y J'wy?

VIRUS
wS EVOLUTION

Virus Evolution, 2019, 5(2): vez050

doi: 10.1093/ve/vez050
Resources

SNAPPy: A snakemake pipeline for scalable HIV-1
subtyping by phylogenetic pairing

Pedro M.M. Aradjo,"” Joana S. Martins,»? and Nuno S. Osério

1,241

Life and Health Sciences Research institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
and 2ICVS/3B’s - PT Government Associate Laboratory, Braga, Guimaraes, Portugal

*Corresponding author: E-mail: nosorio@med.uminho.pt
1 http://orcid.org/0000-0003-0949-5399

Abstract

Human immunodeficiency virus 1 (HIV-1) genome sequencing is routinely done for drug resistance monitoring in hospitals

worldwide. Subtyping these extensive datasets of HIV-1 sequences is a critical first step in molecular epidemiology and evolu-
tion studies. The clinical relevance of HIV-1 subtypes is increasingly recognized. Several studies suggest subtype-related differ-
ences in disease progression, transmission route efficiency, immune evasion, and even therapeutic outcomes. HIV-1 subtyping
is mainly done using web-servers. These tools have limitations in scalability and potential noncompliance with data protection
legislation. Thus, the aim of this work was to develop an efficient method for large-scale local HIV-1 subtyping. We designed
SNAPPy: a snakemake pipeline for scalable HIV-1 subtyping by phylogenetic pairing. It contains several tasks of phylogenetic
inference and BLAST queries, which can be executed sequentially or in parallel, taking advantage of multiple-core processing
units. Although it was built for subtyping, SNAPPy is also useful to perform extensive HIV-1 alignments. This tool facilitates
large-scale sequence-based HIV-1 research by providing a local, resource efficient and scalable alternative for HIV-1 subtyping.
It is capable of analyzing full-length genomes or partial HIV-1 genomic regions (GAG, POL, and ENV) and recognizes more than

ninety circulating recombinant forms. SNAPPy is freely available at: https:/github.com/PMMAraujo/snappy/releases.

Key words: HIV-1; subtyping; genetic diversity; scalability; phylogeny.

1. Introduction

The number of HIV-1 partial or complete genomic sequences in
databases largely increased along the years after a noteworthy
surge of almost tenfold in the 2000s. HIV-1 genomic data are ex-
tremely valuable for fundamental research, translating into sev-
eral epidemiological applications such as antiretroviral
resistance surveillance or transmission history reconstruction
(Abecasis et al. 2013; Yebra et al. 2015; Araujo et al. 2019).
Subtyping is a primary analysis done on HIV-1 sequences to al-
low further investigation.

HIV-1 was consensually divided in four groups (M, N, O, and
P), a consequence of multiple cross-species transmission events
from non-human primates to humans. M group is the only with

a worldwide dispersion, and due to genetic differences and di-
vergent evolutionary stories viruses from this group were
divided into nine Subtypes (A to D, F to H, J, and K) and Sub-
subtypes (e.g. Al, A2, F1, and F2). HIV-1 genomes composed of
parts of different subtypes are known as recombinant forms,
which can be named circulating recombinant forms (CRFs) if
several cases are detected or unique recombinant forms (URFs)
for more sporadic cases (Robertson et al. 2000; Hemelaar 2013).
It has been reported that different HIV-1 subtypes may be better
adapted for specific transmission routes (Renjifo et al. 2004;
John-Stewart et al. 2005), contain higher prevalence of polymor-
phisms known to influence immune systems (Bartolo et al.
2011; Serwanga et al. 2015) or antiretroviral treatment evasion
(Brenner et al. 2003; Abecasis et al. 2005; Camacho and

© The Author(s) 2019. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

For commercial re-use, please contact journals.permissions@oup.com

http://orcid.org/0000-0003-0949-5399
https://github.com/PMMAraujo/snappy
https://academic.oup.com/

2 | Virus Evolution, 2019, Vol. 5, No. 2

Vandamme 2007), and lead to differences in the disease pro-
gression rate (Baeten et al. 2007; Kiwanuka et al. 2008;
Easterbrook et al. 2010; Araujo et al. 2019).

There are three main classes of approaches to perform HIV-1
subtyping: similarity-based (e.g. Stanford (Liu and Shafer 2006)
and NCBI subtyping tool (Rozanov et al. 2004)); statistical-based
(e.g. COMET (Struck et al. 2014), jpHMM (Schultz et al. 2009), and
STAR (Myers et al. 2005)); and phylogenetic-based (e.g. REGA
(Pineda-Pena et al. 2013) and SCUEAL (Kosakovsky Pond et al.
2009)). Phylogenetic-based tools are considered the most sensi-
tive and specific but also more time and computational resource
consuming (Pineda-Pena et al. 2013; Fabeni et al. 2017). Most of
the currently available tools are made available in the form of
web-servers, making them easy to access and use.
Nevertheless, this distribution mode raises issues regarding the
scalability of the implementation; it is unreasonable to provide
a web-server without limitations in the input size or number of
jobs. Making large-scale analysis like multicenter molecular epi-
demiology studies, systematic reviews or databases curations
practically impossible. Moreover, the HIV-1 genomic material
corresponds to a clinical result and is often under data protec-
tion legislation as such, requiring in many cases an ethic ap-
proval for data sharing or submission in external servers.

Despite the large interest in using phylogeny for HIV-1 sub-
typing, existing tools have failed to address scalability and pri-
vacy issues. To answer these limitations, we used the
Snakemake workflow management system (Koster and
Rahmann 2012) to create a reproducible and scalable HIV-1 sub-
typing method based on phylogenetic pairing (SNAPPy). By com-
bining established tools with an innovative approach, this
pipeline is capable of scaling according to the available compu-
tational resources, allowing the local analysis of large amounts
(tens of thousands) of HIV-1 genomes. SNAPPy was built on top
of the assumption that the phylogenetic relationship provides
the best possible identification of the HIV-1 subtype (Pineda-
Pena et al. 2013; Fabeni et al. 2017). However, recombination
events represent exceptions to the assumption of a common
ancestor (coalescent) (Pérez-Losada et al. 2015). Therefore, we
complemented the phylogenetic inference with the similarity
search method BLAST (Camacho et al. 2009). Reproducibility
and efficient transmission of protocols are current challenges in
bioinformatics, critical to share domain-specific knowledge
(Koster and Rahmann 2012; Di Tommaso et al. 2017). Therefore,
one of the focus in SNAPPy is to give the user access to all the
relevant intermediate files created and how the final subtyping
decision was performed.

Overall, we present a problem-solving pipeline to allow local
large-scale HIV-1 subtyping, based on phylogenetic inference
and complemented with similarity search tasks.

2. Implementation
2.1 SNAPPy architecture

The SNAPPy pipeline was built on the Snakemake workflow
management system (Koster and Rahmann 2012). Several tools/
software were used to perform different tasks within this pipe-
line: MAFFT v7.245 (Katoh and Standley 2013) for multiple se-
quence alignment (MSA); the Biopython v1.72 (Cock et al. 2009)
module SeqlO and the ETE Toolkit (ete3) v3.1.1 (Huerta-Cepas,
Serra and Bork 2016) for data parsing and manipulation; BLAST
v2.7.1 (Camacho et al. 2009) for local database search; IQ-TREE
v1.6.9 (Nguyen et al. 2015) for phylogenetic inference. Other
Python v3.6 (Van Rossum and Drake 2009) packages were also

used to create tests, pytest (Krekel et al. 2019), and data manipu-
lation, numpy (Oliphant 2006) and pandas (McKinney 2010). For
package management and to create a contained environment
for SNAPPy, we recommend Conda (Anaconda Software
Distribution 2019), and provided a ready to use file to this end
(‘environment.yaml’) as well as instructions on how to install
and utilize it in SNAPPy’s documentation page (Aradjo, Martins
and Osério 2019).

The term ‘target’ used in this manuscript refers to the file
currently being processed by SNAPPy. When used for subtyping,
SNAPPy performs the following tasks to a given target sequence:
1) split the input in multiple single FASTA files; 2) alignment to
the reference genome; 3) BLAST against a set of HIV-1 reference
sequences; 4) perform phylogenetic inferences using the BLAST
top hits, the target, and an outgroup sequence; 5) sliding win-
dow BLAST against a database of HIV-1 reference sequences; 6)
concatenation and analysis of the results obtained in the previ-
ous tasks and creation of the output results. Fig. 1 is a schematic
representation of this pipeline. At the end of the subtyping task,
SNAPPy produces two files the ‘subtype_results.csv’ and the
‘report_subtype_results.csv’, corresponding to a simplified ver-
sion of the subtyping result and a more extensive report of all
the outputs created by SNAPPy.

Alternatively, as any other Snakemake (Koster and
Rahmann 2012) pipeline, intermediate tasks can be performed
without the execution of the entire pipeline, making SNAPPy ex-
tremely useful for HIV-1 MSA (Fig. 1, Point 7). To match the
names of the intermediate files created by SNAPPy and the
header of the target sequences, a file named ‘keys_and_ids.csv’
is created. An in-depth description of each of these general
steps can be seen in the following sections.

2.1.1 Reference sequences

In all instances of SNAPPy, the HXB2 (GenBank: K03455) refer-
ence genome was used as a genomic position reference. The
outgroup sequence used in the phylogenetic analysis corre-
sponds to the CONSENSUS_CPZ sequence from the HIV se-
quence database (Theoretical Biology and Biophysics Group
2019) (Alignment type: Consensus/Ancestral, Year: 2002,
Organism: Other SIV, Alignment ID: S02CG1). The creation of a
comprehensive set of HIV-1 reference sequences proved to be a
challenge. We based our dataset creation on the previously cu-
rated ‘HIV sequence database 2010 subtype reference genomes
sequences compendium’ (Kuiken et al. 2010) and the ‘HIV Drug
Resistance Database reference sequences’ (Shafer 2006). The fi-
nal subtype reference dataset for SNAPPy consisted of 491 geno-
mic sequences. It included references for groups N, O, P, and
within group M for Subtypes B, C, D, G, H,], and K, Sub-subtypes
A1, A2, F1, and F2 and CRFs until the number 99. Please notice
that some CRFs are not represented due to lack of at least two
high-quality genomes available (CRFs numbered 30, 66, 75, 76,
84, 89, 91, 95, 97, and 98). The full reference dataset (491 sequen-
ces) is used for the BLAST task (see Section 2.1.3) and a subset
only containing groups, subtypes, Sub-subtypes and CRFs 1 and
2 references (56 sequences) is used in the sliding window BLAST
(see Section 2.1.5). For more information on these reference
datasets please consult the Supplementary Table S1.

2.1.2 Alignment to reference

After splitting the MSA into several single sequence FASTA files,
each of them is aligned to the HIV-1 reference genome (HXB2).
The module SeqlIO from Biopython (Cock et al. 2009) is used to
parse and manipulate the FASTA files in SNAPPy. The align-
ment is done using MAFFT (Katoh and Standley 2013). The

https://academic.oup.com/ve/article-lookup/doi/10.1093/ve/vez050#supplementary-data

Multiple sequence

alignment input

Split in multiple
FASTA files

Align and map to
reference

P.M. M. Aratdjoetal. | 3

~N—

BLAST against
reference sequences

Alternative path to
perform multiple
sequence alignment

Sliding window BLAST

Number of
cores
specified

Perform three separate
phylogenetic analysis

Rules evaluate the
results

a4

Subtyping result and

report outputs created

Figure 1. SNAPPy workflow diagram.

alignment method used does not allow the insertion of gaps in
the reference sequence. After the alignment is performed, the
target sequence is trimmed to only contain the genomic region
specified by the user in the ‘config.yaml’ file. Being the currently
available options ‘GAG’, ‘PR’, ‘RT’, ‘PR-RT’, INT’, ‘POL’, ‘ENV’,
and ‘GAG-POL-ENV’, which correspond to the HIV-1 genomic
regions with the same names in the HXB2 reference genome.
The resulting files are them written to the ‘aligned’ folder.

2.1.3 BLAST

The obtained alignments are them BLASTed against a local
database of 491 HIV-1 reference sequences (see Section 2.1.1).
For this task, BLAST (Camacho et al. 2009) is used. The results
were sorted by bitscore (considering higher is better) and the
best scoring result is outputted in the ‘report_subtype_re-
sults.csv’ file in the column ‘closser_ref’. The BLAST results are
also used to make three groups of references sequences: con-
taining the first forty-eight results; containing the first forty-
eight results of only subtype references; containing the first
forty-eight results of only CRF references. These three groups of
reference sequences are then used in the phylogenetic analysis.
The selected number of sequences (forty-eight) showed good

compromise between analysis time and reproducibility, as dis-
cussed in Section 2.1.4. Since this BLAST task is done as prepa-
ration step to the phylogenetic analysis, it must have high
sensitivity, so no related reference sequences are missed. To
achieve this, the word size parameter was set to 10. We also re-
stricted the cutoff E-value to 1.0e-10 to avoid the creation of
large output files, without restricting the results. The intermedi-
ate files of the BLAST analysis are outputted to the ‘blast’ folder,
being available for further consulting. For the split in subtype
and CRF references in this step of SNAPPy, CRFs 1 and 2 are
treated as subtypes, not CRFs. This decision was made based on
the high prevalence of these CRFs and their ambiguous origin
(Gao et al. 1996; Abecasis et al. 2007).

2.1.4 Phylogenetic inference

To the three previously selected groups of forty-eight references
(see Section 2.1.3), the target sequence and a non-HIV-1 se-
quence for rooting (see Section 2.1.1) are added. Obtaining three
sets of fifty sequences that will serve as inputs for the phyloge-
netic analysis. Groups of fifty sequences showed to be con-
tained and yet a comprehensive set of sequences to perform the
phylogenetic inference. To perform the phylogenetic analysis,

4 | Virus Evolution, 2019, Vol. 5, No. 2

IQ-TREE (Nguyen et al. 2015) was used with the general time re-
versible (GTR) nucleotide substitution model, empirical base fre-
quencies (+F), and a discrete Gamma model with four rate
categories (+G4), with the fast tree search mode, and zero as
seed number. The ETE toolkit (Huerta-Cepas, Serra and Bork
2016) was applied to parse and manipulate the phylogenetic
trees created within SNAPPy. After rooting on the outgroup; it is
inferred if the target sequence belongs to a monophyletic clade
with sequences of one, and only one, subtype or CRF. If this
happened, we consider that there is phylogenetic evidence of
the relationship between the target sequence and a reference
subtype/CRF. The result of this inference, together with the sup-
port values for that node (Shimodaira-Hasegawa like approxi-
mate likelihood ratio test with 1,000 replicates test, as
implemented in IQ-TREE), are then outputted to the ‘report_sub-
type_results.csv’ file. Resulting in six output columns:
‘node_all_refs’, ‘s_node_all_refs’, ‘node_pure_refs’, ‘s_node_pur-
e_refs’, ‘node_recomb_refs’, and ‘s_node_recomb_refs’. The in-
termediate files of the phylogenetic analysis are outputted to
the ‘trees’ folder. The notation ‘all’, ‘pure’, and ‘recomb’ refers to
the set of references used for that phylogenetic reconstruction.

2.1.5 Sliding window BLAST

The sliding window BLAST can be performed in parallel with
the tasks described in Sections 2.1.3 and 2.1.4, being only depen-
dent on the outputs from the Alignment to the reference task
(Section 2.1.2). Initially, the positions in the target sequence cor-
responding to gaps (-)) are excluded. For this task, BLAST
(Camacho et al. 2009) is used. The length of the sliding window
was set to 400 nucleotides, a size previously reported to allow
phylogenetic inference in HIV-1 (Pineda-Pena et al. 2013).
Smaller fragments/sequences are not processed by this method.
The step size used is fifty nucleotides, creating eight bins for
each window. The result for each BLAST window, and conse-
quently its eight bins, is the subtype of the top result (bitscore)
reference sequence. If more than one sequence of different sub-
types has the same top score, the output for all bins of that win-
dow is null (*-’). If the method fails to produce an output, the
result for all bins of that window is null. After all possible sliding
windows have been BLASTed, several bins will have multiple
outputs. Then, a majority rule is applied to decide the final sub-
type for that bin. In case of a tie, the result for that bin is null.
Fig. 2 contains a schematic representation of this process. The
database used to BLAST against in this task only contains the
group, subtype, sub-subtype and CRF1 1 and 2 references, as de-
scribed in the references section (fifty-six sequences). The word
size parameter applied was 30, with the purpose of obtaining
high specificity. Values higher than this showed to cause insta-
bility in our tests (low reproducibility). An E-value cutoff of 1.e-
50 was used to ensure the generated outputs were not too large,
without losing real BLAST hits. The outputs of this inference are
written to the ‘report_subtype_results.csv’ file in the column
‘recomb_result’ and the resulting files from these tasks are out-
putted to the ‘blast’ folder.

2.1.6 Decision rules

The results generated by the full sequence BLAST, phylogenetic
analysis, and the sliding window BLAST are then processed us-
ing a set of rules to produce the final output. These rules are ex-
ecuted in order, meaning that the second rule is only applied if
the first rule criteria were not met, and so forth. The list of these
rules can be consulted in Supplementary Table S2. At the end of
the process, two final outputs are created in the snappy folder:

L Wy
FASTA file
[B I
| B | Slidin
| " (Tie B and C) | ot
windows
| ' (Tie B and C)
[e]ls]B]B]B[B]E]E
B|B|B|B|B|B|B|B
- : : : : | = Bins
Final result
IBIBIB[BIBI'I'I'_ per bin

Figure 2. Sliding window BLAST schematic representation.

‘subtype_results.csv’ and ‘report_subtype_results.csv’, as men-
tioned earlier.

2.1.7 System management

SNAPPy is a pipeline that performs several tasks, some of them
generate a relatively large number of outputs. Therefore, in or-
der to avoid wasting unnecessary disk space and simplifying
the user experience, some of the intermediate files produced by
SNAPPy are deleted before the end of the process. However, all
the relevant files for the subtyping decision are kept and avail-
able for consulting after the pipeline finishes. At the end of each
SNAPPy run, a snakemake hidden folder named ‘.snakemake’ is
deleted because it occupies a substantial amount of space.
However, this folder contains all the logs about the tasks per-
formed and may be useful for debugging.

SNAPPy is distributed with a series of built-in tests created
using pytest (Krekel et al. 2019). After installing SNAPPy or after
making alterations in SNAPPy’s folder is recommended to run
the tests to infer if the pipeline is behaving as expected.

SNAPPy’s documentation (Aradjo, Martins and Osério 2019)
includes detailed instructions on: pipeline installation; tutorials
on how to use it; a list of available commands; an in-depth de-
scription of each pipeline step; FAQ; and how to cite and user li-
cense information.

2.2 Pipeline evaluation

2.2.1 Reproducibility

One of the bases of SNAPPy is phylogenetic inference, which
has some stochasticity involved. As implemented in IQ-TREE
(Nguyen et al. 2015), the initial topologies are constructed based
on heuristic methods, which afterwards is optimized with
maximum-likelihood rearrangements. In theory, this could lead
to variance in the output of the subtyping pipeline.
Furthermore, for the evaluation of the branch support, we were
faced with the possibility of using statistic-based (e.g.
Shimodaira-Hasegawa test) or sampling-based (e.g. bootstrap-
ping) methods. In our tests, we found that the usage of boot-
strapping approaches leads to some lack of reproducibility in
the pipeline outputs, even at one thousand replicates, as previ-
ously reported (Pineda-Pena et al. 2013). Which may be

https://academic.oup.com/ve/article-lookup/doi/10.1093/ve/vez050#supplementary-data

explained by the low percentage of informative sites found in
the tested HIV-1 sequences, which are extremely similar among
each other. The increment of the bootstrapping replicates
would lead to an exponential increment of the phylogenetic in-
ference step computational time, making the pipeline much
slower. Therefore, we decided to use a statistic-based branch
support inference method, the Shimodaira-Hasegawa test, for
phylogenetic inference in SNAPPy. As stated in the Sections
2.1.3 and 2.1.5, when using BLAST, the word size and cutoff
parameters were selected to achieve the desired objectives (sen-
sitivity or specificity) and ensure the stability of the analysis.
After the pipeline was constructed, we performed 6 sets of 3 in-
dependent SNAPPy runs with a test set of 5,285 sequences (see
Section 2.2.2) and compared the outputs of each independent
run in terms of reproducibility. The obtained result was 100% re-
producibility, meaning that the output file ‘subtyping re-
sults.csv’ for each of the independent runs were exactly the
same.

2.2.2 Scalability

SNAPPy was built for large-scale analysis, taking advantage of
modern multi core/thread CPUs. The usage of Snakemake
(Koster and Rahmann 2012) as a workflow manager allows the
construction of a directed acyclic graph of jobs, inferring which
tasks need to be performed sequential and which can run in
parallel. To infer the overall scalability of SNAPPy regarding
multithreading, we performed the subtyping of a test set of
5,285 sequences with the following number of CPU threads: 1, 2,
4, 8, 16, and 32. The selection of these numbers was made hav-
ing as objective the comparison of the computation time reduc-
tion by half (halving) when doubling the amount of
computational resources. In Fig. 3, there is a comparison of the
real time that SNAPPy took to subtype the test set versus the
expected halving time. This expected time reduction is purely
theoretical and constructed based on the time SNAPPy took to
subtype the test set with one core and subsequence duplication
of the number of computational resources used. The perfor-
mance regarding smaller test sets and for specific genomic
regions was also evaluated and can be consulted in
Supplementary Table S3. These tests were performed in a server
with double Xeon E5-2680 2.50 GHz CPU (twelve cores/twenty-
four threads), 128 GB of ram 2,133 MHz, in a SATA III SSD hard
drive.

SNAPPy manages the generated files in order to give the user
all the information needed to understand the results and deci-
sions made. This feature is a tradeoff purposely made to give
users the maximum amount of information without wasting
disk space. Nevertheless, when used for large-scale analysis
(tens of thousands of sequences), SNAPPy will create a large
number of small files that together occupy a considerable
amount of disk space. As an indicator, a SNAPPy run of 50,000
HIV-1 sequences occupied at the peak 59 GB and <4 GB after the
depletion of the snakemake hidden logs folder.

2.2.3 Subtyping methods comparison

The division of HIV-1 in groups, subtypes, and sub-subtypes is
extremely valuable for epidemiological inferences (Abecasis
et al. 2013; Yebra et al. 2015; Araujo et al. 2019). However, this di-
vision is a man-made construction that only makes sense in the
eyes of a phylogenetic or epidemy reconstruction (Hemelaar
2013; Araujo et al. 2019). Therefore, it makes sense to argue that
phylogenetic reconstruction is the gold standard for HIV-1 sub-
typing (Pineda-Pena et al. 2013; Fabeni et al. 2017), with the ex-
ception of recombination events that represent a deviation

P.M. M. Aradjoetal. | 5

1600

—— SNAPPY's performance
1400 === === Theoretic halving reduction

1200
1000

800

Time (minutes)

600

400

200

40
30
20
10

Loss (%)

1 2 4 8 16 32
Number of CPU cores

Figure 3. Multiple thread CPU time performance and associated percentage loss.

from the coalescent assumption (Pérez-Losada et al. 2015).
Since SNAPPy is based on phylogenetic inference, using phylog-
eny to evaluate SNAPPy’s performance would be poorly infor-
mative. Given this limitation, we decided to test SNAPPy against
a set of other HIV-1 subtyping methods, evaluating their conver-
gence and divergence. The selected HIV-1 subtyping methods
were REGA v3.0 (Pineda-Pena et al. 2013), COMET v2.3 (Struck
et al. 2014), and SCUEAL (Kosakovsky Pond et al. 2009). This se-
lection was made based on our best knowledge of available
tools including statistical and phylogeny-based methods.

For this comparison, a test set of 5,285 sequences was cre-
ated (the ids of the test set sequences can be consulted in
Supplementary Table S4). From all the available complete HIV-1
genomes (>9,100) in the HIV-1 sequence database (Theoretical
Biology and Biophysics Group 2019) 10% of sequences for each
of the subtypes present (according to the database) were se-
lected at random, comprising a total of 1,057 genomes. Those
genomes were then trimmed for four genomic regions: ENV,
GAG, POL, and PR-RT. Together, the full genome sequences and
the trimmed replicates compose the full test set (5,285 sequen-
ces). This test set was designed to explore the capabilities of
each subtyping method in an extensive variety of subtypes
while using different HIV-1 genomic regions as input. However,
there are differences in the methods implementations; SCUEAL
only subtypes sequences of the POL region, therefore the com-
parison dataset for this tool is smaller (1,057 sequences x 3
regions = 3,171 sequences), and is capable of recognizing CRFs
until the number 43; REGA is able to recognize CRFs until the
number 47; COMET is cable of recognizing CRFs until the num-
ber 96. The outputs for each subtyping tool required some ma-
nipulation in order to achieve a ‘common language’, making it
possible to compare all the tools outputs. Regarding REGA out-
puts, the terms ‘like’ and ‘potential recombinant’ were ex-
cluded, maintaining the assigned subtype; the outputs with
‘recombination of were named URFs of the described subtypes
or URF_CPX if there was an indication of more than two recom-
bining subtypes. REGA results marked only with the informa-
tion of ‘Recombinant’ were transformed into URF_CPX; and
when the outputs were ‘Check the report’ no subtyping result
was assigned. For the COMET outputs the only transformation

https://academic.oup.com/ve/article-lookup/doi/10.1093/ve/vez050#supplementary-data
https://academic.oup.com/ve/article-lookup/doi/10.1093/ve/vez050#supplementary-data

6 | Virus Evolution, 2019, Vol. 5, No. 2

was to change ‘unassigned’ to URFs of the subtypes present or
URF_CPX if more than two subtypes were reported. Concerning
the SCUEAL outputs, the words ‘ancestral’ and ‘like’ were ex-
cluded; ‘Complex’ was converted to URF_CPX and ‘AE’ to
CRF_01. The SCUEAL results with ‘recombinant’ and more than
two subtypes were converted to URF_CPX and those with less
than two subtypes converted to URFs; for outputs with ‘U’ and
‘FAILED’ no subtyping result was assigned. The comparison be-
tween the four subtyping methods results can be seen in Fig. 4.
The highest level of agreement was observed between SNAPPy
and COMET (83%), whereas SCUEAL and REGA had the lowest
concordance (61%). The remaining pairs showed results in the
range between 72 and 78%.

We also calculated the precision, recall, and F1 scores (bal-
ance of precision and recall) for the three subtyping methods
tested (REGA, SCUEAL, and COMET) versus SNAPPy
(Supplementary Tables S5-S7). This analysis was performed to
give an indication for users comparing results obtained with
other tools and SNAPPy, for each HIV-1 group, subtype, sub-
subtype, CRF, and URF. The precision and recall metrics can be
seen as indicators if SNAPPy is classifying a given subtype in the
test set more or less often, respectively, than the subtyping
method it is being compared with. Without surprise, in the test
set the results for Subtypes B and C (the most abundant) and
non-M HIV-1 groups (N, O, and P) showed the highest F1 scores.
The results for URFs and CRFs showed great variability.

3. Discussion and conclusions

The quantity of available HIV-1 genomes is ever increasing; the
manual handling of such large amounts of data is impractical,
leading to the need of creating analysis pipelines. Such pipe-
lines targeting specific challenges are a practical and effective
way of disseminating domain knowledge and increasing repro-
ducibility (Koster and Rahmann 2012; Di Tommaso et al. 2017).
The test set used for the different metrics evaluated here is
composed of 1,057 sequences of HIV-1 genomes and the same
sequences trimmed for the genomic regions ENV, GAG, POL,
and PR-RT corresponding to a total of 5,285 sequences.

There is some stochasticity involved in the phylogenetic in-
ference process as established in IQ-TREE (Nguyen et al. 2015).
Nevertheless, the parameters selected for the branching sup-
port evaluation and the number of samples per tree allowed
100% reproducibility among independent SNAPPy runs results
in an extremely diverse test set. This outcome highlights the
versatility and reliability of this pipeline.

Together with the increment in the amount of data avail-
able, there have been hardware improvements, particularly in
recent years CPUs with a high number of cores/threads (>8)
have reached the mainstream segment of the market.
Therefore, tool building should be done to take maximum ad-
vantage of these resources. Snakemake (Koster and Rahmann
2012), the pipeline workflow management systems that SNAPPy
is built upon, allows an almost linear scaling in the ratio of com-
putational time/number of CPU cores used. The expected reduc-
tion by half of the computational time by doubling the number
of threads used was observed in SNAPPy runs of the test set
with minor percentage lost when using 2, 4, 8, or 16 CPU threads
(1, 2, 5, and 9%, respectively). However, for the runs with thirty-
two threads, the drop from the expected halving time was al-
most 35%. This drop may be a consequence of the hardware
used, since it is composed of twenty-four independent CPU
cores (two CPUs x twelve cores) passing that number may cause
single thread performance loss. Therefore, we do not advice the

SNAPPy REGA v3.0 COMET v2.3 SCUEAL
SNAPPy 72.59 77.04
REGA v3.0 | 72.59 [74.07 61.35
COMET v2.3 74.07 78.22
SCUEAL 77.04 | 61.35 " 7822

60% T0% BO0% 90%

Figure 4. Percentage of agreement observed among the HIV-1 subtyping tools
tested.

usage of SNAPPy multithreading capabilities in more instances
than the number of physical CPU cores of the machine used.

The classification of different HIV-1 sequences in groups,
subtypes, sub-subtypes, or recombinant forms is a challenging
and sometimes ambiguous process. Sequence-based phyloge-
netic reconstruction of the evolutionary history assuming a
common ancestry of the viral samples is consensually identi-
fied as the best approach for HIV-1 subtyping (Pineda-Pena et al.
2013; Fabeni et al. 2017). However, the coalescent assumption is
not fulfilled in the cases of recombination (Pérez-Losada et al.
2015). Therefore, two complementary approaches were used in
SNAPPY, one based on BLAST (Camacho et al. 2009) similarity
searches and another based on the phylogenetic inference (IQ-
TREE, Nguyen et al. 2015).

The side-by-side comparison of different HIV-1 subtyping
methodologies is complex and sometimes impossible. Here, we
compared SNAPPy, REGA (Pineda-Pena et al. 2013), COMET
(Struck et al. 2014), and SCUEAL (Kosakovsky Pond et al. 2009)
outputs for a test set of 5,285 sequences (Fig. 4). As described in
the methods section, the regions of the HIV-1 genome these
tools are capable of subtyping and the number of CRFs they are
able to identify varies. Without surprise, COMET and SNAPPy
have the highest value of accordance (>80%) among the tested
tools. This outcome is highly influenced by the fact that these
tools are prepared to identify a large number of CRFs (>90) in
comparison with the remaining two tools in this test. The low-
est accordance was observed between the pair REGA and
SCUEAL (61%). The lowest pairing for SNAPPy was REGA with
73% followed by SCUEAL with 77%.

In Supplementary Tables S5-S7, we show the precision, re-
call, and F1 scores resulting from the comparison of three sub-
typing methods (REGA, COMET and SCUEAL) with SNAPPy, for
each HIV-1 group, subtype, sub-subtype, CRF, and URF. The
overall F1 scores for REGA and SCUEAL suffer from the fact that
these tools identify a narrower range of CRFs than SNAPPy.
Moreover, SCUEAL only subtypes sequences for the POL HIV-1
genomic region, being sequences from the remaining regions
treated as missing data, and therefore driving the F1 score fur-
ther down. Nevertheless, is it expected a great reproducibility
among these two tools and SNAPPy for Subtypes B and C, group
N and several CRFs (1, 5, 13, 27, 35, 40, 42, and 47 for REGA and 5,
17, 18, 19, 24, 31, and 33 for SCUEAL). On the other hand, COMET
is capable of identifying a wide range of CRFs, similarly to
SNAPPy, which is observed in the overall F1 score (0.83), preci-
sion (0.87), and recall (0.83) results. Regarding the test set, these
two tools identified CRFs 17, 27, 34, 40, 47, 68, and 74 in exactly
the same cases and Subtypes B and C, and Groups N, P, and O
with a high similarity rate (F1 scores, respectively: 0.99, 0.94, 1.0,
1.0, and 0.96). The results for subtypes that showed less repro-
ducibility among the three tested methods and SNAPPy, were
Subtypes H and K and sub-Subtype A2 and F2.

https://academic.oup.com/ve/article-lookup/doi/10.1093/ve/vez050#supplementary-data
https://academic.oup.com/ve/article-lookup/doi/10.1093/ve/vez050#supplementary-data

These results highlight the variability observed among HIV-1
subtyping tools, which is expected (Gifford et al. 2006; Pineda-
Pena et al. 2013; Fabeni et al. 2017) and should not be seen as a
drawback but instead as an interval of possibilities around a
subtyping result. Moreover, these results demonstrate that
when several HIV-1 tools agree in one result, there is a high de-
gree of confidence in that outcome. SNAPPy is not strictly better
or worse than the other tools regarding the final result, but it is
a needed addition to this space, allowing local large-scale HIV-1
subtyping while being versatile, reliable and cable of scaling.
The results reported here emphasized the importance of
SNAPPy to facilitate the subtype annotation of large datasets of
HIV-1 genomic sequences. This work represents a novel ap-
proach for HIV-1 subtyping that can contribute significantly to-
wards a better understanding of the relevant roles and traits of
the different HIV-1 subtypes.

Key points

® The amount of available HIV-1 genomic information is
increasing, therefore there is a need to create tools to
perform scalable analysis of HIV-1 subtypes.

® HIV-1 subtyping methods have considerable differences
in their implementations and, consequently, their
outputs.

® SNAPPy is capable of local large-scale HIV-1 subtyping
with great reproducibility while being able to scale
according to the computational resources available.

Data availability

SNAPPy source code is freely available via GitHub at: https://
github.com/PMMAraujo/snappy/releases. SNAPPy documenta-
tion can be consulted at: https://snappy-hivl-subtyping.readthe
docs.io/.

Supplementary data

Supplementary data are available at Virus Evolution online.

Funding

This work was supported by FEDER, COMPETE, and FCT by
the projects NORTE-01-0145-FEDER-000013, POCI-01-0145-
FEDER-007038, and IF/00474/2014; FCT PhD scholarship PDE/
BDE/113599/2015; FCT contract IF/00474/2014.

Conflict of interest: None declared.

References

Abecasis, A. B. et al. (2005) ‘Protease Mutation M89I/V Is Linked
to Therapy Failure in Patients Infected with the HIV-1 non-B
Subtypes C, F or G’, AIDS, 19: 1799-806.

—— et al. (2007) ‘Recombination Confounds the Early
Evolutionary History of Human Immunodeficiency Virus Type
1: Subtype G Is a Circulating Recombinant Form’, Journal of
Virology, 81: 8543-51.

—— et al. (2013) ‘HIV-1 Subtype Distribution and Its
Demographic Determinants in Newly Diagnosed Patients in

P.M. M. Aratdjoetal. | 7

Europe Suggest Highly Compartmentalized Epidemics’,
Retrovirology, 10: 7.

Anaconda Software Distribution. Computer Software. Vers. 3-
4.6.14. Miniconda, April 2019. <https://anaconda.com>.

Araujo, P. M. M. et al. (2019) ‘Characterization of a Large Cluster
of HIV-1 Al Infections Detected in Portugal and Connected to
Several Western European Countries’, Scientific Report, 9: 7223.

Aratjo, P. M. M., Martins, J. S., and Osério, N. S. SNAPPy docu-
mentation. September 2019. <https://snappy-hivl-subtyping.
readthedocs.io/en/latest/>.

Baeten, J. M. et al. (2007) ‘HIV-1 Subtype D infection is associated
with Faster Disease Progression than Subtype a in Spite of
Similar Plasma HIV-1 Loads’, The Journal of Infectious Diseases,
195:1177-80.

Bartolo, I. et al. (2011) ‘Origin and Epidemiological History of
HIV-1 CRF14_BG’, PLoS One, 6: €24130.

Brenner, B. et al. (2003) ‘A V106M Mutation in HIV-1 Clade C
Viruses Exposed to Efavirenz Confers Cross-Resistance to
Non-Nucleoside Reverse Transcriptase Inhibitors’, AIDS, 17:
F1-5.

Camacho, C. et al. (2009) ‘BLAST+: Architecture and
Applications’, BMC Bioinformatics, 10: 421.

Camacho, R. J, and Vandamme, A.-M. (2007) ‘Antiretroviral
Resistance in Different HIV-1 Subtypes: Impact on Therapy
Outcomes and Resistance Testing Interpretation’, Current
Opinion in HIV and AIDS, 2: 123-9.

Cock, P. J. A. et al. (2009) ‘Biopython: Freely Available Python
Tools for Computational Molecular Biology and
Bioinformatics’, Bioinformatics, 25: 1422-3.

Di Tommaso, P. et al. (2017) ‘Nextflow Enables Reproducible
Computational Workflows’, Nature Biotechnology, 35: 316-9.

Easterbrook, P. J. et al. (2010) ‘Impact of HIV-1 Viral Subtype on
Disease Progression and Response to Antiretroviral Therapy’,
Journal of the International Aids Society, 13: 4.

Fabeni, L. et al. (2017) ‘Comparative Evaluation of Subtyping
Tools for Surveillance of Newly Emerging HIV-1 Strains’,
Journal of Clinical Microbiology, 55: 2827-37.

Gao, F. et al. (1996) ‘The Heterosexual Human Immunodeficiency
Virus Type 1 Epidemic in Thailand Is Caused by an
Intersubtype (a/E) Recombinant of African Origin’, Journal of
Virology, 70: 7013-29.

Gifford, R. et al. (2006) ‘Assessment of Automated Genotyping
Protocols as Tools for Surveillance of HIV-1 Genetic Diversity’,
AIDS, 20: 1521-9.

Hemelaar, J. (2013) ‘Implications of HIV Diversity for the HIV-1
Pandemic’, Journal of Infection, 66: 391-400.

Huerta-Cepas, J., Serra, F., and Bork, P. (2016) ‘ETE 3:
Reconstruction, Analysis, and Visualization of Phylogenomic
Data’, Molecular Biology and Evolution, 33: 1635-8.

John-Stewart, G. C. et al. (2005) ‘Subtype C Is Associated with
Increased Vaginal Shedding of HIV-1’, The Journal of Infectious
Diseases, 192: 492-6.

Katoh, K., and Standley, D. M. (2013) ‘MAFFT Multiple Sequence
Alignment Software Version 7: Improvements in Performance
and Usability’, Molecular Biology and Evolution, 30: 772-80.

Kiwanuka, N. et al. (2008) ‘Effect of Human Immunodeficiency
Virus Type 1 (HIV-1) Subtype on Disease Progression in
Persons from Rakai, Uganda, with Incident HIV-1 Infection’,
The Journal of Infectious Diseases, 197: 707-13.

Kosakovsky Pond, S. L. et al. (2009) ‘An Evolutionary
Model-Based Algorithm for Accurate Phylogenetic Breakpoint
Mapping and Subtype Prediction in HIV-1’, PLoS Computational
Biology, 5: €1000581.

https://snappy-hiv1-subtyping.readthedocs.io/
https://snappy-hiv1-subtyping.readthedocs.io/
https://academic.oup.com/ve/article-lookup/doi/10.1093/ve/vez050#supplementary-data
https://anaconda.com
https://snappy-hiv1-subtyping.readthedocs.io/en/latest/
https://snappy-hiv1-subtyping.readthedocs.io/en/latest/
Deleted Text: <bold>:</bold>

8 | Virus Evolution, 2019, Vol. 5, No. 2

Koster, J.,, and Rahmann, S. (2012) ‘Snakemake-a Scalable
Bioinformatics Workflow Engine’, Bioinformatics, 28: 2520-2.

Krekel, H. et al. Computer software. Vers. 4.5.0. Pytest, April
2019. <https://docs.pytest.org/en/latest/>.

Kuiken, C. et al,, eds. (2010). HIV Sequence Compendium. NM:
Theoretical Biology and Biophysics Group, Los Alamos
National Laboratory, LA-UR 10-03684.

Liu, T. F., and Shafer, R. W. (2006) ‘Web Resources for HIV Type 1
Genotypic-Resistance Test Interpretation’, Clinical Infectious
Diseases : An Official Publication of the Infectious Diseases Society of
America, 42: 1608-18.

McKinney, W.,van der Walt, S. and Millman, J. (eds) (2010) ‘Data
Structures for Statistical Computing in Python’. in van der
Walt S. and Millman, J. (eds) Proceedings of the 9th Python in
Science Conference, pp. 51-6. http://conference.scipy.org/pro
ceedings/scipy2010/mckinney.html.

Myers, R. E. et al. (2005) ‘A Statistical Model for HIV-1 Sequence

Classification Using the Subtype Analyser (STAR)),
Bioinformatics, 21: 3535-40.
Nguyen, L.-T. et al. (2015) ‘IQ-TREE: A Fast and

Effective Stochastic Algorithm for Estimating
Maximum-Likelihood Phylogenies’, Molecular Biology and
Evolution, 32: 268-74.

Oliphant, T. E. (2006) A Guide to NumPy. USA: Trelgol Publishing.

Pérez-Losada, M. et al. (2015) ‘Recombination in Viruses:
Mechanisms, Methods of Study, and Evolutionary
Consequences’, Infection, Genetics and Evolution, 30: 296-307.

Pineda-Pena, A.-C. et al. (2013) ‘Automated Subtyping of HIV-1
Genetic Sequences for Clinical and Surveillance Purposes:
Performance Evaluation of the New REGA Version 3

and Seven Other Tools’, Infection, Genetics and Evolution, 19:
337-48.

Renjifo, B. et al. (2004) ‘Preferential in-Utero Transmission of
HIV-1 Subtype C as Compared to HIV-1 Subtype a or D’, AIDS,
18:1629-36.

Robertson, D. L. et al. (2000) ‘HIV-1 Nomenclature Proposal’,
Science, 288: 55-6.

Rozanov, M. et al. (2004) ‘A Web-Based Genotyping Resource for
Viral Sequences’, Nucleic Acids Research, 32: W654-9.

Schultz, A.-K. et al. (2009) ‘jpHMM: Improving the Reliability of
Recombination Prediction in HIV-1’, Nucleic Acids Research, 37:
W647-51.

Serwanga, J. et al. (2015) ‘Frequencies of Gag-Restricted T-Cell
Escape ‘Footprints’ Differ across HIV-1 Clades Al and D
Chronically Infected Ugandans Irrespective of Host HLA B
Alleles’, Vaccine, 33: 1664-72.

Shafer, R. W. (2006) ‘Rationale and Uses of a Public HIV
Drug-Resistance Database’, The Journal of Infectious Diseases,
194(Suppl): S51-8.

Struck, D. et al. (2014) ‘COMET: Adaptive Context-Based
Modeling for Ultrafast HIV-1 Subtype Identification’, Nucleic
Acids Research, 42: e144.

Theoretical Biology and Biophysics Group, Los Alamos National
Laboratory, HIV sequence database, April 2019. <http://www.
hiv.lanl.gov/>.

Van Rossum, G., and Drake, F. L. (2009) Python 3 Reference Manual.
CA: CreateSpace.

Yebra, G. et al. (2015) ‘Analysis of the History and Spread of
HIV-1 in Uganda Using Phylodynamics’, Journal of General
Virology, 96: 1890-8.

https://docs.pytest.org/en/latest/
http://conference.scipy.org/proceedings/scipy2010/mckinney.html
http://conference.scipy.org/proceedings/scipy2010/mckinney.html
http://www.hiv.lanl.gov/
http://www.hiv.lanl.gov/

