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Abstract
Rapid expansion of exotic bamboos has lowered species diversity in Japan’s ecosys-
tems by hampering native plant growth. The invasive potential of bamboo, facilitated 
by global warming, may also affect other countries with developing bamboo indus-
tries. We examined past (1975–1980) and recent (2012) distributions of major exotic 
bamboos (Phyllostachys edulis and P. bambusoides) in areas adjacent to 145 weather 
stations in central and northern Japan. Bamboo stands have been established at 17 
sites along the latitudinal and altitudinal distributional limit during the last three dec-
ades. Ecological niche modeling indicated that temperature had a strong influence on 
bamboo distribution. Using mean annual temperature and sun radiation data, we re-
produced bamboo distribution (accuracy = 0.93 and AUC (area under the receiver op-
erating characteristic curve) = 0.92). These results infer that exotic bamboo distribution 
has shifted northward and upslope, in association with recent climate warming. Then, 
we simulated future climate data and projected the climate change impact on the po-
tential habitat distribution of invasive bamboos under different temperature increases 
(i.e., 1.5°C, 2.0°C, 3.0°C, and 4.0°C) relative to the preindustrial period. Potential habi-
tats in central and northern Japan were estimated to increase from 35% under the 
current climate (1980–2000) to 46%–48%, 51%–54%, 61%–67%, and 77%–83% 
under 1.5°C, 2.0°C, 3.0°C, and 4.0°C warming levels, respectively. These infer that the 
risk areas can increase by 1.3 times even under a 1.5°C scenario and expand by 2.3 
times under a 4.0°C scenario. For sustainable ecosystem management, both mitigation 
and adaptation are necessary: bamboo planting must be carefully monitored in pre-
dicted potential habitats, which covers most of Japan.
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1  | INTRODUCTION

Climate change has caused geographical distribution shifts among 
many plants (e.g., Lenoir & Svenning, 2015; Parmesan & Yohe, 2003; 
Walther et al., 2007), including invasive species (Bradley, Blumenthal, 
Wilcove, & Ziska, 2010), thus threatening numerous ecosystems 
(WWF, 2016). For example, Acacia nilotica (L.) Delile (Fabaceae) has 
become highly invasive in several parts of the world, and global climate 
change is likely to increase markedly the plant’s potential distribution 
in Australia (Kriticos, Sutherst, Brown, Adkins, & Maywald, 2003). 
Therefore, sustainable ecosystem management requires projections 
on the risk of invasive species expanding their distribution under cli-
mate change.

Bamboo is an economically important plant, but some species 
have the potential to become invasive. A highly versatile plant, bam-
boo is used for food, building materials, horticulture, paper, textiles, 
and charcoal, among numerous other applications (FAO, 2010). Since 
the 1980s, the bamboo industry has developed rapidly in Asia, while 
also spreading to Africa and the Americas (FAO, 2007). Bamboo for-
ests are estimated to cover a total area of 31.5 million ha and account 
for about 0.8% of the total global forest area (FAO, 2010).

Bamboo is one of the fastest growing plants on earth (daily growth 
rate of 30–120 cm), reaching their final height of 5–25 m in a single, 
2-  to 4- month growing season (He, Cui, Zhang, Duan, & Zeng, 2013). 
Bamboo growth can have major implications for conservation and 
environmental management. For example, some researchers expect 
bamboo to play an important role in climate change mitigation through 
carbon sequestration (Lobovikov, Schoene, & Lou, 2012; Song et al., 
2011).

Because of their rapid growth rate, however, bamboo plants are 
highly likely to prevent the growth of other plants and decrease spe-
cies diversity (Chou & Yang, 1982; Larpkern, Moe, & Totland, 2011; 
Searashi, Maru, Otori, & Nishii, 1989; Yamaguchi & Inoue, 2004; but 
see Lin et al., 2014). Additionally, the expansion of invasive bam-
boo forests can change terrestrial water and nutrient cycles (Chiwa, 

Onozawa, & Otsuki, 2010; Fukushima, Usui, Ogawa, & Tokuchi, 
2015; Shinohara & Otsuki, 2015), damage farmlands and artificial 
forests (Arao, Kondo, & Honma, 2003), as well as increase the risk of 
sediment disasters (Hiura, Arikawa, & Bahadur, 2004). Global warm-
ing will exacerbate these dangers by facilitating distribution shifts of 
bamboo forests to new areas (Song et al., 2013; Zhang, Liu, Sun, & 
Wang, 2011).

Historically, Japanese people have mainly introduced and used 
two exotic bamboos (Poaceae), moso (Phyllostachys edulis (Carrière) 
Houzeau de Lehaie) and madake (P. bambusoides Siebold et Zuccarini), 
in managed plantations (See Study species Section in Materials and 
Methods and Figure 1 for details).

Applications include food (mainly for moso), handicraft (mainly 
for madake) and building materials, horticulture, and protection of 
houses against wind or fire, as well as river- wall reinforcement (e.g., 
Okutomi, 2005b). However, cheaper bamboo imports, heavy labor 
costs, and the lack of successors to bamboo plantations caused the 
Japanese bamboo industry to decline in the 1970s (Nakashima, 2001). 
Consequently, many bamboo plantations have been abandoned and 
are now left unmanaged, eventually invading the adjacent native veg-
etation (Nishikawa et al., 2005; Okutomi, Shinoda, & Fukuda, 1996; 
Suzuki, 2015).

Currently, southern and central Japan are the most affected by in-
vasive bamboos, but anticipated global warming may cause the prob-
lem to spread north in the coming decades. Potentially serious risks 
also exist in other Asian, African, and Latin American countries with 
burgeoning bamboo industries. For sustainable management of exotic 
bamboo forests and adjacent ecosystems under global warming, we 
must understand the growth conditions and how climate change af-
fects potential habitats of major bamboo species.

Someya, Takemura, Miyamoto, and Kamada (2010) conducted 
the first comprehensive study estimating the distribution probabil-
ity of exotic bamboo (Phyllostachys) forests throughout Japan, in re-
lation to major environmental variables (i.e., climatic elements, soil 
type, land- use type, and topography). Their study incorporated GIS 
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data of vegetation maps with other ecological data. The best explan-
atory variables were warmth index (Kira, 1945), annual precipitation, 
maximum snow depth, soil type, and land- use type. A similar study in 
China (Zhang et al., 2011) also mapped the potential habitats of moso 
bamboo using presence and pseudo- absence data, predicting that 
the potential distribution of moso bamboo will expand up to 266 km 
northward and increase 13.9% in area by 2070–2099 under SRES A2 
(BCCR- BCM2.0) scenario.

However, both extrapolating occurrence data from vegetation 
maps and creating pseudo- absence data increase uncertainty in eco-
logical niche, species distribution, and bioclimatic envelope modeling 
(cf. Barry & Elith, 2006). For example, although many bamboo forests 
exist in the northernmost Japanese prefectures (Hokkaido, Aomori, 
and Iwate) (Suzuki, 1978 and the present study), vegetation maps with 
a scale of 1:50,000 failed to classify any area in those regions as bam-
boo forest (Someya et al., 2010). Therefore, to obtain better potential 
distribution of bamboos, direct observation of presence or absence of 
bamboo forest is essential.

Moreover, to detect global warming- related changes, distribution 
shifts should be monitored together with climatic data in a time se-
ries. Previous research analyzed bamboo forest distribution proba-
bility on a national scale, but did not consider chronological variation 
in climatic conditions and bamboo distribution (Someya et al., 2010). 
Alternatively, chronological changes to bamboo forest expansion were 
considered, but only on a local (population or landscape) scale (Torii 
& Isagi, 1997). Therefore, distributional shifts under climate change 
should be detected through assessments of chronological alteration in 
actual bamboo occurrence on a regional (i.e., seminational) scale, using 
accurate meteorological data.

In this study, we directly recorded the presence or absence 
of bamboo stands near 145 meteorological stations in northern 
and eastern Japan. Next, we examined aerial photographs from 
32–37 years ago to detect chronological distribution shifts (i.e., es-
tablishments or colonizations) of bamboo stands. Finally, we fitted 
bioclimatic models to estimate effects of climatic and land- use fac-
tors on bamboo distribution.

2  | MATERIALS AND METHODS

2.1 | Study species

Found throughout tropical, subtropical, and temperate regions, bam-
boo (subfamily Bambusoideae, family Poaceae) includes over 87 
genera and 1,500 species (Bystriakova, Kapos, Stapleton, & Lysenko, 
2003; Ohrnberger, 1999).

Six species or forms of the genus Phyllostachys are distributed in 
Japan, all thought to be introduced from China (Ohrnberger, 1999; 
Figure 1, but see Suzuki, 1978). Among them, we selected the two 
most common bamboos, moso (Phyllostachys edulis) and madake 
(P. bambusoides), as the focal species of this study. The total area 
of bamboo forest in Japan was 159 000 ha in 2007 (Ministry of 
Agriculture Forestry and Fisheries of Japan, 2013), comprising 99% 
moso and madake bamboos at a 3:1 ratio (Torii & Isagi, 1997).

Moso bamboo is the most abundant bamboo species in the world, 
extensively distributed in southeast and south Asia (Du et al., 2009). 
Moso bamboo is the most important species in the southern Chinese 
bamboo industry, and moso plantations exceed 3.8 million ha, repre-
senting 70% of the bamboo area in China (FAO, 2007). According to 
previous studies in China, the primary environmental factors that con-
trol moso bamboo distribution and growth are temperature (Xu & Qin, 
2003), precipitation (annual range: 800–2,000 mm: Xu & Qin, 2003; 
Zhou, 1991; but see Gu et al., 2010), and soil conditions (sandy soil 
with pH 4.5–7.0: Fu, 2001; Jin et al., 2013).

As for madake, a previous study in Japan concluded that its dis-
tribution is primarily affected by low air temperatures, although the 
minimum threshold for madake survival was not determined (Numata, 
Mitsudera, & Ogawa, 1957).

Moso bamboo was introduced from China to Japan in the 1700s 
(Suzuki, 1978), whereas madake is thought to be introduced before 
latter half of the 10th century, which is an estimated period when 
Taketori Monogatari (the Tale of Bamboo Cutter) was written.

Bamboos rely heavily on vegetative growth for the production of 
new shoots, because flowering is typically a rare event (Janzen, 1976). 
A flowering interval of moso is 67 years (Watanabe, Ueda, Manabe, & 
Akai, 1982). Surprisingly, recent genetic analyses imply that moso bam-
boos of Japan and China (246 samples of 28 wild populations) com-
prise an identical clone, which is distributed over more than 2,800 km 
with an estimated biomass of approximately 6.6 × 1011 kg (Isagi et al., 
2016). Flowering of madake is rarer (120- years interval; Janzen, 1976), 
and most seeds do not germinate (Watanabe et al., 1982). Thus, moso 
and madake bamboo forests in Japan are considered the result of agri-
cultural efforts (Torii & Isagi, 1997; see also Komatsu, Batagin- Piotto, 
Brondani, Gonçalves, & De Almeida, 2011) for a few hundred to a 
thousand years. In agreement with this consideration, the exotic bam-
boos are not found in areas that have never been inhabited by people 
(TN personal observation). In our study, we assumed that local people 
continuously distributed exotic bamboos as necessity of life (i.e., food 
and timber) in each locality and that the bamboos colonized success-
fully under favorable environmental conditions. Therefore, it seems 
that moso and madake distributions are close to equilibrium with its 
environment in human habitats.

2.2 | Study sites and field survey

To obtain a sufficient range of climatic variable and altitude range, we 
selected 145 AMeDAS (Automated Meteorological Data Acquisition 
System) stations installed by the Japan Meteorological Agency in 
northern and eastern Japan, at approximately 35.3–41.5°N and 
137.6–142.0°E (Fig. S1). The altitudinal and latitudinal distribution lim-
its of moso and madake bamboos fall within this area (Suzuki, 1978).

In 2012, we drove along with roads and directly surveyed the 
presence or absence of moso and madake bamboos within a 5- km 
radius from each of the 145 AMeDAS stations. To improve effi-
ciency of field observation, we first searched the bamboos within 
a 1- km radius from each of the 145 AMeDAS stations then contin-
ued searching within 5- km radius from the station only if we could 
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not find any bamboo stands within the 1- km radius. We excluded 
areas where the altitude was 50 m higher or lower than each sta-
tion so that all of our sampled locations would have similar climate 
conditions to those observed in the AMeDAS station. If we found a 
bamboo stand, we identified the species (moso, madake, or both). In 
the following analyses, we treated data equally irrespective of the 
sampling effort (i.e., 1-km or 5-km radius).

Distribution patterns of moso and madake were similar, except 
for a slight difference in their northern limits (Fig. S1). Someya et al. 
(2010) also analyzed the distribution of bamboo forests and reported 
little difference between moso distribution range and the integrated 
distribution range of moso, madake, and hachiku (Phyllostachys nigra 
var. henonis (Mitford) Stapf ex Rendle) bamboos. Moreover, moso 
and madake equally depend on their dispersal on human. In addition, 
we could not run random forest and boosted regression trees (see 
Modeling methods considered section) with less than 100 samples in 
our dataset. Therefore, we combined the data for moso and madake 
bamboos in the following analyses.

2.3 | Analysis of aerial photographs

To detect past distribution of bamboo stands during the last three dec-
ades, we investigated historical aerial photographs (116 sites) taken 
in 1975–1980 at the locations where we found bamboo stands in 
2012. We also confirmed the accuracy of recent aerial photographs 
(2002–2012) through comparisons with our direct observations (i.e., 
ground- truth). We could not investigate photographs at seven sites 
due to time and resource limitations. Thus, we compared 109 bamboo 
sites in 2012 to their historical photographs. Additionally, we assumed 
that the 29 sites without bamboo stands in 2012 remained that way 
during the past three decades, a fundamental limitation of this study.

2.4 | Environmental variables

2.4.1 | Climatic variables considered

Beginning in 1974, AMeDAS measures surface air temperature 
(1.5 m height), precipitation, hours of sunshine, as well as wind speed 
and direction at about 1,300 sites in Japan. We obtained positional 
information (i.e., latitude, longitude, and altitude) and meteorologi-
cal data for 145 AMeDAS stations from the Japan Meteorological 
Agency (http://www.data.jma.go.jp/obd/stats/etrn/index). Because 
post- 1979 data are available at most AMeDAS sites, we calculated 
separate averages of climatic variables for 1979–1988 (correspond-
ing to bamboo distribution during 1975–1980, from historical aerial 
photographs) and 2002–2011 (corresponding to 2012, or current, 
bamboo distribution). These variables were as follows: mean annual 
air temperature, minimum and maximum air temperatures per year 
(°C), annual precipitation (mm), growing season precipitation (i.e., 
during months with mean temperature ≥5°C), nongrowing season 
precipitation (<5°C), the warmth index (WI: Kira, 1945), and the 
coldness index (CI: Kira, 1949). Mean annual temperature and mini-
mum and maximum temperatures per year are the mean, minimum, 

and maximum among temperatures at 00 minute of every hour of 
everyday in a year, respectively. Therefore, minimum and maximum 
temperatures per year represent minimum or maximum tempera-
tures of a certain day in each year, respectively.

The warmth index is the annual sum of positive differences be-
tween mean monthly temperature and +5°C. It provides a measure of 
effective heat quantity requisite for plant growth. The coldness index 
is the annual sum of negative differences between monthly mean 
temperature and +5°C. Sun radiation data (shortwave radiation, MJ 
m−2 day−1) were also obtained from the Mesh Meteorological Dataset 
(Seino, 1993).

2.4.2 | Land cover and land use

We obtained land- cover and land- use data from the Second to Fifth 
Basic Survey on Natural Environment Conservation (surveyed in 1994–
1998 with a scale of 1:50,000 provided as vector data [Shapefile]) by the 
Japanese Ministry of the Environment (http://gis.biodic.go.jp/webgis/
sc-023.html). We then used ArcGIS version 10.1 (ESRI, Redlands, CA, 
USA) to calculate ratios of the forest, farmland, and building areas within 
a 1- km radius from each AMeDAS station. Although we measured pres-
ence or absence of the bamboos within 5- km radius from the stations, 
proportion of areas with different altitude to the station, which we ex-
cluded from the studied area of field observation, may increase with 
distance from the station. Therefore, we used the ratios within 1- km 
radius for the index of land cover and land use around the stations. We 
followed Ogawa et al. (2013) for land- cover and land- use classifications.

Because we could not obtain land- use data for the various time pe-
riods assessed, we used the dataset collected in the current study for 
distribution modeling (response variable: 2012 bamboo presence/ab-
sence; explanatory variables: 2002–2011 AMeDAS data and  land- use 
data).

2.5 | Ecological niche modeling

2.5.1 | Parameter selection

Temperature- related variables (mean annual air temperature, mini-
mum/maximum air temperature, WI, and CI) were strongly collinear, 
as were the precipitation variables (annual precipitation and growing 
season precipitation) (Fig. S2). Collinearity is a severe problem when a 
model uses data from one time to predict patterns from another period 
with different or unknown collinearity structure (Dormann et al., 2013).

To select less- collinear parameters, we ran 10 global (full) logistic 
regression models (bamboo presence/absence ~ i + j + nongrowing 
season precipitation + sun radiation + ratio of forest area + ratio of 
farmland area, where i = any of the five temperature- related variables 
and j = either of the annual precipitation or growing season precip-
itation). Then, we compared the AICc (corrected Akaike Information 
Criterion, Hurvich & Tsai, 1989) of all nested models generated with 
all possible parameter combinations through the dredge function 
from the MuMIn package version 1.15.6 (Barton, 2016) in R. Based 
on this comparison, we chose four candidate parameter sets in the 

http://www.data.jma.go.jp/obd/stats/etrn/index
http://gis.biodic.go.jp/webgis/sc-023.html
http://gis.biodic.go.jp/webgis/sc-023.html
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subsequent analysis of modeling methods: 1. mean annual tempera-
ture, 2. mean annual temperature + sun radiation, 3. mean annual 
temperature + sun radiation + precipitation in growing season, and 4. 
mean annual temperature + sun radiation + precipitation in growing 
 season + ratio of forest area + ratio of farmland area.

2.5.2 | Modeling methods considered

Ecological niche modeling uses an increasingly large variety of sta-
tistical methods (Franklin, 2009), but few generalizations and rec-
ommendations have been provided due to confounding effects of 
statistical methods, species traits, data characteristics, and accuracy 
metrics across studies (Miller, 2014). A test of generalized linear mod-
els (GLMs), random forest (Breiman, 2001), boosted regression tree 
(BRT; Elith, Leathwick, & Hastie, 2008), maximum entropy (MaxEnt; 
Phillips & Dudík, 2008), and genetic algorithm for rule- set prediction 
(GARP; Stockwell et al., 2006) revealed that all five performed well 
even when the species–environment relationship was nonlinear (Elith 
& Graham, 2009). However, GARP did not handle categorical predic-
tors or interactions between predictors well (Elith & Graham, 2009). 
Given that these methods have advantages and disadvantages in vari-
ous contexts, more than two modeling methods should be applied to 
the same dataset during analysis (Franklin, 2009).

We therefore compared the performances of four modeling meth-
ods (logistic regression, generalized additive models (GAMs; Guisan, 
Edwards, & Hastie, 2002), random forest, and BRT) in predicting cur-
rent bamboo distribution, using four candidate parameter sets (see 
Parameter selection section). A logistic regression is a GLM with a bi-
nomial family (logit link) and has the advantage of possessing easily in-
terpretable predictor coefficients (Franklin, 2009). In  contrast,  predictor 
coefficients are difficult to interpret in GAMs, but the method offers a 
flexible and automated approach to describing nonlinear relationships 
between predictors and response variables (Franklin, 2009). Random 
forest and BRT are machine- learning techniques that assemble numer-
ous relatively independent decision trees. Both automatically identify 
interactions between variables, whereas interactions must be specified 
in advance for GLMs and GAMs (Franklin, 2009). However, the latter 
two models are better suited to reflect theoretical findings on the shape 
and nature of a species’ response (or realized niche). Overall, a trade- off 
exists between predictability (random forest and BRT) versus interpret-
ability (GLMs and GAMs). Models were implemented in R version 3.3.2 
(R Core Team, 2016). Detailed settings are described in Data S1.

2.5.3 | Model validation and selection

We compared predictabilities of all possible combinations between 
the four parameter sets and the four modeling methods. Leave- one- 
out cross- validation (LOOCV) was conducted for each combination, 
and a threshold value of bamboo existence was determined with the 
coords function from the pROC package (Robin et al., 2011) in R. To 
achieve better handling of our imbalanced dataset (116 presences and 
29 absences), we used Youden’s J statistics (sensitivity + specificity: 
Youden, 1950) for choosing a threshold to classify bamboo presence 

and absence because usage of threshold- dependent measures of ac-
curacy and determination of appropriate threshold mitigate issues re-
lated with biased, imbalanced, or skewed data (Franklin, 2009).

Predictability indices were then calculated, including area under the 
receiver operating characteristic curve (AUC; Swets, 1973), Matthews 
correlation coefficient (MCC; Matthews, 1975), informedness (sensi-
tivity + specificity − 1; Powers, 2011), accuracy ([true positives + true 
negatives]/total n), sensitivity (true positives/[true positives + false 
negatives]), specificity (true negatives/[false positives + true nega-
tives]), positive predictive value (true positives/[true positives + false 
positives]), and negative predictive value (true negatives/[false nega-
tives + true negatives]).

Finally, we selected a model for projection. We accounted for 
comparability with future studies by considering the predictabil-
ity and availability of parameters in general climate models (such as 
the Coupled Model Intercomparison Project Phase 5 [CMIP5]; Taylor 
et al., 2012).

2.5.4 | Current and future climate simulations

As boundary conditions of regional climate simulations, we used pre-
sent and future global climate simulations from the Meteorological 
Research Institute (MRI) atmospheric global climate model (AGCM), 
with approximately 20 km horizontal resolution (Mizuta et al., 2012). 
Using the AGCM, we performed climate simulations of current (1979–
2003) and future (2075–2099) conditions under the RCP8.5 emission 
scenario (van Vuuren et al., 2011). Sea surface temperature (SST) 
distribution critically affects the atmosphere and was set as a lower 
boundary condition of the AGCM. Therefore, model uncertainty may 
arise depending on the SST distribution selected. Uncertainty for the 
current climate simulation was removed with the use of  observational 
SST distribution data from HadISST1 (Rayner et al., 2003). To take 
into account uncertainties in future SST changes across climate mod-
els, and to reduce computing costs, four future SST distributions were 
selected to construct a four- member ensemble experiment (Mizuta 
et al., 2014). One SST distribution was taken from the ensemble av-
erage of CMIP5 atmosphere–ocean model (AOGCM) RCP8.5 simu-
lations, while the remaining SST distributions were derived from a 
cluster analysis of CMIP5 AOGCMs’ SST change patterns (Mizuta 
et al., 2014). These four SST distributions covered the full range of 
projection uncertainty with a small number of experiments that did 
not require using every CMIP5 SST distribution.

We dynamically downscaled AGCM global climate simulations to 
a 5- km horizontal resolution in the region around Japan (see Fig. S3 
for the domain), using MRI’s nonhydrostatic regional climate model 
(NHRCM) (Murata 2015) during current (September 1980–August 
2000) and future (September 2076–August 2096) periods.

We used temperature and sun radiation outputs, two explanatory 
variables in our distribution modeling (see Parameter selection section). 
These two variables were averaged annually and over 20 simulation 
years. As model incompleteness inevitably leads to bias even with de-
creased uncertainties in the current climate model, we performed bias 
correction (see Data S2) to obtain more realistic results.
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[Correction added on 10 November 2017 after first online publica-
tion: Figure 1 and Supporting information Fig. S3 in Section 2.5.4 have 
been revised in this version.]

2.5.5 | Climate scenarios under various global 
warming levels

To inform climate policies, impact assessments under different global 
warming conditions are important, and many previous studies have fo-
cused on increases between 2°C and 4°C (e.g., Table 1 of Assessment 
Box SPM.2 in IPCC, 2014). However, after the Paris Agreement in 
the United Nations Framework Convention on Climate Change 
(UNFCCC), which pursue efforts to limit warming to 1.5°C, climate 
change impacts under the 1.5°C warming level are getting more at-
tention. Therefore, we projected climate change impacts under 1.5°C, 
2.0°C, 3.0°C, and 4.0°C increments relative to the preindustrial period.

We applied pattern scaling (e.g., Ishizaki et al., 2012; Wigley, Raper, 
Smith, & Hulme, 2000) to produce climate scenarios for the four global 
warming levels (Fig. S6):

1. We calculated spatial patterns in 20-year mean differences be-
tween the bias-corrected outputs of the present and future 
climate regional NHRCM simulations.

2. The global mean temperature differences between the present and 
future MRI AGCM climate simulations were 3.49, 3.57, 3.50, and 
3.41°C for ensemble mean SST and SST clusters 1–3, respectively. 
The regional spatial patterns calculated in step (1) were divided by 
the global mean temperature differences to obtain a “scaling pat-
tern,” or climate variation per 1°C global warming.

3. We calculated 20-year running mean of globally and annually (from 
September to August) averaged temperature using historical and 
RCP8.5 future simulations (September 1980–August 2100) of the 
34 CMIP5 models. Next, we computed the multimodel mean for 
each running mean. The anomaly relative to the value in 1990 
(1980–2000 average) was obtained in each year from 1990 to 
2090, which represented the degree of the progress of global 
warming. It should be noted that the global mean observed tem-
perature on September 1980–August 2000 was already 0.5°C 
above to the preindustrial condition.

4. To obtain climate scenarios of X°C global warming relative to the 
preindustrial condition, we inflated the scaling pattern of step (2) 
by “X°C−0.5°C” and added the result to the bias-corrected outputs 
of present climate NHRCM simulations.

5. To investigate the year when specified global warming levels will 
be exceeded, we used the 20-year running global mean tempera-
ture anomaly from step (3). Note that the year is an estimation 
according to the ensemble mean of CMIP5 models.

2.5.6 | Prediction of bamboo distribution

To evaluate how climate change will influence bamboo distribution, 
we mapped probabilities of potential bamboo habitats using climate 

scenarios under the four global warming levels, then compared the 
ratio of potential habitat areas in central and northern Japan (north 
of 35°N and east of 136°E). Although our model was fit in Honshu 
Island, and ecosystem of Honshu and that of Hokkaido are differ-
ent, we extrapolated our model to Hokkaido Island. It is because 
motivation of local people to plant and eat bamboos still exist re-
garding from our interviews to local people through fieldworks, 
and because it is meaningful to predict northward expansion of po-
tential habitats for sustainable ecosystem management. However, 
extrapolation could produce ecologically inappropriate predictions 
(Elith, Kearney, & Phillips, 2010). To evaluate the extent of extrapo-
lation, we also calculated the multivariate environmental similarity 
surface (MESS, Elith et al., 2010) with some modifications (see Data 
S3 for details).

3  | RESULTS

3.1 | Geographical distribution and chronological 
change in bamboo stands

Bamboo stands were found at 116 of 145 study sites in the 2012 
field survey. Among them, moso and madake bamboos were present 
at 104 and 73 sites, respectively (Fig. S1). The distributional limits fol-
lowed a latitudinal and altitudinal gradient (Figure 2).

At 17 of 109 investigated sites with historical aerial photographs, 
bamboo stands were absent and therefore considered established 
post- 1975 (Figure 2 and Fig. S1). These 17 sites were located along 
the latitudinal and altitudinal limit of bamboo distribution (Figure 2). 
In the historical photographs, the presence or absence of bamboo 
stands could be confirmed at 68 sites, but indistinguishable at 24 sites 
(Figure 2).

3.2 | Climatic limits on bamboo distribution

Bamboo stands were not found at study sites where 1) mean annual 
maximum temperature was below 28.8°C, 2) mean annual tempera-
ture was below 8.6°C, and 3) mean annual minimum temperature 
was below −16.8°C (Fig. S4). Our data generally agree with previ-
ous research (Fu, 2001) stating that moso bamboo cannot withstand 
temperatures around or below −18 to −20°C. We also did not find 
bamboo stands at study sites where CI was below −27.9 and WI 
was below 68.1, slightly lower than previous reports (Someya et al., 
2010) of Japanese Phyllostachys bamboos in areas with a WI range 
of 72–205.

All temperature- related variables (averages of mean annual tem-
peratures, annual maximum/minimum temperatures, WI, and CI) 
generally increased between 1979–1988 and 2002–2011, whereas 
sun radiation declined (Fig. S4) presumably because of increment of 
cloud. Annual precipitation did not show a clear trend. The means of 
temperature- related variables were highest in the “bamboo present” 
sites, followed by “bamboo established” sites and then “bamboo ab-
sent” sites (Fig. S4). Thus, the increasingly warmer climate over the 
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last three decades has spurred bamboo growth in new sites (“bam-
boo established”) along latitudinal and altitudinal limits of bamboo 
distribution.

3.3 | Ecological niche modeling

3.3.1 | Parameter selection

The best 10 GLMs, in terms of AICc, are summarized in Table S1. The 
parameter combination of the minimum- AICc model was [WI + sun 
radiation] followed by [maximum temperature of a year + annual pre-
cipitation + sun radiation], [maximum temperature of a year + sun ra-
diation], and [mean annual temperature + sun radiation]. Delta AICc 
values were small (<0.64) among these models. The fourth model has 
the highest MCC (0.78), whereas the third model has the highest AUC 
(0.939).

Temperature- related variables were positively and significantly 
(p < .001) correlated with bamboo distribution. Sun radiation also 
showed positive and significant (p < .05) correlation. Effect sizes  
(z- values) were greatest for temperature and high for sun radiation, 
but far lower for precipitation and land- use types.

Among the temperature- related variables, we selected mean an-
nual temperature as the representative predictor for comparability 
with future studies, based on parameter availability in general climate 
models.

3.3.2 | Selected model

We further compared predictability among different modeling 
methods in combination with different sets of explanatory variables 
(Table S2). The two explanatory variables GLM [mean annual tem-
perature + sun radiation] had the highest MCC (0.780), informed-
ness (0.759), accuracy (0.931), and AUC (0.922). Thus, this model 

was used for subsequent analyses. Incorporation of growing sea-
son precipitation and forest to farmland ratios did not improve 
predictability.

Bamboo presence and absence were separated with the optimal 
threshold value (0.606) (Table S2). The GLM predicted that the prob-
ability of potential bamboo habitats rapidly increases under mean 

F I G U R E  2   Latitudinal and altitudinal 
distribution of study sites with presence, 
absence, or new establishment of bamboo 
stands
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annual temperatures of 7°C to 11°C, with sun radiation exerting a sec-
ondary effect (Figure 3).

3.4 | Projection of current and future bamboo 
distribution

3.4.1 | The extent of extrapolation

Modified version of the multivariate environmental similarity surface 
(MESS, Elith et al., 2010), or dissimilarity, showed the extent of ex-
trapolation from the reference points (i.e., 145 AMeDAS stations in 
2002–2011) to different space (north of 35°N and east of 136°E) and 
time (1980–2000 and 2075–2095) (Data S3).

In current temperature (upper left panel of Data S3), rather many 
high- altitudinal areas of both Honshu and Hokkaido Islands showed 
extrapolation with lower temperature. In future temperature (lower 
left), most of area was included in the range of reference points ex-
cept for area with higher and lower extreme of altitude and latitude. 

Overall, the extent of extrapolation was limited in future prediction, 
whereas the extent of extrapolation was larger in current prediction 
toward lower temperature.

3.4.2 | Impacts of different warming levels

Projected changes in mean annual temperature and sun radia-
tion between 1980–2000 and 2076–2096 are shown in Fig. S5. 
Under the current climate, potential bamboo habitats were pro-
jected to account for 35.0% of the Japanese land area north of 
35°N and east of 136°E (Figure 4a). However, bamboo distribution 
remained south of 41°N, in areas that included plains and hilly re-
gions of  central Honshu, as well as the coasts of northern Honshu 
(Figure 4a, b).

The RCP8.5 scenario estimated that global warming levels 
of 1.5°C, 2.0°C, 3.0°C, and 4.0°C would be exceeded by 2027, 
2041, 2064, and 2085 (middle of the 20- year period), respectively 
(Figure 4a). Under 1.5°C, potential bamboo habitats were predicted to 

F I G U R E  4   Projection of potential habitats 
for moso and madake bamboos in central and 
northern Japan during current (1990) and 
future (2027, 2041, 2064, and 2085) periods. 
Four sea surface temperature distributions 
(i.e., ensemble mean and clusters 1–3) under 
the RCP 8.5 scenario were considered in 
future projections (see the text for details). 
Each listed year represents a 20- year running 
mean. Years 2027, 2041, 2064, and 2085 
represent mean global warming levels 
of 1.5°C, 2.0°C, 3.0°C, and 4.0°C above 
preindustrial conditions, respectively. (a) Ratio 
of potential habitat area. (b- f) Geographical 
distributions. Colors indicate probability as a 
potential habitat predicted by a generalized 
linear model. Note that the threshold value 
for separating bamboo presence or absence 
is 0.606
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reach 43.25°N, expanding 240 km northward (Figure 4c) and account-
ing for 46.3%–48.0% of the focal area (range of the four SST distribu-
tions, see Materials and Methods) (Figure 4a). Under 2.0°C, potential 
habitats reached 44.3°N, expanding 370 km northward (Figure 4d) 
and accounting for 51.2%–53.9% of the focal area (Figure 4a). Under 
3.0°C, potential habitats reached 44.4°N, expanding 380 km north-
ward (Figure 4e) and accounting for 61.2%–66.8% of the focal area 
(Figure 4a). Finally, under 4.0°C, the potential habitat expanded 
500 km northward to cover all of Honshu, reaching the northern tip of 
Hokkaido Island (45.5°N) but excluding its alpine and subalpine zones 
(Figure 4f), accounting for 76.8%–83.2% of the focal area (Figure 4a). 
We created map animations to better visualize the transition from cur-
rent habitats to future projections (Video S1).

4  | DISCUSSION

We confirmed that exotic bamboos are widely distributed in northern 
and eastern Japan, whereas Someya et al. (2010) estimated presence 
probabilities in this area to be much lower than 0.5. We further de-
tected bamboo distribution shifts, evaluated important environmental 
factors, and concluded that the shifts were associated with a warming 
climate.

4.1 | Environmental factors limiting bamboo 
distribution

Moso and madake bamboo distribution in northern Japan depends 
primarily on temperature, and a simple, two- parameter (mean annual 
temperature and sun radiation) GLM successfully predicted current 
bamboo distribution with 0.931 accuracy. Further, even a single- 
parameter GLM with only mean annual temperature explained bam-
boo distribution with 0.923 accuracy.

Previous research indicated that minimum temperature in a given 
year restricts madake and moso bamboo distribution (Fu, 2001; 
Numata et al., 1957). However, we found that minimum temperature 
and CI were not included in any of the 10 best (minimum AICc) mod-
els, whereas mean annual temperature, annual maximum temperature, 
and WI were. Further eco- physiological studies are therefore neces-
sary to determine how temperature conditions restrict colonization 
and development of major exotic bamboo species in Japan.

Although the dwarf bamboo Sasamorpha borealis (Hack.) Nakai 
(Poaceae), a keystone species in Japanese forests, requires high pre-
cipitation during their growing season (May–July) (Tsuyama et al., 
2011) even in humid Japanese environments, our models inferred 
that precipitation played little role in predicting moso and madake 
distribution. This would be explained by differences in characteris-
tics among bamboo species. On the other hand, lower annual pre-
cipitation (<800 mm) in southern China restricts moso distribution, 
with spring droughts adversely affecting moso bamboo shooting (Fu, 
2001). Because annual precipitation exceeded 930 mm at all sites of 
the present study, precipitation likely becomes an important factor 
only in drier regions.

Most exotic bamboo forests in Japan originated from human trans-
plantation (Okutomi, 2005a), a notable limitation in our study’s aim to 
understand bamboo distribution. When modeling the distribution of 
such semi- naturalized organisms, resultant distribution patterns may 
represent the intensity of artificial introduction rather than natural ex-
pansion, confounding the ability to draw conclusions. Thus, the history 
and intensity of bamboo introduction should be explicitly incorporated 
in future models (Guisan & Thuiller, 2005).

Our models suggested that the ratios of forests and farmland had 
little explanatory power for the bamboo distribution in our dataset, 
at odds with a previous model that selected forest, farmland, and 
building- area ratios as explanatory variables (Someya et al., 2010). This 
difference appears at least partially due to sample sizes (n = 244 327 
in Someya et al., 2010 and n = 146 in the present study). Moreover, 
our study sites were selected within a 5- km radius from the AMeDAS 
stations, which are generally located at accessible human inhabited 
area such as roadsides at elevations below 1 500 m for its operation 
and maintenance, but not in a deep forest. Such sampling design of 
the present study may have restricted the land- use types recorded and 
limited the detection of their effects on bamboo distribution.

Finally, several variables appear to affect bamboo distribution 
that was not examined in our models. First, soil pH and texture re-
strict moso bamboo distribution in China, along with precipitation (Fu, 
2001; Jin et al., 2013). Further, bamboos are likely to have soil pref-
erences; madake appears to prefer sandy loam (Numata et al., 1957), 
and surface geology was selected as an explanatory variable in the AIC 
minimum model of Someya et al. (2010). Future, more comprehensive 
models of bamboo distribution should consider all of these variables.

4.2 | Bamboo distribution projections and 
implications for sustainable ecosystem management

The distribution limit of bamboo was predicted to expand 500 km 
northward by 2085, at maximum. Additionally, potential habitats 
in central and northern Japan were expected to increase from 35% 
(1980–2000) to 46%–48% (under 1.5°C global warming), 51%–54% 
(2.0°C), 61%–67% (3.0°C), and 77%–83% (4.0°C). Therefore, under 
the most conservative global warming estimate, the potential habitat 
will enlarge by 1.5 times, while expanding by 2.3 times under the high-
est warming scenario.

These values are more or less comparable with previous predictions 
(Zhang et al., 2011) that the potential distribution of moso bamboo in 
China will expand 266 km northward and increase 13.9% in area by 
2070–2099 under SRES A2 (BCCR- BCM2.0) scenario. Together, the 
data indicate that the 1.5°C scenario is clearly preferable to the 4.0°C 
scenario (i.e., RCP8.5) in terms of managing the invasive expansion of 
exotic bamboos. Therefore, efforts aimed at limiting future warming to 
1.5°C should be beneficial.

Analyses above do not necessarily mean that the affected areas 
will be completely covered with moso and madake, but just predict 
potential habitats. We also must keep in mind various uncertainty in 
species distribution modeling. Because current distribution (1980–
2000) was predicted with slightly extrapolated lower temperatures, it 
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might result in underestimation (i.e., overestimation of expansion rate 
toward future). On the other hand, we assumed that the exotic bam-
boo distribution is close to equilibrium with its environment. Violation 
of this assumption would result in underestimation of potential habitat 
around its northern limit.

Overall, global warming definitely increases the success rate of 
colonization by these highly invasive species. Once a bamboo plan-
tation is abandoned, it poses a serious risk of invading surrounding 
ecosystems (Suzuki, 2015). In 2015, Ministry of the Environment and 
Ministry of Agriculture, Forestry and Fisheries of Japanese govern-
ment designated bamboos of the genus Phyllostachys as concerned 
alien species that are industrially important and that require appro-
priate management. To better adapt under climate change, improved 
oversight of bamboo planting and heightened caution from local com-
munities are necessary (Someya et al., 2010). Outside Japan, countries 
that actively cultivate exotic bamboo will also need to recognize the 
need for greater regulation and vigilant practices targeted at prevent-
ing bamboo invasion (International Network for Bamboo and Rattan 
(INBAR), 2014).
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