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ABSTRACT

Intrinsically disordered proteins (IDPs) are important
for a broad range of biological functions and are in-
volved in many diseases. An understanding of in-
trinsic disorder is key to develop compounds that
target IDPs. Experimental characterization of IDPs is
hindered by the very fact that they are highly dy-
namic. Computational methods that predict disor-
der from the amino acid sequence have been pro-
posed. Here, we present ADOPT (Attention DisOr-
der PredicTor), a new predictor of protein disorder.
ADOPT is composed of a self-supervised encoder
and a supervised disorder predictor. The former is
based on a deep bidirectional transformer, which
extracts dense residue-level representations from
Facebook’s Evolutionary Scale Modeling library. The
latter uses a database of nuclear magnetic reso-
nance chemical shifts, constructed to ensure bal-
anced amounts of disordered and ordered residues,
as a training and a test dataset for protein disor-
der. ADOPT predicts whether a protein or a spe-
cific region is disordered with better performance
than the best existing predictors and faster than
most other proposed methods (a few seconds per
sequence). We identify the features that are rele-
vant for the prediction performance and show that
good performance can already be gained with <100
features. ADOPT is available as a stand-alone pack-
age at https://github.com/PeptoneLtd/ADOPT and as
a web server at https://adopt.peptone.io/.

INTRODUCTION

Modern biochemistry is based on the assumption that pro-
teins fold into a three-dimensional structure, which defines
their biological function (1). However, in the past 20 years
a novel class of biologically active polypeptides was iden-
tified that defies the structure–function paradigm. Intrin-

sically disordered proteins (IDPs) constitute a broad class
that encompasses proteins that do not fold into a defined
three-dimensional structure, undergo transitions between
multiple unstructured or partially structured conformations
or fold upon binding (2). IDPs play a fundamental role
in biological processes such as cell signalling and regula-
tion (3) and were implicated in numerous debilitating hu-
man disorders, including various cancers (4), diabetes (5),
cardiovascular diseases (6) and neurodegenerative condi-
tions such as Alzheimer’s or Parkinson’s disease (7). Con-
sequently, IDPs are considered prime targets for drug de-
velopment, yet very limited success of IDP-targeting com-
pounds has been reported to date (8). The development
of therapeutic molecules that target full-length IDPs or
unstructured regions of folded proteins (IDRs) is partic-
ularly challenging because unfolded regions are depleted
in hydrophobic residues, which stabilize druggable protein
regions. Instead, IDPs contain many charged and polar
residues, whose repulsive interactions drive intrinsic protein
disorder. Thus, amino acid sequence composition of IDPs
holds key to precise prediction and assessment of structural
disorder in high-value and unmet medical targets. The ra-
tional design of IDP-targeting compounds is hindered by
the lack of a well-defined structure and by the challenges
posed by the experimental characterization of the broad
conformational ensembles they populate. The big amount
of potential IDP drug targets is presently not approach-
able with traditional structure-based drug design tools and
needs the development of new methods. Experimental tech-
niques used to characterize intrinsic disorder include X-ray
crystallography, nuclear magnetic resonance (NMR) spec-
troscopy, small-angle X-ray scattering, circular dichroism
and Förster resonance energy transfer. The resolution of
the information and nature itself of the disorder probed de-
pend on the experimental technique used to characterize it.
NMR chemical shifts depend uniquely on the local environ-
ment and provide a probe, at single amino acid level, of the
structure and dynamics of IDPs.

Since the first disorder predictor was proposed in 1997
(9), numerous protein disorder predictors have been devel-
oped. In general, they can be divided into four categories:
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physicochemical predictors, machine learning (ML)-based
predictors, template-based predictors and meta predictors.
Physicochemical property-based predictors (10–15) utilize
chemical features of amino acids, especially hydrophobicity
and net charge, to predict whether a residue belongs to an
ordered or a disordered region. Disorder predictions can be
straightforwardly interpreted in terms of physical proper-
ties of underlying amino acid sequence. However, the accu-
racy and sensitivity of such predictors are limited to the fea-
tures they use to differentiate between order and disorder.
ML-based predictors (16–30) use positive and negative sam-
ples to distinguish between ordered and disordered regions.
They can be used to search for the most important among
many features. In comparison to physicochemical predic-
tors, ML-based predictors are more flexible in their search
of features, yet may suffer from poor ‘explainability’ of ex-
tracted features and their relevance for disorder. Template-
based predictors (31–33) search for homologous structures
(templates) and use these to distinguish between structured
and unstructured regions in proteins. Their results can be
easily interpreted, but homologous structures might not be
found or their disorder prediction might not be transferable
to the query protein. Finally, meta predictors (33) aggregate
the output of multiple other disorder prediction tools and
report a composite disorder score. In general, this leads to
a better prediction accuracy than individual predictors, but
at the cost of an increased computational effort, which in
turn may hamper their effectiveness against proteome-size
surveys.

Despite the progress in disorder prediction in the last 25
years, a systematic assessment of the different predictors did
not exist until a few years ago. Recently, two comparisons
have been established. The critical assessment of protein
intrinsic disorder prediction (CAID) (34) is a community-
based blind test of state-of-the-art prediction of intrinsi-
cally disordered regions based on 643 proteins from Dis-
Prot (35). DisProt, the most comprehensive database of dis-
ordered proteins, provides manually curated annotations of
currently ∼2400 IDPs and IDRs of at least 10 residues likely
to be associated with a biological function. The data are
based on multiple experimental measurements, but not all
IDRs of a protein are contained in DisProt. Furthermore,
the annotations in the DisProt database are binary; e.g. they
do not report on the strength of disorder of a specific residue
in the protein.

CheZOD is a small database (36) of 117 proteins known
to contain disorder for which NMR chemical shifts are
available from the BMRB database (37). The CheZOD Z-
score (referred to as Z-score below), based on secondary
chemical shifts and defined in (36), quantifies the degree of
local disorder on a continuous scale. Secondary chemical
shifts, e.g. differences in chemical shifts of nuclei between
the actual structure and a random coil structure, are a pre-
cise indicator of local protein disorder (38). It was demon-
strated that the Z-score scale, besides being a reliable mea-
sure of disorder, also agrees well with other measures of dis-
order. The histogram of all Z-scores calculated for an ex-
panded CheZOD database (39) containing 1325 proteins
and constructed in a way to ensure balanced amounts of
disordered and ordered residues fits a bimodal distribution;
residues with Z-scores <3.0 can be considered fully disor-

dered, whereas 3.0 < Z < 8.0 corresponds to cases with frac-
tional formation of local, ordered structure.

A systematic comparison of 43 predictors in CAID (34)
and 27 predictors on Z-scores (39) showed that deep learn-
ing techniques clearly outperform physicochemical meth-
ods. For example, SPOT-Disorder (27,40) was the sec-
ond best predictor in both competitions, slightly beaten by
flDPnn (30) in CAID and by ODiNPred (39) on Z-scores.
All three predictors use deep neural networks to predict pro-
tein disorder.

The elucidation of information from protein sequences
is one of the most formidable challenges in modern biol-
ogy. A comparable task in artificial intelligence (AI) re-
search is natural language processing (NLP), in which ML
and linguistic models are used to study how properties of
language, including semantics, phonetics, phonology, mor-
phology, syntax, lexicon and pragmatics, arise and inter-
act. To accomplish this, NLP models must be able to find
common patterns in variable length and non-linear corre-
lations in language constituents as letters, words and sen-
tences (41). The final goal of NLP is to find regularities of
natural language and universal language creation rules.

Supervised learning, a rapidly emerging branch of AI re-
search, is of particularly high importance to computational
biology where vast and well-annotated data repositories
are available. Its more sophisticated variant, self-supervised
learning, enables AI systems to learn from orders of magni-
tude more data than supervised ones, which is important for
recognizing and understanding patterns of more subtle and
less common representations. Self-supervised neural mod-
els such as the transformer (42) have recently proven to be
especially effective for these tasks, e.g. vastly improving lan-
guage modelling and next sentence prediction in BERT (43)
or generating high-quality human-like text in GPT (44).

Motivated by recent developments in self-supervised
learning and its application to protein language models
(45,46), we developed a novel structural disorder predictor
that benefits from the transformer architecture. We demon-
strate here the relative benefit of ADOPT (Attention Dis-
Order PredicTor) software on the expanded version of the
CheZOD database. ADOPT outperforms the state-of-the-
art tools, ODiNPred, SPOT-Disorder and Metapredict v2,
in a number of benchmarks. Finally, we provide an analysis
of the residue-level representations used in the development
of ADOPT and discuss in detail the features that contribute
to an accurate prediction of protein disorder from sequence
alone.

MATERIALS AND METHODS

ADOPT is composed of two blocks: a self-supervised en-
coder and a supervised disorder predictor. The encoder
takes a protein input sequence and uses information from
a large database of sequences to generate feature informa-
tion for every residue in the sequence. The decoder uses this
information and predicts a disorder score. We used Face-
book’s Evolutionary Scale Modeling (ESM) library to ex-
tract dense amino acid residue-level representations, which
feed into the supervised ML-based predictor. The ESM li-
brary exploits a set of deep transformer encoder models
(42,43), which processes character sequences of amino acids
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Figure 1. Schematic view of the ADOPT architecture. A protein sequence is fed into the transformer encoder block that generates a residue-level repre-
sentation of the input. The embedding vector serves as an input to the disorder predictor block that predicts the level of disorder of each residue, given in
terms of Z-scores.

as inputs. A high-level representation of the ADOPT archi-
tecture is shown in Figure 1.

The encoder maps each element xi ∈ V of an input se-
quence of symbol representations x = (x1, . . . , xn) to a dense
vector zi, where zi ∈ R

dmod . This means that the context of
every residue within the input sequence is encoded in a vec-
tor with dmod features . Here, dmod ∈ N

+ is the embedding
dimension that is set at training time, n ∈ N

∗ is the length of
the protein p represented by x and

V = {‘L’, ‘A’, ‘G’, ‘V’, ‘S’, ‘E’, ‘R’, ‘T’, ‘I’, ‘D’,

‘P’, ‘K ’, ‘Q’, ‘N’, ‘F ’, ‘Y’, ‘M’, ‘H’, ‘W’, ‘C’,

‘X’, ‘B’, ‘U’, ‘Z’, ‘O’, ‘–’}

represents the vocabulary, where `X’ stands for unknown
amino acid and ‘−’ is the gap symbol in the event of a multi-
sequence aligned input. Furthermore, ‘B and Z’ are am-
biguous and ‘U and O’ are non-natural amino acids, and
the remaining 20 are standard ones. Therefore, a protein p,
represented by the sequence vector x, will be encoded on an
embedding matrix Z ∈ R

n×dmod obtained by stacking zi for
i = 1, 2, . . . , n.

ADOPT computes residue-level Z-scores (36), which
quantify the degree of local disorder related to each residue,
on a continuous scale, based on NMR secondary chemical
shifts (47). The input of the disorder predictor is given by
the dense representations (embeddings) Z of each protein
sequence x, whereas the output is the predicted Z-score of
each element xi of x.

In order to strike a balance between readability and de-
tails, while keeping the paper self-contained, we provide
more details on the transformer block, including the atten-
tion mechanism (see Supplementary Figure S1).

Datasets

Pre-training datasets. Pre-training datasets were based on
UniRef (48). UniRef50 and UniRef90 were extracted from
UniParc (49) by clustering at 50% and 90% sequence iden-
tity, respectively. The UR90/S dataset represents a high-
diversity and sparse subset of UniRef90 dated March 2020
and contains 98 million proteins, while the UR50/S dataset
represents a high-diversity and sparse subset of UniRef50
representative sequences from March 2018 with 27.1 mil-
lion proteins. The MSA-UR50 dataset was generated with
multiple sequence alignment (MSA) to each UniRef50 se-
quence by searching the UniClust30 (50) database in Octo-
ber 2017 with HHblits 3.1.0 (51) and contained 26 million
MSAs. Default settings were used for HHblits except for
the number of search iterations (-n), which was set to 3.
Sequences longer than 1024 residues were removed and the
average depth of the MSAs was 1192.

Disorder prediction datasets. The disorder prediction
datasets were the CheZOD ‘1325’ and the CheZOD ‘117’
databases (39) containing 1325 and 117 sequences, respec-
tively, together with their residue-level Z-scores. Note that
throughout this paper we refer to the ‘1325’ and ‘117’ sets
as base and validation sets, respectively.
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Table 1. Hyperparameters, dataset and number of parameters related to
each ESM model employed

Transformer Dataset l dmod h Parameters

ESM-1v UR90/S 33 1280 20 650 M
ESM-1b UR50/S 33 1280 20 650 M
ESM-MSA MSA-UR50 12 768 12 100 M

Although Z-scores can be transformed into probabilities
of disorder that report on the likelihood of a residue being
disordered, we decided to adhere to Z-scores primarily re-
ported in ODiNPred (39).

Pre-trained transformer models

ADOPT utilizes three different pre-trained transformers:
ESM-1b, ESM-1v and ESM-MSA. The architectures of
ESM-1b and ESM-1v were described earlier and pre-
trained on UR50/S and UR90/S, respectively. A com-
plete review of ESM-MSA architecture is given in (52).
The aforementioned transformer was pre-trained on MSA-
UR50 (see Table 1).

Disorder predictors

We built four different variants of ADOPT, which differed
in the underlying ESM model. We used ESM-1v, ESM-
1b, ESM-MSA and ESM-combined, where the last one re-
ferred to the concatenation of the representations given by
ESM-1v and ESM-1b. The input dimension dmod, which
was equivalent to the dimension of the residue-level rep-
resentation, was dependent on the ESM transformer used
(Table 1), e.g. dmod = 2560 for ESM-combined and dmod =
1280 for ESM-1b. Note that ESM-combined is an artificial
concept and just a label that does not represent a stand-
alone transformer model. In fact, it is only a reference to the
concatenated outputs extracted from the two pre-trained
transformers ESM-1v and ESM-1b.

Not all four predictors were tested in every benchmark
exercise due to the fact that some of them, e.g. ESM-1v and
ESM-1b, have similar performances. We indicate in each re-
sult discussed which predictor is used.

To predict Z-scores using the residue-level representa-
tions, we used a simple Lasso regression model with shrink-
age parameter λ = 0.0001, which is considered a well-
known, standard technique; see e.g. Chapter 3 in (53). The
optimal value for λ was found experimentally by a search
across the interval [0.0001, 0.5].

In the binary case, i.e. predicting order/disorder only, we
used a simple logistic regression with a L2 penalty term; for
details, see Chapter 4 in (53).

As a benchmark with AlphaFold2, we correlated rolling
averages of the predicted local distance difference test
(pLDDT) and solvent accessible surface area (SASA),
defined in the ‘Benchmark on order/disorder classifica-
tion’ section, with Z-scores. In both metrics, the window
lengths were ranging from 5 to 30 in steps of 5. In the three
cases of sequences containing unknown amino acids, the
unknown amino acid was replaced with glycine. SASA was
calculated using FreeSASA 2.0.3 (https://freesasa.github.

io/) with default parameters, with the total relative per
residue used for correlations.

Supervised training and evaluation

Our predictors were trained on a reduced part of base
dataset. We filtered out all sequences from the base set that
showed 20% or higher pairwise sequence similarity with the
sequences in the test set, i.e. the 117 CheZOD dataset. These
sequences were identified with the tool MMSeqs2 [mmseqs
search was used with sensitivity -s 7.5 and number
of iteration 3; fident (fraction of identical matches) was
used as a pairwise similarity metric]; see (54) and https:
//github.com/soedinglab/MMseqs2. We further reduced our
training set and kept only those sequences that appeared
in the training set of Ilzhoefer et al. (55), which also used
the CheZOD dataset to develop a disorder predictor (after
the original release of our work in a bioRxiv manuscript on
26 May 2022). This means that there were 1159 sequences
in our final training set. We used the validation set con-
taining 117 sequences as the test set. The performance of
our regression models was measured by Spearman corre-
lation (ρSpearman) between predicted and experimental Z-
scores. To further assess model performance, we also pro-
vided mean absolute errors (MAEs) and average prediction
errors. Where relevant, we also added P-values. However,
given that these were consistently 0.0, i.e. detecting e.g. cor-
relation falsely had zero probability, we omitted them from
most tables.

Following the cross-validation settings used in (39), we
performed a similar 10-fold cross-validation (CV), sepa-
rately, using only a filtered version of the base dataset, i.e.
1325 sequences. We removed sequences that showed pair-
wise identity ≥50%. This time, similarity was computed only
within the base set, and we used the same setting as de-
scribed earlier, i.e. mmseqs search routine with sensitiv-
ity -s 7.5 and number of iterations 3; similarity was as-
sessed using fident. This procedure resulted in a set with
1168 sequences, which we will refer to as a cross-validation
set. Note that the overlap between this set, which we used for
all subsequent cross-validation exercises, and the training
set described in the above paragraph is only 1069 sequences.
As per standard practice, in a fold 9/10th of the base dataset
was used as the training set, where model was fitted, and
the remaining 1/10th as the test set. We used randomized
10-fold CV; that is, the folds were selected randomly. A new
regression was trained for each fold and we report the aver-
age correlation ρSpearman, average MAE and average predic-
tion errors, together with standard deviations, taken across
the folds. For the regression task, we performed two cross-
validation exercises: one based on residue-level and another
on sequence-level fold selection. In the former case, whether
a residue was in the training or test set was decided on
amino acid level. The latter meant that training and test sets
were assembled by sequences; i.e. all residues in a sequence
were either in the training or in the test set. Note that de-
spite mentioning some of the results from the related ODiN-
Pred paper (39), we omit any direct comparison between the
cross-validation tasks presented here and those appearing in
the ODiNPred, due to differences in the datasets used.

https://freesasa.github.io/
https://freesasa.github.io/
https://github.com/soedinglab/MMseqs2
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In the order/disorder classification tasks, we used
the area under the receiver operating characteristic curve
(ROC AUC) and Matthews correlation coefficient (MCC)
as standard evaluation metrics. Furthermore, we provided
precision scores, whereby ordered residues were treated as
‘positives’ (Z-scores >8.0). Our classifiers were evaluated
in two settings: a residue-level 10-fold CV on the cross-
validation set, and a training using the filtered base set and
testing on the validation set.

Feature selection

Two methods were used to identify a subset of relevant co-
ordinates or features of the residue-level representation vec-
tors, as shown in Figure 5. Recall that we used Lasso regres-
sion as our disorder predictor.

In naive selection, we selected only those coordinates
whose coefficients were above a certain threshold in terms of
their absolute value; that is, the subset S ⊂ {1, 2, . . . , 1280}
was given by

|βs | > cut-off ⇐⇒ s ∈ S,

where β i for i ∈ {1, 2, . . . , 1280} are the Lasso coefficients
for the fixed shrinkage parameter λ = 0.0001. We fitted a
new linear regression (Lasso with the same parameter λ =
0.0001) on the reduced set of features and reported the cor-
relation ρSpearman between predicted and actual Z-scores on
the test set. We repeated this procedure for 10 different cut-
off values, equally spaced ranging from 0.5 to 0.2. This se-
lection method is called naive, as it throws away coordi-
nates whose coefficients are below the cut-off in absolute
terms, which may still be relevant, and the set of selected fea-
tures may contain a fair amount of noise. As an alternative
method, we used stability selection to identify relevant sub-
sets of the representation vector coordinates. We defined 30
different shrinkage parameters λ. These were equally spaced
points of the interval [5 × 10−5, 0.1], endpoints included.
For each λ, we carried out the following procedure. From
the initial test set, we chose a random subset, whose size
was half of the original one. We fitted a Lasso regression
and recorded the features, whose coefficients were non-zero.
We repeated this 500 times and for each vector coordinate
i ∈ {1, 2, . . . , 1280} we estimated the selection probability
�i(λ) by the number of times the coordinate got selected
divided by 500.

In order to arrive at the relevant subsets, we applied cut-
off values at two different stages. First, we put a threshold
cp on the selection probabilities. Second, we counted for
how many λ values this particular threshold cp has been ex-
ceeded. We refer to the latter quantity as frequency cut-off
and denote it by cf. We used the following values:

cp ∈ [0.6, 0.7, 0.8, 0.9], cf ∈ [10, 15, 20].

As an example, for cp = 0.6 and cf = 15, a representa-
tion vector coordinate i was deemed relevant if the selection
probability �i(λ) > 0.6 for at least 15 different λ values. The
estimated probabilities �i(λ) as a function of λ ∈ � can be
depicted as paths. We use the term stability paths to describe
those that pass the aforementioned two thresholds cp and cf,
as shown in Figure 6. For more details and discussions on
stability selection in general, we refer to (56).

Implementation

ADOPT is available as a command-line utility at https://
github.com/PeptoneLtd/ADOPT. The software uses Face-
book’s ESM 0.4 (https://github.com/facebookresearch/esm)
for the pre-training phase, Sklearn 1.0 (https://scikit-learn.
org/stable/) for the disorder predictor, BertViz 1.2 (https://
github.com/jessevig/bertviz) for the multi-head attention vi-
sualization, HHblits 3.1.0 (https://github.com/soedinglab/
hh-suite) for extracting the MSAs and ONNX 1.10.2 (https:
//onnx.ai/) for the inference phase. The embedding represen-
tations were extracted in bulk with the ESM command-line
utility specifying the --include per tok option from
both CheZOD ‘1325’ and CheZOD ‘117’ FASTA files. The
embedding vectors’ extraction and tool development (train-
ing and inference) were performed on a single Nvidia DGX
A100.

RESULTS

Disorder predictor developed using the CheZOD datasets

In order to compare ADOPT to the current state-of-the-
art disorder predictor ODiNPred, we adopted the bench-
marking protocol found in (39). The CheZOD database was
split into two parts, a base and a validation set, contain-
ing 1325 and 117 sequences, respectively, with their residue-
level Z-scores, which are NMR-based measures of disor-
der. We used Z-scores to compute the probability of dis-
order Pdisorder at residual level. A probability close to 1
indicates that the residue is likely disordered. Throughout
this paper, we are only considering Z-scores as a measure
of disorder and omit any further quantification of prob-
abilities of disorder. Furthermore, for classification tasks
residues with Z-scores below/above 8 were assumed to be
disordered/ordered, respectively.

Training on the base set and performance evaluation on the
validation set

We evaluated the variants of ADOPT on four different
representations obtained from ESM transformers: ESM-
1b, ESM-1v, ESM-MSA and also an ESM-combined that
used the concatenated representations from ESM-1b and
ESM-1v. Note that the choice of the transformer model
changes the input of our disorder predictor and there-
fore influences its performance. The reduced base and val-
idation sets consisted of 1236 and 117 sequences, respec-
tively. Here, sequences that are part of both sets of the
CheZOD database were removed from the base set. We
found that disorder predictors had a tendency to overesti-
mate the experimental Z-scores, which was a phenomenon
universally observed across the whole spectrum of predic-
tors (39). On the validation set, ODiNPred e.g. displayed
an average prediction error of −2.723, meaning that it typ-
ically predicted higher Z-scores and an MAE of 3.735. Al-
though our ESM-based predictors also overestimated Z-
scores, their prediction errors were considerably lower; e.g.
for ESM-1b the average prediction error and MAE were
−2.179 and 3.417, respectively. Spearman correlation co-
efficients (ρSpearman) between the predicted and actual Z-
scores were used to benchmark performance against ODiN-
Pred. Our ESM transformer-based predictors showed the

https://github.com/PeptoneLtd/ADOPT
https://github.com/facebookresearch/esm
https://scikit-learn.org/stable/
https://github.com/jessevig/bertviz
https://github.com/soedinglab/hh-suite
https://onnx.ai/
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Table 2. Spearman correlations between actual Z-scores and predicted
pLDDT5 scores along with actual Z-scores and predicted SASA15 scores,
obtained by AlphaFold2

Disorder predictor

Spearman
correlation
coefficient

(ρSpearman)
Average

prediction error MAE

AlphaFold2, pLDDT5 0.555
AlphaFold2, SASA15 0.630
Metapredict v2 0.658
ODiNPred 0.649 −2.723 ± 3.95 3.735 ± 3.01
ESM-1v 0.677 −2.377 ± 3.94 3.559 ± 2.93
ESM-1b 0.686 −2.179 ± 3.85 3.417 ± 2.81
ESM-MSA 0.604 −2.973 ± 4.16 4.035 ± 3.14
ESM-combined 0.688 −2.189 ± 3.91 3.442 ± 2.86

Spearman correlations between actual and predicted Z-scores, average
prediction error (actual − predicted) and MAE obtained by ODiNPred
and our ESM transformer-based predictors. These correlations have been
collected for the task linked to the model evaluated on the validation set
consisting of 117 sequences. Given that the P-values in all cases were 0.0,
we omitted them.

following Spearman correlation coefficients between pre-
dicted and experimental Z-scores: 0.686 (ESM-1b), 0.677
(ESM-1v), 0.604 (ESM-MSA) and 0.688 (ESM-combined),
compared to the reported Spearman correlation coefficient
of 0.649 for ODiNPred and 0.64 for SPOT-Disorder given
the same prediction task (39) (see Table 2). We note that
these results have been reproduced by Ilzhoefer et al. (55) af-
ter the original release of our work in a bioRxiv manuscript
on 26 May 2022. Note that the difference between corre-
lation coefficients of ESM-1b and ODiNPred was found
to be significant (one-sided P-value = 0.0122, compared to
ODiNPred’s 0.671) by using Fisher r-to-Z transformation.
At the same time, the difference between the correlations of
ESM-1b and ESM-1v is less significant (one-sided P-value
= 0.0869). We also performed the same benchmark test on a
recent disorder predictor, Metapredict v2 (57). Metapredict
v2 was generated by training a neural network on the dis-
order scores of a hybrid version of the original Metapredict
disorder predictor (58) and predicted pLDDT scores. While
the original predictor was highly competitive in the last
CAID competition, the successor clearly outperforms the
performance of the original predictor with faster execution
time. The Spearman correlation coefficient between pre-
dicted disorder scores from Metapredict v2 and experimen-
tally derived scores was 0.6581, slightly better than ODiN-
Pred and SPOT-Disorder, but worse than ADOPT. In sum-
mary, ADOPT predicted protein disorder more accurately
than current state-of-the-art predictors and the overestima-
tion of experimental Z-scores observed across all the tested
disordered predictors indicates that these ML-based algo-
rithms display high sensitivity to sequence patterns present
in ordered regions.

The prediction of local disorder in a residue is dependent
on the neighbourhood of this residue. In order to estimate
whether our predictor is able to correctly identify disordered
regions, we computed the disordered regions’ prediction re-
call score, i.e. the fraction of correctly predicted disordered
regions from all disordered regions in the dataset. First, the
Z-score related to each residue in all proteins of the vali-

dation set has been predicted with the ESM-1b model as
upstream task. After converting the Z-scores of both, the
ground truth and the predicted ones, into a binary class,
i.e. Z < 8 for a residue belonging to a disordered region
and Z ≥ 8 for a residue in an ordered region (39), we iden-
tify for each sequence the related disordered regions defined
as those areas where the number of consecutive disordered
residues is ≥3 in the ground truth and 70% of the residues in
those areas are disordered in the prediction. The recall com-
puted over the binary class of disordered regions is 66%.
This means that the ADOPT disorder predictor trained on
the ESM-1b transformer is able to correctly find most dis-
ordered regions.

Furthermore, we test the robustness of our methods.
Therefore, we introduce two small changes in the sequence
and measure the change in disorder prediction. First, we
predict how the termini of a protein sequence that are less
structured and more flexible influence our predictions. We
trim between 1 and 10 residues at both termini of each se-
quence and measure the difference between predicted and
actual Z-scores for the rest of the protein. Second, we ran-
domly mutated up to 10 residues in the validation dataset.
In both cases, we report the differences in terms of MAE
and Spearman correlation computed on the related ground
truth and predicted Z-scores as well as recall score com-
puted over disordered regions’ binary class. The results in
Figure 2 show that the accuracy of ADOPT is not influ-
enced by the inclusion of random residues and changes in
the number of termini residues showing that ADOPT is
robust upon small changes in the given input protein se-
quence.

In order to understand the origin of improvement ob-
served in ADOPT, we compared the performance of one
of our ESM transformer-based predictors ESM-1b against
ODiNPred by visualizing the contour plots of the 2D den-
sity of actual versus predicted Z-scores (see Figure 3). Here,
the reference lines indicate the idealized case, where pre-
dicted values are equal to the actual values. The more prob-
ability mass lies closer to these reference lines, the better
the accuracy of the predictor. Figure 3 demonstrates that
both predictors identify correctly the bimodal Z-score dis-
tribution of ordered and disordered regions. This distribu-
tion has been chosen in the development of the CheZOD
database in order to have a good mixture of both protein
classes. The average mass is above the reference line in both
regions and for both predictors, which shows that the bias
to ordered regions is not limited to a specific strength of pro-
tein disorder. The contour lines are tighter around the refer-
ence line for the ESM transformer-based predictor (on the
left), than for ODiNPred (on the right). The data for ODiN-
Pred were obtained via the publicly available web service
(https://st-protein.chem.au.dk/odinpred). Note that using
these predicted Z-scores a slightly higher Spearman corre-
lation coefficient of 0.671 was found for ODiNPred, than
0.649 as reported in the paper (39). The result shows that
the ESM transformer produces less outliers in comparison
to ODiNPred. While the prediction of the ESM transformer
is far from perfect, the probability of returning a bad Z-
score prediction, defined by a difference of �Z = 5 from
the experimental Z-score, is significantly lower than that for
ODiNPred (see Figure 3).

https://st-protein.chem.au.dk/odinpred
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Figure 2. Reliability study on ADOPT predictions. Spearman correlations and disordered regions’ prediction recall computed on trimmed and randomly
mutated sequences are shown in panels (A) and (B), respectively. MAEs computed on trimmed and randomly mutated sequences are shown in panels (C)
and (D), respectively.

A B

Figure 3. Contour plots showing the density levels of experimental versus predicted Z-scores for the validation set containing 117 sequences: panel (A)
shows results obtained with ESM transformer-based predictor (here ESM-1b was used) and panel (B) shows the results obtained with ODiNPred. Diagonal
reference lines indicate the idealized ‘perfect’ prediction; i.e. predicted values are equal to the experimental values. As the probability mass around the
reference line is tighter for the ESM-based predictor on the left, its accuracy is better than that of ODiNPred. This is further supported by the average
prediction error and MAE for the two predictors (see Table 2). Z-scores predicted by ODiNPred were retrieved via the publicly available web service
referenced in (39). Note that using these predicted Z-scores a slightly higher Spearman correlation of 0.671 was found, rather than 0.649 as reported in
(39). Recall that the Spearman correlation for ESM-1b was 0.686. Note that the difference between correlation coefficients 0.671 and 0.686 was found to
be significant (one-sided P-value = 0.0122) based on the Fisher r-to-Z transformation.

Our amino acid level analysis reveals further details
about the biophysical origin of the prediction accuracy.
We compared two of our proposed disorder predictors,
ESM-1b and ESM-combined, to ODiNPred (Figure 4).
Keeping the same setting as described earlier, i.e. ρSpearman
between the predicted and experimental Z-scores for the
validation set, we observed that the ESM transformer-
based predictors displayed better than or similar corre-

lation levels to that of ODiNPred for most amino acids.
Some notable exceptions were histidine and methionine.
In these cases, ODiNPred was significantly weaker with
correlation coefficients ρSpearman = 0.584 and ρSpearman =
0.560 compared to e.g. ESM-1b with ρSpearman = 0.643
and ρSpearman = 0.660 for histidine and methionine, respec-
tively. Curiously, all three predictors had considerable diffi-
culties with glycine, cysteine and proline. In fact, for glycine,
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Figure 4. Residue-level comparison of Spearman correlations between actual and predicted Z-scores for the validation set containing 117 sequences. Two
of the ESM transformer-based predictors were used, ESM-1b and ESM-combined, which is based on the concatenated representations of ESM-1v and
ESM-1b. The dotted reference line indicates the overall Spearman correlation of 0.649 obtained by ODiNPred as reported in (39).

ODiNPred’s ρSpearman = 0.610 outperformed both ESM
transformer-based predictors by ∼0.03 (see Figure 4). The
distribution of Z-scores for these amino acids (Supplemen-
tary Figures S2 and S3) demonstrates that especially the Z-
scores of ordered glycine and proline residues are shifted to
higher Z-scores in the predictions of ESM-1b and ODiN-
Pred in comparison to the actual values. While this trend
is observed for all residues, it has a more pronounced ef-
fect on the correlation coefficient of glycine and proline be-
cause these amino acids are under-represented in ordered
regions. The distribution of Z-scores from cysteine (see Sup-
plementary Figure S3) is clearly different from the distribu-
tion of the other amino acids with a higher relative amount
of cysteines with intermediate Z-scores around 8. ODiN-
Pred and ESM-1b, however, predict a much higher amount
of ordered cysteine residues. Glycine, cysteine and proline
are structurally different from the other 17 naturally occur-
ring amino acids. Proline is the only amino acid with a sec-
ondary � amino group. Glycine is the smallest and most
flexible amino acid, i.e. the only residue that has no chiral
C� atom. Both amino acids are commonly referred to as �-
helix breakers and thus are crucial for a correct prediction of
disordered protein regions (59). Cysteine has a thiol group
and is therefore the only residue that is able to form disulfide
bonds within the protein over long distances in sequence.
Disulfide bonds are particularly important for the stability
of proteins (60). The forming or breaking of disulfide bonds
depends on the oxidation state of the protein. This renders
a correct prediction of its disorder state particularly chal-
lenging because the data we use to learn from and train on
do not explicitly include the effect of oxidation. Moreover,
the prediction of protein disorder remains especially chal-
lenging for amino acids that are important for the breaking
of ordered regions. The newly developed ESM transformer
improves the prediction of disordered segments for 19 out
of 20 amino acids. This shows that the improvement of the
ESM transformer is not limited to amino acid-specific bio-
physical properties.

Table 3. Spearman correlations, MAE and average prediction error be-
tween predicted and actual Z-scores obtained by our ESM transformer-
based predictors for the residue-level 10-fold CV on the cross-validation set
consisting of 1168 sequences only

Residue-level 10-fold CV

Disorder predictor ρSpearman MAE
Average prediction

error

ESM-1v 0.746 2.285 ± 0.012 0.0001 ± 0.029
ESM-1b 0.745 2.292 ± 0.019 0.0001 ± 0.016
ESM-MSA 0.719 2.62 ± 0.023 − 0.0004 ± 0.034

Performance of the ESM transformer-based disorder predic-
tors assessed by 10-fold CV

To gain further insights into the performance of our predic-
tors, we carried out two different 10-fold CV following the
protocol proposed in (39); a detailed description of these
tests is provided in the ‘Materials and Methods’ section.
Cross-validation gives information on how the predictor
generalizes to an independent dataset by resampling the val-
idation set in different portions to avoid overfitting or selec-
tion bias. In the residue-level 10-fold CV, the Spearman cor-
relations averaged across the 10 folds were as follows: 0.746
(ESM-1b), 0.745 (ESM-1v) and 0.719 (ESM-MSA). The
same correlations for the sequence-level 10-fold CV showed
slightly lower values: 0.718 (ESM-1b), 0.717 (ESM-1v) and
0.702 (ESM-MSA). Even though a similar 10-fold CV was
reported by ODiNPred to have a correlation of 0.6904 [see
(39)], we highlight again that due to differences in datasets
we used for CV and the one used by ODiNPred, we omit
direct comparisons. These results are summarized in Tables
3 (residue level) and 4 (sequence level) and show that our
predictor does not suffer from selection bias, e.g. from the
specific choice of the validation set, but rather gives an over-
all balanced performance independent of the constitution
of the validation set.
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Table 4. Spearman correlations, MAE and average prediction error be-
tween predicted and actual Z-scores obtained by our ESM transformer-
based predictors for the sequence-level 10-fold CV on the cross-validation
set consisting of 1168 sequences only

Sequence-level 10-fold CV

Disorder predictor ρSpearman MAE
Average prediction

error

ESM-1v 0.717 2.438 ± 0.076 0.0004 ± 0.168
ESM-1b 0.718 2.428 ± 0.081 0.004 ± 0.151
ESM-MSA 0.702 2.716 ± 0.111 − 0.012 ± 0.268

Table 5. ROC AUC, MCC and precision for disorder by our ESM
transformer-based predictors for order/disorder classification given by the
residue-level 10-fold CV on the cross-validation set consisting of 1168 se-
quences only

Residue-level 10-fold CV

Disorder predictor ROC AUC MCC Precision

ESM-1v 0.964 0.799 0.880 ± 0.005
ESM-1b 0.964 0.798 0.881 ± 0.007
ESM-MSA 0.947 0.765 0.865 ± 0.007

Benchmark on order/disorder classification

Experimental Z-scores from the sequences in the CheZOD
database exhibit traits of a bimodal distribution, as shown
in Figure 3. In (39), a mixture of two skew-normal distri-
butions was fitted to the distribution of observed Z-scores
with a reasonably high accuracy quantified by a Hellinger
distance of 0.00367. This means that the distribution of Z-
scores of all sequences in the CheZOD database can be
approximated by two distributions that are separated in
Z-score. This motivates a binary classification task, where
a Z-score below/above 8 is interpreted as disorder/order,
respectively. To remain aligned with (39), a 10-fold CV
was performed on the cross-validation set. Accuracy was
measured using standard metrics: the ROC AUC and the
MCC that measure dependence between binary outcomes.
Here, a simple logistic regression was used on the rep-
resentations extracted from the ESM transformers. The
ROC AUC/MCC averaged across the 10-folds were as fol-
lows: 0.964/0.798 (ESM-1b), 0.964/0.799 (ESM-1v) and
0.947/0.765 (ESM-MSA) (see Table 5). Although these re-
sults clearly exceed the values of ROC AUC = 0.914 and
MCC = 0.690 ODiNPred reported for the same task in (39),
we omit any direct comparison for this task, given that the
cross-validation set we used is different from that of ODiN-
Pred. In the aforementioned table, we also present precision
scores for disorder for ESM-based predictors. Given that
we labelled disordered residues with 0 (i.e. treated as ‘neg-
atives’), precision in this case means the percentage of the
correctly predicted disordered residues. Our predictors are
able to predict ∼88% of disordered residues. Note that con-
sidering a majority-based random classifier, which takes the
most frequent class from the training set and uses that as
prediction in a test set, in this 10-fold CV the majority class
is always ordered (∼70%); accordingly, its prediction on the
test fold will be ordered, which amounts to an ROC AUC
value of 0.5. This can be compared to an ROC AUC value
of 0.94 of the ESM-based predictors.

In order to support these results further, a similar logis-
tic regression was fitted to the filtered base dataset. As de-
scribed earlier, this dataset contains 1159 sequences. The
performance of the ESM transformer-based (here ESM-
1b) order/disorder classifier was evaluated on the validation
set containing 117 sequences. The results of ROC AUC =
0.895 and MCC = 0.610 obtained on this task can still be
considered strong. Our analysis demonstrates that the ESM
transformer not only predicts better Z-scores than ODiN-
Pred, but also performs better on a binary classification of
ordered and disordered regions, a topic that is very rele-
vant in biology. This result is further reinforced by the lower
mass of the ESM transformer in comparison to ODiN-
Pred in the intermediate region with Z-scores around 8 in
Figure 3.

Additionally, it is worth mentioning that there are well-
known frameworks, e.g. CASP10, for disorder prediction
assessment. As described in (39), the datasets in CASP10
were heavily imbalanced and <10% of the residues were
disordered. To put this in context, in the overall CheZOD
dataset, this percentage was 36.3%. The authors in (39)
make two further observations. ODiNPred was not the best-
performing predictor in the CASP10 dataset, which may be
due to the over-representation of ordered residues. Second,
other disorder predictors overall performed much better on
the CheZOD dataset.

The scientific community has shown great interest in Al-
phaFold2. Recent work has demonstrated that the pLDDT
(61), a per-residue metric of local confidence of the predic-
tion, is correlated with disorder, outperforming IUPred2
(62), SPOT-Disorder2 (63) and other disorder predictors
(64,65). Further work has proved that the SASA per residue
of models produced by AlphaFold2 shows better corre-
lation to protein disorder than the pLDDT and that us-
ing a smoothing window improves accuracy further (62).
To benchmark performance, AlphaFold2 structural mod-
els were predicted for the validation set of 117 proteins us-
ing the full database. For the rolling averages of pLDDT
and of SASA, we observed that the largest correlations
(0.5546 and 0.6299) were given by window sizes 5 and 15,
respectively, as reported in Table 2. We note that predict-
ing the structure from pre-calculated features derived from
the MSAs took ∼40 h on one NVIDIA A100 GPU in to-
tal. It is worth highlighting that AlphaFold2 is a template-
based predictor; that is, it uses templates as ingredients in
making predictions. Hence, it is more nuanced than pure
sequence-based methods. Curiously, for disordered proteins
finding a suitable template is problematic. Broadly speak-
ing, this may also be the reason why pLDDT correlates
reasonably well with disorder; i.e. where AlphaFold2 is less
certain about a well-defined structure, there will likely be
disorder.

A fast inference tool

From an end user perspective, obtaining accurate dis-
order predictions quickly and easily is important. In
this aspect, ADOPT offers unmatched performance. We
demonstrate this through comparisons with two other
tools. ODiNPred currently is available through the web
service (https://st-protein.chem.au.dk/odinpred). Querying

https://st-protein.chem.au.dk/odinpred
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117 proteins took overnight. We also made an attempt
to use SPOT-Disorder2 (https://sparks-lab.org/server/spot-
disorder2/), which is considered at least as accurate as
ODiNPred. However, a maximum of 10 sequences can be
submitted at a time and the output is returned in 12 h in the
best case. In contrast, ADOPT, with a single command line,
takes a few seconds to produce disorder predictions for 117
sequences and there is no cap on the number of sequences
used in inference.

To prove that the ADOPT performance is the best in class
not only in terms of disorder prediction but even in terms of
inference time, we used the ADOPT to predict the Z-scores
of the 20 600 unique protein-coding genes from the refer-
ence human proteome (https://www.uniprot.org/proteomes/
UP000005640) that encode for 79 038 protein transcript
variants. The protein sequences longer than 1024 units were
split into two subsequences, due to the ESM context win-
dow length constraint mentioned earlier. The whole pro-
cedure takes roughly 15 min to be completed on a sin-
gle NVIDIA DGX A100, which demonstrates that the
ADOPT inference phase is three orders of magnitude faster
than those of ODiNPred and AlphaFold2. However, this
comparison is limited taking advantage of the fact that
ADOPT runs as a fast command-line tool, while ODiN-
Pred and SPOT-Disorder2 have been used as a web service.
To give a fairer comparison, we repeated the speed bench-
mark with Metapredict v2 on one CPU core, which reflects
the standard usage of an end user of this predictor. Running
the human proteome took 15 and 46 min on an Apple M1
chip and on a Colab instance, respectively, and is therefore
of comparable speed to ADOPT using a GPU. Note that
Metapredict v2 has been generated to reproduce the pre-
calculated results of another disorder predictor, Metapre-
dict hybrid, for 363 265 protein sequences from 21 pro-
teomes in order to increase its speed. Performing a similar
task, e.g. training a neural network on pre-predicted pro-
tein sequences from ADOPT, could be an opportunity to in-
crease the speed of our predictor. Both on a single NVIDIA
DGX and on an Apple M1 chip, I/O time represents ∼15%
of the inference time and computation time constitutes the
remaining ∼85%.

We believe that these aspects––accuracy and ease of
use––will not just appeal to a wider audience, but also facil-
itate disorder-related research projects that were previously
not possible due to scale.

DISCUSSION

Remarks on the residue-level representations produced by
ESM transformers

There is a set of questions that naturally and frequently arise
in the domain of NLP and recently in language models in
biological applications: How much information is encoded
in these representations? What exactly do they encode? Are
bigger representations always better? In general, how do we
make sense of them?

To motivate these questions, recall that ODiNPred uses
157 hand-engineered biophysical features as inputs in its
prediction model (39). By design, these input features are
straightforward to interpret and there is sound rationale as

to why they may help predict disorder. In contrast, the input
of our ESM-based predictor is much bigger, 1280, which is
the size of the representation vectors given by e.g. ESM-1b,
and its features are, albeit real numbers, abstract, and they
are hard to make sense of in physical terms, e.g. residue in-
teraction entropy or net charge.

Answers to the above questions also depend on the down-
stream task the representations are used for, e.g. predicting
fluorescence, contact maps, disorder, sequence/amino acid
level classification, etc. This implies a dependence on the
prediction model too. In the case of disorder prediction,
we use Lasso regression, which is a linear method (53). It
is a continuous feature selection technique that means that
varying the shrinkage parameter λ will influence the num-
ber of non-zero coefficients. The higher the λ, the greater
the L1 penalty term, and hence, the number of non-zero co-
efficients decreases. In a fitted model with a given λ, only
those features are used that have non-zero coefficients. In
other words, these features are the ones that carry signifi-
cant information. Therefore, Lasso can help us understand
which coordinates of the representation vectors are relevant.

Are all the 1280 coordinates, e.g. in the case of ESM-1b,
needed? We used two different approaches to address this
question. The first one was a naive selection, whereby only
those features are considered whose coefficients were above
a certain threshold in absolute terms. This analysis showed
that e.g. with 141 coordinates a correlation of ρSpearman =
0.643 could be achieved, as shown in Figure 5.

A better, yet computationally more demanding approach
is stability selection, which uses resampling and in this
aspect is similar to bootstrapping (56). Using this more
robust technique, we found that choosing only 84 coor-
dinates of the representation vectors and using those to
predict Z-scores already showed an acceptable correlation
ρSpearman = 0.625 on the validation set containing 117 se-
quences. The predictive power of the representation vectors
could be further enhanced by taking additional coordinates,
e.g. 114, which yielded a correlation ρSpearman = 0.636, as
depicted by the markers on the red line in Figure 6. Inter-
estingly, this method identified 167 coordinates, which gave
a correlation of ρSpearman = 0.656, which is markedly bet-
ter than the subset of the same size selected by the naive ap-
proach. In comparison to ODiNPred that relies on 157 bio-
physical features and achieves a correlation of ρSpearman =
0.649 (39), already a subset of 114 coordinates of the ESM-
1b representations could offer a very similar performance.

This analysis answers, at least partly, the question
whether bigger representations are necessarily better. The
ESM-MSA-based predictor, which uses smaller sized rep-
resentations, 768, performs relatively poorly with a correla-
tion ρSpearman = 0.604 (see Table 2), compared to all of the
alternatives based on the reduced ESM-1b representations
presented earlier. This clearly suggests that, at least regard-
ing disorder prediction, the quality of the representations
given by ESM-1b is genuinely better not purely because of
the size of the representation. This is because we could select
a subset of coordinates from the ESM-1b representations
that was much smaller in size than the ESM-MSA repre-
sentations (768), and yet had better prediction power than
ESM-MSA.

https://sparks-lab.org/server/spot-disorder2/
https://www.uniprot.org/proteomes/UP000005640
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Figure 5. Predictive power of the residue-level representation vectors as a function of the number of their coordinates used in the regression. Here, the
transformer ESM-1b was used, and the predictive power was quantified in terms of ρSpearman between actual and predicted Z-scores on the validation
set containing 117 sequences. Naive selection (blue line) is based on the magnitude of the regression coefficients and stability selection (red line) is a more
robust technique based on resampling; more details are provided in the ‘Discussion’ section.

Figure 6. Stability path examples given by stability selection, as described in the ‘Materials and Methods’ section; see the ‘Feature selection’ subsection.
Here, we used the transformer ESM-1b and applied the probability and frequency cut-offs cp = 0.9 and cf = 20, respectively. A particular line represents
one coordinate or feature of the representation vector and shows the selection probability �i(λ) (on the y-axis) as a function of the shrinkage parameter
λ (on the x-axis). The red, solid lines represent the coordinates that made the final subset selection and the black, dashed lines represent all remaining
coordinates. In this particular example, there are 78 red lines. Interestingly, there is one red line (coordinate) buried in the black lines in the region of lower
shrinkage values λ. This means that even though more coordinates were selected in Lasso for a lower λ, this particular coordinate, which typically was
picked for higher λ, was not selected.

Remarks on the current state of protein disorder predictions

Protein disorder prediction is a challenging task. Even with
the methodological advancements of ADOPT, Spearman
rank correlation coefficients (ρSpearman) of up to 0.7 demon-
strate that there is still a significant room for further im-
provement. Besides their different architectures, the most
performant protein disorder predictors use deep neural net-
works to predict the disorder of a residue within a se-
quence. While these tools identify the features important
for disorder prediction, they do not necessarily give a di-
rect indication about the connection of these features to
the biophysical origin of protein disorder. Here, we com-
pared two state-of-the-art predictors, ODiNPred (39) and
our new ESM transformer, and found several similarities
in their ability to predict certain biophysical features. For
example, we could show that both predictors could accu-
rately separate ordered from disordered residues, whose def-
inition is based on the simple observation that experimental

Z-scores follow a bimodal distribution. While such a classi-
fication performance is promising, applying the predictors
to a more diverse dataset, as e.g. used in CAID (34), is more
challenging.

We observed that both predictors predict slightly too or-
dered Z-scores. Interestingly, this observation is indepen-
dent of the actual Z-score; e.g. ordered and disordered re-
gions are both predicted, on average, to be too ordered. This
indicates that there might be a general feature that con-
tributes to the ‘orderness’ of a residue, which is not com-
pletely learned by either of the predictors. Our amino acid
analysis reveals that especially the Z-scores of these amino
acids, which are known as breakers or stoppers of ordered
regions like � helices or � sheets, e.g. glycine and proline, are
less accurately predicted than the other amino acids (Figure
4 and Supplementary Figures S2 and S3). This suggests that
the prediction of protein disorder might be enhanced if the
predictors are trained on well-labelled data of these residues
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as their occurrence within a protein sequence plays an im-
portant role in the formation of ordered regions.

Furthermore, we observe that it is particularly difficult to
predict cysteine residues. Long-range contacts formed from
disulfide bridges hold proteins together and are therefore of
tremendous importance for the formation of the hydropho-
bic core of folded proteins. This observation is in line with
the analysis of the 157 biophysical features from ODiN-
Pred (39). They observed that the most important features
for protein disorder prediction are hydrophobic clusters, the
predicted secondary structure and the evolutionary rela-
tionship. While the last one was used to extract the features
in this study, it is interesting to see that the other two bio-
physical features have been learned implicitly by our ESM
transformer, even though it does not use any biophysical
features during its training. This shows that the evolution-
ary information in pre-trained datasets such as UniRef (48)
already contains these features and transformers are able to
unveil this information.

Finally, negligible differences in terms of key perfor-
mance metrics described in the reliability study under the
‘Results’ section clearly illustrate the efficacy of ADOPT in
terms of reliability and accuracy.

CONCLUSIONS

Understanding and accurately predicting protein disorder
have been an area of active research in computational
biology for more than two decades. Here, we present a
sequence-based approach to predict disorder using ESM
transformers. These NLP-based methods applied to vast
protein databases, e.g. UniProt90, which at the time of writ-
ing of this paper consisted of 135 301 051 sequences (see
https://www.uniprot.org/uniref/). These transformers pro-
duce amino acid level representations of protein sequences
that we use as inputs in our disorder predictors. We show
in various tasks (predicting Z-scores, classifying residues
in order/disorder classes) that our predictors offer superior
performance compared to the previous state-of-the-art dis-
order predictor (39) and per-residue score correlations to
protein disorder of models produced by AlphaFold2 (46).
We study the quality of these residue-level representations
by analysing which coordinates of the residue-level repre-
sentations are relevant in terms of predictive power. We
highlight two main advantages of our proposed approach.
First, it does not require additional feature engineering or
selection of potentially relevant biophysical inputs. Second,
its inference capabilities are remarkably fast compared to
other publicly available tools. This could aid large-scale
studies that were previously not possible.

In a broader context, our work complements the most
recent developments in NLP-based computational biology
[see e.g. (66,67)]. The common theme of such approaches
can be summarized in two steps. First, the aim is to find
suitable embeddings or representations of protein sequences.
The second aspect is to use these in relevant downstream
tasks, e.g. contact map prediction, stability prediction, etc.
Downstream use cases are typically less data intense, and
this approach is expected to work already reasonably well
with datasets of size around 10 000 or above. Note that
in the CheZOD training set alone, which was used in this

paper, there are >140 000 observations, given that disor-
der is a residue-level property of interest. In contrast, large
transformer models ideally require millions of data points
to achieve their full potential. Note that the data points used
by transformers are not necessarily experimental observa-
tions, but they are purely sequences.

There are many directions for future research related to
this particular approach; however, we would highlight three
of them specifically. Clearly, great potential lies in the ex-
ploration of other relevant downstream tasks. Reiterating
the point made in (67), a promising way to improve NLP-
based techniques, in particular, transformers, in protein sci-
ence, is to utilize priors, e.g. known protein structures, into
these models. This could be a key to enhance the quality
of sequence representations. The third area requires novel
ideas, but could be invaluable to connect large transformers
to molecular dynamics (MD) methods in order to improve
simulations and the quality of computed biophysical fea-
tures. Atomic MD simulations could be used to sample the
heterogeneous ensemble of structures in intrinsically disor-
dered regions. The distribution of NMR chemical shifts in
these ensembles is directly related to the Z-score and can be
used to improve the data used to train transformers, while
transformers can be used to improve MD force fields.
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