but one of clone splice to
the cryptic Neo splice site; while the one exception utilizes
a cryptic splice site located in the proximal intron (E.
White, G. Hicks, M. Roshon and H. E. Ruley, in prepara-
tion). Thus, utilization of the Neo cryptic site appears to
provide the predominant mechanism by which the
U3Neo gene is expressed following insertion into introns.

http://www.biomedcentral.com/1471-2164/4/2

These results are consistent with an exon definition model
in which splicing and polyadenylation require
interactions between factors acting across exons [40,41].
This model predicts that polyadenylation signals are not
recognised unless they can be defined as part of a 3' termi-
nal exon. Accordingly, poly(A) sites are not efficiently rec-
ognised when positioned between 5' and 3' splice sites
[38,39], and insertion of a 5' splice site into a 3' terminal
exon suppresses polyadenylation [40,42]. Conversely, up-
stream 3' splice sites can enhance polyadenylation [43-
45]. We find that the proximal hnRNP A2/B1 exon up-
stream of the provirus does not lose its identity; rather, the
exon splices either to the Neo splice site or to the next hn-
RNP A2/B1 exon. Moreover, the poly(A) site in the 5' LTR
appears to be used exclusively in conjunction with a cryp-
tic 3' splice site.

Utilization of the Neo 3' splice site is likely to have two
important consequences with regard to the use of U3Neo
vectors for insertional mutagenesis. First, insertion into an
intron may not disrupt cellular gene expression. In the
present study, levels of hnRNP A2/B1 transcripts were re-
duced only about two fold in homozygous mutant cells,
and the relative amount of the A2/B1 protein in hnRNP
complexes was unaffected (G. Dreyfuss, personal commu-
nication). This may explain the absence of an obvious
phenotype in mice. Alternatively, other hnRNP proteins
compensate for reduced levels of the A2/B1 transcripts,
just as cells can tolerate severe reductions in the levels of
the related hnRNP A1 protein [46,47].

Second, since the Neo 3' splice site is downstream of the
NPT initiation codon, its use may skew the targeting to fa-
vor of those genes capable of splicing upstream exons in-
frame, to produce enzymatically active fusion proteins.
The magnitude of the potential bias is difficult to assess. A
variety of amino-terminal fusions maintain enzymatic ac-
tivity (or produce enzymatically active breakdown prod-
ucts) including those fused to codon 12 of NPT [48-52].
Moreover, selection of resistant cell clones requires only
minimal levels of Neo gene expression [53]. Still, genes
providing the appropriate introns are expected to provide
larger targets for gene trap mutagenesis than genes lacking
such introns. This could contribute to the fact that 3 of
400 inserts characterised in an earlier study occurred in
the same intron of the L.29 gene [21].

The Neo 3' splice site contains a potential branch point se-
quence, and the sequence (CAGG) across the intron-exon
boundary is optimal according to the scanning model of
3" splice site selection [54,55]. The Neo site differs from
the typical 3' splice site in that it lacks a polypyrimidine
tract; however, this feature is often missing from alterna-
tive splice sites [56]. Both the A of the branch point and
the intron-terminal AG dinucleotide are considered
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invariant; therefore, one may be able to enhance the mu-
tagenic efficiency of U3Neo vectors by altering these nu-
cleotides. Alternatively, the problem may be avoided by
using other selectable markers, assuming their sequences
lack cryptic splice sites or by using gene trap vectors that
rely on splicing to activate the expression of genes carried
by the targeting vector. The latter vectors contain strong
splice sites, either in front of [2,4] or behind [23] the en-
trapment cassette, allowing efficient expression from
within introns.

Conclusions

hnRNP A2 and hnRNP B1 are members of a large family
of RNA binding proteins found associated with mamma-
lian heterogeneous nuclear RNA. The proteins are thought
to participate in the processing mRNA precursors [33],
and they can influence splice site selection and promote
exon skipping in vitro [57-59]. Consistent with a funda-
mental role in RNA metabolism, the human and mouse
hnRNP A2 sequences are highly conserved with only one
amino acid difference out of 341 residues. However, since
the 1B4 mutation did not ablate hnRNP A2/B1 gene ex-
pression, it is unlikely to be useful for studies of
hnRNPA2/B1 gene function. While further analysis might
uncover phenotypes associated with this hypomorphic
mutation, detailed examination of either cells or mice
seemed unjustified in the absence of any greater effect on
gene expression. Our results illustrate the interplay be-
tween polyadenylation and splicing as predicted by an
exon definition model. Moreover, the 1B4 mutation re-
veals a mechanism by which U3 gene trap vectors can be
expressed without disrupting cellular gene expression and
suggests ways to improve the vectors for gene trap
mutagenesis.

Methods

Isolation of cDNA clones encoding the hnRNP A2/BI
protein

DNA sequences (260 nt.) adjacent to the 1B4 provirus
were isolated by inverse polymerase chain reaction (PCR)
as reported elsewhere [29]. This flanking sequence was
used as a probe to genotype mutant mice and cells by
Southern blot hybridization and was also used to isolate
cDNA clones encoding the murine hnRNP A2/B1 protein
from a PCC3 embryonal carcinoma cell cDNA library. 55
hybridizing plaques were identified from a total of 1 x 106
plaques screened. Initial characterization of 10 strongly
hybridizing plaques identified two overlapping clones
corresponding to the full-length transcript.

Sequencing

c¢DNA templates were subcloned into the pBluescript KS-
plasmid and completely sequenced from both strands.
Plasmid DNA was isolated by the boiling lysis method
[60], followed by precipitation with polyethylene glycol

http://www.biomedcentral.com/1471-2164/4/2

8000. 5 ug of plasmid DNA was used in each sequencing
reaction [10,61]. Initial sequences were determined by
using T3 and T7 primers, and extended by using custom
17-18 nt primers (Gibco-BRL).

PCR amplification of 5' polyadenylation site

The region of the provirus LTR containing the 5' poly(A)
site was amplified by PCR from genomic DNA isolated
from 1B4 homozygous mice. PCR reactions (10 mM
Tris.HCI, pH 8.3, 5 mM KCl, 1.5 mM MgCl,, 200 uM of
each deoxyribonucleoside triphosphate, each primer at 2
uM, and 2.5 units of Amplitaq (Perkin-Elmer/Cetus) in-
volved 35 cycles of denaturation (95°C for 1.0 min),
primer annealing (55°C for 1.0 min), and primer exten-
sion (72°C for 2 min). The only product generated by
upstream (5'-CITCTATCGCCITCITGACG) and down-
stream (5'-ACACAGATAAGTTGCTGGCC) primers was of
the predicted size (529 bp). This product was subcloned
into the Invitrogen TA cloning vector and sequenced.

Reverse transcriptase PCR

RT-PCR was performed as described [62]. 20 pg RNA was
treated with 1 unit of RNAse free DNase (Gibco BRL) (20
mM Tris-HCl pH 8.4, 50 mM KCL 2.5 mM MgCl2) for 15
minutes at room temperature. First strand cDNA synthesis
was performed at 42 °C for 30 min in a 20 pl reaction con-
taining: 5 ug RNA, 500 nM NEO A primer (5'-ATTGTCT-
GTTGTGCCCAGTCATA), 20 mM Tris-HCI (pH 8.4), 50
mM KCI 2.5 mM MgCl,, 10 mM DTT, 400 pM each dNTP,
and 8 units Super Script II reverse transcriptase (Gibco-
BRL). 2 units of RNAse H was added and incubated for 10
min at 55°C. 2 pl of the single strand cDNA was amplified
through 35 cycles (95°C for 1.0 min; 55°C for 1.0 min
and 72°C for 2 min.) in a 50 pl reaction containing: 2 pM
Neo and hnRNP A2/B1 specific primers, 10 mM Tris.HCI,
pH (8.3), 5 mM KCl, 1.5 mM MgCl,, 200 uM of each
dNTP, and 2.5 units of Amplitaq (Perkin-Elmer/Cetus).
Neo B (5'-CGAATAGCCTCTCCACCCAA) was used as the
Neo specific primer, and either PR1 (5'-GGAACAGTTC-
CGAAAGCTC) or PR2 (5'-GAGGAACACCACCITAG)
were used as the hnRNP A2/B1 specific primers.
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