iScience

Article

Oxygen vacancy enhanced photocatalytic activity of Cu_2O/TiO_2 heterojunction

Hong Qian, Binxia Yuan, Yuhao Liu, Rui Zhu, Weiling Luan, Chengxi Zhang

yuanbinxia100@163.com (B.Y.) luan@ecust.edu.cn (W.L.)

Highlights

The Cu_2O/TiO_2 heterojunction with oxygen vacancy is obtained by one-step method

The CO yield of Cu_2O/TiO_2 is 1.85 times that of TiO_2, with 10.22 $\mu mol~g^{-1}~h^{-1}$

The performance is the best when the mass fraction of Cu is between 0.075%–0.55%

The free energy of Cu_2O/TiO_{2OV} from *CO₂ to *COOH is 0.088 eV lower than that of TiO₂

Qian et al., iScience 27, 109578 May 17, 2024 © 2024 The Author(s). Published by Elsevier Inc. https://doi.org/10.1016/ ijisci.2024.109578

iScience

Article

Oxygen vacancy enhanced photocatalytic activity of Cu₂O/TiO₂ heterojunction

Hong Qian,¹ Binxia Yuan,^{1,2,4,*} Yuhao Liu,¹ Rui Zhu,¹ Weiling Luan,^{2,*} and Chengxi Zhang³

SUMMARY

In this study, a method was developed to create oxygen vacancies in Cu₂O/TiO₂ heterojunctions. By varying the amounts of ethylenediaminetetraacetic acid (EDTA), sodium citrate, and copper acetate, Cu₂O/TiO₂ with different Cu ratios were synthesized. Tests on CO₂ photocatalytic reduction revealed that Cu₂O/TiO₂'s performance is influenced by Cu content. The ideal Cu mass fraction in Cu₂O/TiO₂, determined by inductively coupled plasma (ICP), is between 0.075% and 0.55%, with the highest CO yield being 10.22 μ mol g⁻¹ h⁻¹, significantly surpassing pure TiO₂. High-resolution transmission electron microscopy and electron paramagnetic resonance studies showed optimal oxygen vacancy in the most effective heterojunction. Density functional theory (DFT) calculations indicated a 0.088 eV lower energy barrier for *CO₂ to *COOH conversion in Cu₂O/TiO₂ with oxygen vacancy compared to TiO₂, suggesting that oxygen vacancies enhance photocatalytic activity.

INTRODUCTION

 TiO_2 is one of the most widely studied semiconductors for environmental and energy issues.^{1–3} However, the photocatalytic efficiency of TiO_2 is limited by its wide bandgap and high recombination rate of photo-generated charge carriers. The use of narrow bandgap semiconductor Cu_2O modification to construct heterojunctions has also attracted widespread attention.^{4,5}

In theory, the difference in band structure between TiO₂ and Cu₂O can easily lead to the formation of type II heterojunctions,⁶ S-type heterojunctions,⁷ and Z-type heterojunctions.⁸ However, TiO₂ and Cu₂O may not form heterostructures during preparation, or the resulting heterostructures may not significantly improve catalytic activity.⁹ The catalytic performance of heterojunction materials is related to the morphology, interfacial contact, dispersibility, and oxygen vacancy defects.^{10–13} Among them, the heterojunction with strong interface contact is helpful to electron transfer, and the oxygen vacancies can also provide more active sites for CO₂ adsorption. Xue et al.¹⁴ prepared a p-type Cu₂O nanoparticle-coated n-type TiO₂ nanotube (TNTs) array-based coaxial heterostructure using a combination of anodization and electrodeposition methods. It was found that the ribs formed during anodization and the added thiourea during electrodeposition played a crucial role in forming the Cu₂O nanoparticle heterostructure. Bai et al.¹⁵ fabricated a uniform p-Cu₂O/n-TiO₂ heterojunction electrode using electrochemical anodization and pulse electrodeposition methods, which exhibited enhanced photoelectrocatalytic (PEC) activity for the degradation of chloramphenicol. Wei et al.¹⁶ stabilized Cu₂O by adjusting the exposed surfaces and structural defects of TiO₂, showing that oxygen vacancy defects enhanced charge separation and effective removal of oxidized holes of Cu₂O. However, the fabrication methods for Cu₂O/TiO₂ heterojunctions are complex and not conducive to large-scale production. Although small-sized samples increase surface area, they are more prone to aggregation, thereby reducing catalytic performance.¹⁷ Meanwhile, excessive bulk oxygen vacancies can also create electron traps,¹⁸ which are detrimental to catalytic reactions. Therefore, controlling the ratio of surface oxygen vacancies to bulk oxygen vacancies is crucial for improving performance.

This work uses a simple one-step hydrothermal method to prepare Cu_2O/TiO_2 heterojunction photocatalytic materials with strong interface contact, high dispersion, and oxygen vacancies. The experimental results indicate that an appropriate amount of Cu^{2+} is beneficial for improving photocatalytic properties, and the photocatalytic reaction mechanism of Cu_2O/TiO_2 with oxygen vacancies has been calculated using density functional theory (DFT).

RESULTS AND DISCUSSION

The influences of EDTA, sodium citrate, and copper acetate on the composition of samples are investigated. Generally, the XRD diffraction peak of Cu_2O gradually increases with the increase of copper acetate. Comparing Figures 1A and S1A, it can be observed that as the amount of EDTA increases, the XRD diffraction peak of Cu_2O decreases, while the diffraction peak of TiO₂ remains unchanged. Comparing Figures 1A and S1B, it can be seen that as the amount of sodium citrate increases, the diffraction peak of Cu_2O becomes more pronounced, while the

^{*}Correspondence: yuanbinxia100@163.com (B.Y.), luan@ecust.edu.cn (W.L.) https://doi.org/10.1016/j.isci.2024.109578

1

¹College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, P.R. China

²School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China

³Department of Optoelectronic Information Science and Engineering, School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China ⁴Lead contact

Figure 1. The samples obtained at the different amounts of Cu(OAc)₂ under the conditions of 1 mmol EDTA and 0.3 mmol sodium citrate (A and B) XRD patterns; XPS spectra.

(C) Survey.

(D) Cu2p.

(E) Ti2p, and (F) O1s.

diffraction peak of TiO_2 is significantly affected. It indicates that EDTA and sodium citrate are essential in generating Cu_2O and TiO_2 , respectively.

Figures 1A and 1B show the XRD patterns of samples obtained by different copper acetate contents under 1 mmol EDTA and 0.3 mmol sodium citrate. When the molar amount of $Cu(OAc)_2$ is less than or equal to 1 mmol, only the diffraction peak of anatase TiO₂ (PDF # 21–1272) can be seen. It can be seen from the TiO₂/Cu₂O-1 sample that there is a significant right shift in the TiO₂ (101) crystal plane, indicating the presence of lattice defects in TiO₂. When the molar amount of Cu(OAc)₂ is greater than 1.5 mmol, the Cu₂O (PDF # 78–2076) diffraction and Cu diffraction peaks are detected, indicating Cu₂O/TiO₂/Cu composite material.

Through X-ray photoelectron spectroscopy (XPS) testing, it is found that there are characteristic peaks of Cu2p orbitals in the TiO₂/Cu₂O-1 sample (Figure 1C). After fitting the XPS spectra of the Cu2p orbitals (Figure 1D), the characteristic peaks at 931.46 eV and 951.37 eV correspond to Cu⁺, indicating the presence of Cu₂O. Although the characteristic peak of the Cu2p_{3/2} orbitals near 931.5 eV in the TiO₂/Cu₂O-0.5 sample is not significant, a trending peak can still be observed. The Ti 2p peak in TiO₂/Cu₂O-0.5 has an asymmetric shape, with four peaks at 456.93 eV, 462.83 eV, 457.78 eV, and 463.48 eV, corresponding to Ti³⁺ 2p_{3/2}, Ti³⁺ 2p_{1/2}, Ti⁴⁺ 2p_{3/2}, and Ti⁴⁺ 2p_{1/2}, respectively.¹⁹ Based on the peak area calculations, the ratio of Ti³⁺/Ti⁴⁺ in TiO₂/Cu₂O-0.5 and TiO₂/Cu₂O-1 is approximately 27% and 21%, respectively. Thus, TiO₂/Cu₂O-0.5 exhibits more surface oxygen vacancies compared to TiO₂/Cu₂O-1.²⁰ The peaks at 529.00 eV, 530.57 eV, and 531.57 eV in the O1s orbital correspond to lattice oxygen (Cu₂O and TiO₂), oxygen vacancies, and hydroxyl groups adsorbed on the catalyst surface, respectively.^{21–23} In addition, oxygen vacancies can enhance the catalyst's adsorption capacity for hydroxyl and H₂O molecules, thereby increasing the adsorption of H⁺ and enhancing catalytic performance in CO₂ reduction reactions.

From Figure 2A, the anatase TiO₂ obtained without Cu(OAc)₂ exhibits a mixture of rhombic and small particles. When the copper acetate is added, the large rhombic TiO₂ is decomposed into small particles. When the amount of copper acetate is 0.1–1 mmol, the sample has uniform morphology and high dispersibility, see Figures 2B–2D. In the high resolution transmission electron microscope (HRTEM) image of the TiO₂/ Cu₂O sample (Figure 2G), we detected that lattice spacings of 0.242 nm and 0.353 nm correspond to the Cu₂O (111) and TiO₂ (101) crystal planes, respectively. Furthermore, significant oxygen vacancies are observed in both TiO₂ and Cu₂O, particularly with noticeable lattice distortions near the interface of TiO₂ and Cu₂O (Figure S6). Lattice distortions can result in displacements and distortions of atomic positions, causing local strains and distortions. The distortions can lead to changes in the positions of nearby oxygen atoms, creating vacancies or defects in the vicinity, thereby forming oxygen vacancies. Meantime, the formation of oxygen vacancies may also induce lattice distortions. When oxygen atoms depart from their original positions in the lattice, surrounding atoms may readjust to maintain overall balance and stability, leading to lattice distortions. Comparing the TEM images of different EDTA and sodium citrate samples (Figure S2), when the amount of copper acetate used is small, increasing sodium citrate or reducing EDTA will cause the development of the sample toward a sheet-like structure. When the amount of copper acetate is high, sodium citrate and EDTA have little effect on the sample's morphology, mainly consisting of

iScience Article

Figure 2. TEM images of different sample (A) TiO₂. (B) TiO₂-0.1. (C) TiO₂/Cu₂O-0.5. (D) TiO₂/Cu₂O-1. (E) TiO₂/Cu₂O/Cu-1.5. (F) TiO₂/Cu₂O/Cu-3. (G) HRTEM images of TiO₂/Cu₂O-1.

small particles. It is consistent with the conclusion obtained by XRD that EDTA and sodium citrate affect the generation of Cu_2O and TiO_2 , respectively.

Figures 3A and 3B show the CO yield of CO₂ reduction in all samples. As the amount of copper acetate increases, the average CO yield decreases. When the amounts of copper acetate are 0.5 mmol and 1 mmol, the yields of CO are 10.22 μ mol g⁻¹ h⁻¹ and 9.41 μ mol g⁻¹ h⁻¹, which are 1.85 times and 1.70 times that of the sample without copper acetate. The results indicate that the formation of Cu₂O/TiO₂ heterojunction significantly improves the catalytic performance of TiO₂. To further confirm the stability of the catalytic performance of the heterojunction catalyst, the cyclic photocatalytic tests are conducted on the TiO₂/Cu₂O-0.5 sample, as shown in Figure 3D. After 3 cycles, the CO production remains at the same level, indicating the excellent photocatalytic stability. Compared to other heterojunctions reported in the literature, the TiO₂/Cu₂O-0.5 sample prepared in our work exhibits excellent catalytic activity (Figure 3E).^{8,24–34} When the amounts of copper acetate are 1.5 mmol and 3 mmol, the yields of CO are 7.91 μ mol g⁻¹ h⁻¹ and 5.7 μ mol g⁻¹ h⁻¹, respectively. The increase of Cu and the decrease of TiO₂ is not conducive to CO₂ conversion. In the meantime, the contents of Cu element in TiO₂/Cu₂O-0.1, TiO₂/Cu₂O-0.5, and TiO₂/Cu₂O-1 samples are determined by inductively coupled plasma technology (ICP). Thus, when the Cu element content in the sample is between 0.075% and 0.5501%, the catalytic activity of the Cu₂O/TiO₂ heterojunction catalyst is the best. Excessive proportion of Cu₂O in Cu₂O/TiO₂ system can affect its catalytic performance, see Figure S3.

To investigate the reasons for the improved CO₂ reduction performance of Cu₂O/TiO₂ photocatalysts, the instantaneous photocurrent response (i-t curve) is used to characterize the photo response ability (Figure 3F). It can be seen that there is no apparent photocurrent record in the dark and the photocurrent of all samples increases at the moment of illumination. However, the TiO₂ sample shows a clear "shark peak" after illumination. In contrast, the TiO₂/Cu₂O-0.5 sample shows a "rectangular peak", indicating that the photo-generated electrons and holes in the TiO₂/Cu₂O-0.5 sample can quickly reach the optimal separation state after illumination excitation, which is conducive to the rapid

Figure 3. Photocatalysis and optoelectronic performance

(A) photocatalytic CO production.

(B) photocatalytic CO yield.

(C) ICP plot.

- (D) TiO₂/Cu₂O-0.5 sample photocatalytic cycling test for CO production.
- (E) Comparison chart of catalytic activity.
- (F) I-t curve.
- (G) EIS curve.
- (H) M-S curve.

progress of catalytic reactions.³⁵ EIS is an effective technique for studying the interface resistance between semiconductors and electrolytes. In Figure 3G, the radii of all composite materials are smaller than that of the TiO_2 sample, indicating that the increase of Cu_2O reduces the resistance in the chemical reaction.

The Mott-Schottky (M-S) curve can be used to analyze the sample semiconductor material's type and carrier concentration. Figure 3H shows that as the amount of copper acetate increases, the curve exhibits positive and negative slopes, indicating the simultaneous presence of n-type (TiO₂) and p-type (Cu₂O) semiconductors in the composite material. Meanwhile, due to the low content of Cu₂O, the M-S curves of TiO₂-0.1, TiO₂/Cu₂O-0.5, and TiO₂/Cu₂O-1 samples are similar to that of the TiO₂ curve. The Mott-Schottky equation shows that the carrier concentration of a material is inversely proportional to the slope of the tangent line. The higher the carrier concentration, the lower the slope of the tangent line. Figure 3F shows that the slope of TiO₂/Cu₂O-1 is the smallest, indicating that the carrier concentration and electron migration rate in the TiO₂/Cu₂O-1 sample are the best.

When a small amount of copper acetate is added, the UV-visible spectra of the samples and the corresponding band gaps remain almost unchanged (Figure 4A). However, as the amount of copper acetate increases to 1.5 mmol and 3 mmol, the light response intensity decreases significantly, as shown in Figure S4. However, there is no significant difference in the band gap width, which is mainly because the content of

iScience Article

Figure 4. Optical performance and EPR measurement

(A) UV-vis absorption spectra.(B) Band gap conversion spectra.(C) PL.

(D) TRPL. (E) EPR, and (F) FTIR.

(E) EFR, and (F) FIIR.

Cu is very low. Photoluminescence (PL) spectroscopy evaluates the separation efficiency of photo-generated electrons and holes. As shown in Figure 4C, TiO₂/Cu₂O-0.5 exhibits the weakest PL signal, indicating the slowest electron-hole recombination rate. In addition, the dynamics of photo-generated carriers are further studied using TRPL measurements. Through fitting the corresponding TRPL curve with a third-order exponent, the average lifetime of TiO₂, TiO₂/Cu₂O-0.5, and TiO₂/Cu₂O-1 is 6.53 ns, 3.77 ns, and 3.91 ns, respectively (Table S1). Therefore, the average PL lifetime decay of heterojunction composite materials accelerates, indicating that Cu_2O/TiO_2 heterojunction formation accelerates interface charge transfer ^[16].

Electron paramagnetic resonance (EPR) measurement is the most potent characterization to confirm the presence of oxygen vacancies, as shown in Figure 4E. There is no signal of oxygen vacancies in the TiO_2 sample. As the amount of Cu⁺ increases, the signal of oxygen vacancies gradually strengthens, indicating that the Cu₂O/TiO₂ heterojunction increases the number of oxygen vacancies in the composite material. The signal of TiO_2/Cu_2O-1 sample is significantly higher than that of $TiO_2/Cu_2O-0.5$ sample, indicating the presence of a large number of bulk oxygen vacancies.³⁶ Surface oxygen vacancies can enhance the separation of photo-generated electrons and holes, thereby improving catalytic activity. However, an excess of bulk oxygen vacancies can form electron traps, leading to increased recombination centers for photo-generated electrons and holes, thus inhibiting the participation of electrons in catalytic reduction reactions and reducing catalytic activity. It is consistent with the analysis from XPS and catalytic activity tests.

Fourier transform infrared spectroscopy (FTIR) has been used to study lattice vibrations. The peaks near 3,421 cm⁻¹ and 3,150 cm⁻¹ correspond to the O-H stretching vibration of hydroxyl groups and the O-H stretching vibration of hydrogen bonds, respectively. The peak at 2,365 cm⁻¹ confirms the presence of CO₂ molecules measured in the air. 1,636 cm⁻¹ belongs to the H-O-H bending vibration of water molecules physically adsorbed on the sample surface.²³ The peak near 1,400cm⁻¹ corresponds to changes in the bond length of Ti-O-Ti and weaker Ti-OH bonding. The broadband in the 700–480 cm⁻¹ region corresponds to anatase TiO₂, which belongs to Ti-O stretching and Ti-O-Ti bridging stretching.^{37–39} Meanwhile, the stretching vibration of Cu-O also occurs around 500 cm⁻¹. Figure 4F shows that the O-H vibrational peaks in the TiO₂/Cu₂O-0.5 and TiO₂/Cu₂O-1 samples are more pronounced than the TiO₂ sample, exhibiting better water molecule adsorption capacity and providing more H⁺ for CO₂ reduction. In addition, there is a significant enhancement of vibration peaks around 3,150 cm⁻¹ and 1,400 cm⁻¹ in the TiO₂/Cu₂O-1 sample, indicating that TiO₂ provides more oxygen vacancies for the co-absorption of water molecules and oxygen and forms hydrogen bonds. Meanwhile, there is a significant change in the frequency peak of Ti-O for 580 cm⁻¹, indicating the presence of more defects, especially oxygen vacancies. It confirms that the Cu₂O/TiO₂ heterojunction promotes the formation of TiO₂ oxygen vacancies and improves the hydrophilicity of the sample.

To further verify the mechanism of enhancing the catalytic activity of the heterojunction model, a perfect TiO_2 model and a Cu_2O/TiO_{2Ov} heterojunction model containing oxygen vacancies (Figure S5) are constructed by Materials Studio (MS) software. The catalytic properties are

calculated using the DMol3 module. The energy band and density of states effectively reflect the occupied state and density of electrons at the Fermi level. With the emergence of oxygen vacancies and the recombination of Cu_2O , the energy band of the Cu_2O/TiO_{2Ov} model significantly shifts toward the valence band, indicating that the formation of heterostructures and oxygen vacancies has changed the original band edge position (Figures 5A and 5E). In addition to the original O2p orbitals, there are also electrons from Cu3d orbitals on the conduction band

Figure 6. Reaction mechanism diagram

side, indicating that Cu₂O mainly affects the position of the conduction band and the electron distribution of O (Figures 5B and 5F). From Figures 5C and 5G, the work function of Cu_2O/TiO_{2Ov} (0.254 Ha) is smaller than that of perfect TiO₂ (0.281 Ha), indicating that Cu_2O/TiO_{2Ov} is more likely to become an electron acceptor. Cu_2O/TiO_{2Ov} has more electrons and a higher Fermi level, which is consistent with the changes in Fermi levels in energy bands and density of states. Meanwhile, the surface potentials of TiO₂ and TiO₂/Cu₂O-0.5 are measured using scanning probe microscopy (SPM) on a highly oriented pyrolytic graphite (HOPG) substrate, as shown in Figures 5D and 5H. The work function range obtained by selecting the electric potential with negative and positive potentials in the image through Equation 1^{,40} is consistent with the calculated value by DFT. According to the free energy step diagram in Figure 5I, the free energy of the Cu_2O/TiO_{2Ov} sample decreased by 0.088 eV compared to the perfect TiO₂ in the *CO₂ to *COOH step, indicating that Cu_2O/TiO_{2Ov} has better catalytic performance.⁴¹

$$\Phi_{sample} = \Phi_{HOPG} + e^{(Test_{HOPG} - Test_{sample})}$$
(Equation 1)

Based on the above experimental and theoretical results, the possible reaction mechanism is shown in Figure 6. When Cu_2O and TiO_2 are in close contact, electrons from the conduction band of Cu_2O transfer to the conduction band of TiO_2 for photocatalytic CO_2 reduction, while holes from the valence band of TiO_2 transfer to the valence band of Cu_2O for oxidation reactions, illustrating a typical Type II heterojunction.

To investigate the stability of the samples, XRD and TEM characterizations of the catalyst are performed before and after the catalytic reaction, as shown in Figure 7. The composition and morphology of the samples remain unchanged, indicating excellent stability of the heterojunction catalyst in terms of composition and morphology. Additionally, repeated preparations of the TiO_2/Cu_2O -0.5 sample are performed, and the samples are stored in ambient air at room temperature for 2 weeks and 4 weeks. The photocatalytic results show similar catalytic performances for the samples even after different storage times, demonstrating the good reproducibility of the catalyst preparation (Figure S7).

Conclusions

In summary, Cu_2O/TiO_2 heterojunction photocatalysts are prepared using a one-step method. Through adjusting the EDTA, sodium citrate, and copper acetate content, it can be found that EDTA and sodium citrate affect the composition and formation of Cu_2O and TiO_2 . When the molar ratio of EDTA and sodium citrate is 1:0.3, the dispersion and photocatalytic performance of the sample are relatively good. When the

Figure 7. XRD and TEM before and after photocatalytic reaction

(A) XRD of samples TiO₂/Cu₂O-0.5 and TiO₂/Cu₂O-1 before and after photocatalytic reaction.
(B) HRTEM of TiO₂/Cu₂O-1 after photocatalytic reaction; TEM images after photocatalytic reaction.
(C) TiO₂/Cu₂O-0.5.
(D) TiO₂/Cu₂O-1.

copper acetate content is between 0.5 mmol and 1 mmol, ICP characterization reveals that the mass fraction of Cu element in Cu₂O/TiO₂ heterojunction is 0.075%–0.55%. The catalytic performance of TiO₂/Cu₂O-0.5 and TiO₂/Cu₂O-1 is better with 10.22 μ mol g⁻¹ h⁻¹ and 9.41 μ mol g⁻¹ h⁻¹. XPS analysis confirms the presence of Cu₂O, Ti2p, and O1s orbitals in the 1 mmol copper acetate sample, indirectly confirming oxygen vacancies. In HRTEM, it is evident that the sample exhibits good dispersibility, lattice distortion, and oxygen vacancies. EPR characterization confirmed the presence of oxygen vacancies in the TiO₂/Cu₂O-0.5 and TiO₂/Cu₂O-1 samples. Compared with single TiO₂, the average fluorescence lifetimes of TiO₂/Cu₂O-0.5 and TiO₂/Cu₂O-1 samples decrease to 2.76 ns and 2.62 ns, respectively. FTIR analysis shows that the formation of Cu₂O/TiO₂ heterojunction enhances the hydrophilicity of the sample, providing more H⁺ for CO₂ reduction to generate CO. The energy bands and density of states obtained from DFT calculations further illustrate the formation of Cu₂O/TiO₂ heterojunctions. Work function calculations and SPM characterization confirm that Cu₂O/TiO₂ heterojunctions have better electron transfer capabilities than TiO₂. Meanwhile, the free energy of Cu₂O/TiO_{2OV} in the *CO₂ to *COOH step is 0.088 eV lower than that of TiO₂, indicating that the Cu₂O/TiO₂ heterojunction containing oxygen vacancies has better catalytic performance.

STAR*METHODS

Detailed methods are provided in the online version of this paper and include the following:

- KEY RESOURCES TABLE
- RESOURCE AVAILABILITY
- Lead contact
- Materials availability
- Data and code availability
- METHOD DETAILS
 - Materials
 - \bigcirc Preparation of Cu₂O/TiO₂
 - O Characterization of the catalyst
 - O Electrochemical measurement
 - O Photocatalytic performance
 - O DFT calculation models and methods

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2024.109578.

ACKNOWLEDGMENTS

This work was supported by the financial supports from National Natural Science Foundation of China (grant no. 12172210).

AUTHOR CONTRIBUTIONS

Conceptualization, H.Q. and B.Y.; writing the original draft, H. Q.; methodology, H.Q. and Y.L.; writing – review and editing, B.Y., W.L., and C.Z.; funding acquisition, R.Z.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: December 14, 2023 Revised: January 25, 2024 Accepted: March 25, 2024 Published: March 26, 2024

REFERENCES

- Gao, J., Xue, J., Jia, S., Shen, Q., Zhang, X., Jia, H., Liu, X., Li, Q., and Wu, Y. (2021). Self-Doping Surface Oxygen Vacancy-Induced Lattice Strains for Enhancing Visible Light-Driven Photocatalytic H₂ Evolution over Black TiO₂. ACS Appl. Mater. Interfaces 13, 18758– 18771. https://doi.org/10.1021/acsami. 1c01101.
- 2. Belgamwar, R., Verma, R., Das, T., Chakraborty, S., Sarawade, P., and Polshettiwar, V. (2023). Defects Tune the Strong Metal–Support Interactions in Copper Supported on Defected Titanium Dioxide Catalysts for CO₂ Reduction. J. Am. Chem. Soc. 145, 8634–8646. https://doi.org/10. 1021/iacs.3c01336.
- 3. Wang, T., Chen, L., Chen, C., Huang, M., Huang, Y., Liu, S., and Li, B. (2022). Engineering Catalytic Interfaces in Cu⁸⁺/ CeO₂-TiO₂ Photocatalysts for Synergistically Boosting CO₂ Reduction to Ethylene. ACS Nano 16, 2306–2318. https://doi.org/10. 1021/acsnano.1c08505.
- Cheng, S.-P., Wei, L.-W., and Wang, H.-P. (2021). Photocatalytic Reduction of CO₂ to Methanol by Cu₂O/TiO₂ Heterojunctions. Sustainability 14, 374. https://doi.org/10. 3390/su14010374.
- 5. Yang, G., Qiu, P., Xiong, J., Zhu, X., and Cheng, G. (2022). Facilely anchoring Cu2O nanoparticles on mesoporous TiO2 nanorods for enhanced photocatalytic CO2 reduction through efficient charge transfer. Chin. Chem. Lett. 33, 3709–3712. https://doi.org/ 10.1016/j.cclet.2021.10.047.
- 6. Qi, L., Wang, M., Xue, J., Zhang, Q., Chen, F., Liu, Q., Li, W., and Li, X. (2021). Simultaneous Tuning Band Gaps of Cu₂O and TiO₂ to Form S-Scheme Hetero-Photocatalyst. Chemistry A European J 27, 14638–14644. https://doi.org/ 10.1002/chem.202102120.
- Wang, M., Sun, L., Lin, Z., Cai, J., Xie, K., and Lin, C. (2013). p–n Heterojunction photoelectrodes composed of Cu₂O-loaded TiO₂ nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities. Energy Environ. Sci. 6, 1211. https://doi.org/10.1039/ c3ee24162a.
- Aguirre, M.E., Zhou, R., Eugene, A.J., Guzman, M.I., and Grela, M.A. (2017). Cu₂O/TiO₂ heterostructures for CO₂ reduction through a direct Z-scheme: Protecting Cu₂O from photocorrosion. Appl.

Catal. B Environ. 217, 485–493. https://doi. org/10.1016/j.apcatb.2017.05.058.

- Yuan, B., Qian, H., Cao, L., Zhu, R., and Luan, W. (2023). Designed Synthesis of Cu₂O Quantum Dots/TiO₂ Nanotubes Heterostructure as a Photocatalyst for Converting CO₂ to CH₄. Adv. Eng. Mater. 25, 2301062. https://doi.org/10.1002/adem. 202301062.
- Etim, U.J., Zhang, C., and Zhong, Z. (2021). Impacts of the Catalyst Structures on CO₂ Activation on Catalyst Surfaces. Nanomaterials *11*, 3265. https://doi.org/10. 3390/nano11123265.
- Liu, L.L., Zhu, D., Cao, L.L., and Stephan, D.W. (2017). N-Heterocyclic carbene stabilized parent sulfenyl, selenenyl, and tellurenyl cations (XH⁺, X = S, Se, Te). Dalton Trans. 46, 3095–3099. https://doi.org/10.1039/ C7DT00186J.
- Mohite, S.V., Kim, S., Lee, C., Bae, J., and Kim, Y. (2022). Z-scheme heterojunction photocatalyst: Deep eutectic solventsassisted synthesis of Cu₂O nanocluster improved hydrogen production of TiO₂.
 J. Alloys Compd. 928, 167168. https://doi. org/10.1016/j.jallcom.2022.167168.
- Li, Y., Wu, Z., Liu, T., Song, Z., and Zhang, Y. (2021). Modulating Photon Harvesting Through Constructing Oxygen Vacancies-Rich 0D/2D Plasmonic Bi/Bismuth Oxybromide Upconversion Nanosheets Toward Improved Solar Photocatalysis. Sol. RRL 5, 2100619. https://doi.org/10.1002/solr. 202100619.
- Xue, J., Shen, Q., Liang, W., Liu, X., and Xu, B. (2013). Controlled synthesis of coaxial coreshell TiO₂/Cu₂O heterostructures by electrochemical properties. Mater. photoelectrochemical properties. Mater. Lett. 92, 239–242. https://doi.org/10.1016/j. matlet.2012.10.127.
- Bai, X., Ma, L., Dai, Z., and Shi, H. (2018). Electrochemical synthesis of p-Cu₂O/n-TiO₂ heterojunction electrode with enhanced photoelectrocatalytic activity. Mater. Sci. Semicond. Process. 74, 319–328. https://doi. org/10.1016/j.mssp.2017.10.049.
- Wei, T., Zhu, Y.-N., An, X., Liu, L.-M., Cao, X., Liu, H., and Qu, J. (2019). Defect Modulation of Z-Scheme TiO₂/Cu₂O Photocatalysts for Durable Water Splitting. ACS Catal. *9*, 8346– 8354. https://doi.org/10.1021/acscatal. 9b01786.

- Xu, H., Zhang, Y., Wang, Y., Zhang, L., Zhang, Z., Zhong, L., He, Z., Zheng, Y., and Shen, Y. (2023). Heterojunction material BiYO₃/g-C₃N₄ modified with cellulose nanofibers for photocatalytic degradation of tetracycline. Carbohydr. Polym. 312, 120829. https://doi. org/10.1016/j.carbpol.2023.120829.
- Liu, G., Hou, G., Mao, X., Qi, X., Song, Y., Ma, X., Wu, J., Luo, G., Yao, H., and Liu, Q. (2022). Rational design of CeO₂/Bi₇O₉I₃ flower-like nanosphere with Z-scheme heterojunction and oxygen vacancy for enhancing photocatalytic activity. Chem. Eng. J. 431, 133254. https://doi.org/10.1016/j.cej.2021. 133254.
- Li, J., Zhang, M., Guan, Z., Li, Q., He, C., and Yang, J. (2017). Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO₂ in the photocatalytic reduction of CO₂. Appl. Catal. B Environ. 206, 300–307. https://doi.org/10.1016/j.apcatb. 2017.01.025.
- Chen, X., Peng, X., Jiang, L., Yuan, X., Fei, J., and Zhang, W. (2022). Photocatalytic removal of antibiotics by MOF-derived Ti³⁺- and oxygen vacancy-doped anatase/rutile TiO₂ distributed in a carbon matrix. Chem. Eng. J. 427, 130945. https://doi.org/10.1016/j.cej. 2021.130945.
- Adamu, H., McCue, A.J., Taylor, R.S., Manyar, H.G., and Anderson, J.A. (2019). Influence of pretreatment on surface interaction between Cu and anatase-TiO₂ in the simultaneous photoremediation of nitrate and oxalic acid. J. Environ. Chem. Eng. 7, 103029. https://doi. org/10.1016/j.jece.2019.103029.
- Tahir, D., and Tougaard, S. (2012). Electronic and optical properties of Cu, CuO and Cu₂O studied by electron spectroscopy. J. Phys. Condens. Matter 24, 175002. https://doi.org/ 10.1088/0953-8984/24/17/175002.
- Stella, C., Prabhakar, D., Prabhu, M., Soundararajan, N., and Ramachandran, K. (2016). Oxygen vacancies induced room temperature ferromagnetism and gas sensing properties of Co-doped TiO₂ nanoparticles. J. Mater. Sci. Mater. Electron. 27, 1636–1644. https://doi.org/10.1007/ s10854-015-3935-x.
- Zhou, S., Liu, Y., Li, J., Wang, Y., Jiang, G., Zhao, Z., Wang, D., Duan, A., Liu, J., and Wei, Y. (2014). Facile in situ synthesis of graphitic carbon nitride (g-C₃N₄)-N-TiO₂ heterojunction as an efficient photocatalyst

for the selective photoreduction of CO₂ to CO. Appl. Catal. B Environ. 158–159, 20–29. https://doi.org/10.1016/j.apcatb.2014. 03.037.

- 25. Jiao, J., Wei, Y., Zhao, Z., Liu, J., Li, J., Duan, A., and Jiang, G. (2014). Photocatalysts of 3D Ordered Macroporous TiO ₂ -Supported CeO₂ Nanolayers: Design, Preparation, and Their Catalytic Performances for the Reduction of CO₂ with H₂O under Simulated Solar Irradiation. Ind. Eng. Chem. Res. 53, 17345–17354. https://doi.org/10.1021/ ie503333b.
- 26. Bika, P., Papailias, I., Giannakopoulou, T., Tampaxis, C., Steriotis, T.A., Trapalis, C., and Dallas, P. (2023). Prominent COF, g- G_3N_4 , and Their Heterojunction Materials for Selective Photocatalytic CO₂ Reduction. Catalysts 13, 1331. https://doi.org/10.3390/ catal13101331.
- Xu, J., Liu, X., Li, R., Shen, B., Zhou, Z., Deng, L., Liu, L., and Zhu, X. (2023). Production of renewable fuel from CO₂ by Co₃O₄/Cr doped MgAl-LDH p-n heterojunction catalyst. Fuel Process. Technol. 246, 107762. https://doi. org/10.1016/j.fuproc.2023.107762.
- Dong, W.-W., Jia, J., Wang, Y., An, J.-R., Yang, O.-Y., Gao, X.-J., Liu, Y.-L., Zhao, J., and Li, D.-S. (2022). Visible-light-driven solventfree photocatalytic CO₂ reduction to CO by Co-MOF/Cu₂O heterojunction with superior selectivity. Chem. Eng. J. 438, 135622. https://doi.org/10.1016/j.cej.2022.135622.
- Zhao, X., Sun, L., Jin, X., Xu, M., Yin, S., Li, J., Li, X., Shen, D., Yan, Y., and Huo, P. (2021). Cu media constructed Z-scheme heterojunction of UiO-66-NH₂/Cu₂O/Cu for enhanced photocatalytic induction of CO₂. Appl. Surf. Sci. 545, 148967. https://doi.org/10.1016/j. apsusc.2021.148967.
- 30. Jin, X., Cao, J., Wang, H., Lv, C., Xie, H., Su, F., Li, X., Sun, R., Shi, S., Dang, M., and Ye, L.

(2022). Realizing improved CO₂ photoreduction in Z-scheme Bi₄O₅Br₂/AgBr heterostructure. Appl. Surf. Sci. 598, 153758. https://doi.org/10.1016/j.apsusc.2022. 153758.

- Yang, C., Tan, Q., Li, Q., Zhou, J., Fan, J., Li, B., Sun, J., and Lv, K. (2020). 2D/2D Ti₃C₂ MXene/g-C₃N₄ nanosheets heterojunction for high efficient CO₂ reduction photocatalyst: Dual effects of urea. Appl. Catal. B Environ. 268, 118738. https://doi.org/ 10.1016/j.apcatb.2020.118738.
- Li, D., Zhu, B., Sun, Z., Liu, Q., Wang, L., and Tang, H. (2021). Construction of UiO-66/ Bi₄O₅Br₂ Type-II Heterojunction to Boost Charge Transfer for Promoting Photocatalytic CO₂ Reduction Performance. Front. Chem. 9, 804204. https://doi.org/10.3389/fchem.2021. 804204.
- Tang, J.y., Guo, R.t., Zhou, W.g., Huang, C.y., and Pan, W.g. (2018). Ball-flower like NiO/g-C₃N₄ heterojunction for efficient visible light photocatalytic CO₂ reduction. Appl. Catal. B Environ. 237, 802–810. https://doi.org/10. 1016/j.apcatb.2018.06.042.
- 34. Hong, L.f., Guo, R.t., Yuan, Y., Ji, X.y., Lin, Z.d., Yin, X.f., and Pan, W.g. (2022). 2D Ti₃C₂ decorated Z-scheme BiOIO₃/g-C₃N₄ heterojunction for the enhanced photocatalytic CO₂ reduction activity under visible light. Colloids Surf. A Physicochem. Eng. Asp. 639, 128358. https://doi.org/10. 1016/j.colsurfa.2022.128358.
- 35. Xiong, J., Zhang, M., Lu, M., Zhao, K., Han, C., Cheng, G., and Wen, Z. (2022). Achieving simultaneous Cu particles anchoring in mesoporous TiO₂ nanofabrication for enhancing photo-catalytic CO₂ reduction through rapid charge separation. Chin. Chem. Lett. 33, 1313–1316. https://doi.org/10.1016/j.cclet. 2021.07.052.

 Lu, C., Li, X., Wu, Q., Li, J., Wen, L., Dai, Y., Huang, B., Li, B., and Lou, Z. (2021). Constructing Surface Plasmon Resonance on Bi₂WO₆ to Boost High-Selective CO₂ Reduction for Methane. ACS Nano 15, 3529– 3539. https://doi.org/10.1021/acsnano. 1c00452.

iScience

Article

- Zou, Y., Yang, K., Chen, Q., Wang, H., and Meng, X. (2018). Molten salt construction of stable oxygen vacancies on TiO₂ for enhancement of visible light photocatalytic activity. RSC Adv. 8, 36819–36825. https:// doi.org/10.1039/C8RA07543C.
- Luo, L., Zhang, T., Zhang, X., Yun, R., Lin, Y., Zhang, B., and Xiang, X. (2020). Enhanced Hydrogen Production from Ethanol Photoreforming by Site-Specific Deposition of Au on Cu₂O/TiO₂ p-n Junction. Catalysts 10, 539. https://doi.org/10.3390/ catal10050539.
- Falah, M., MacKenzie, K.J.D., Knibbe, R., Page, S.J., and Hanna, J.V. (2016). New composites of nanoparticle Cu (I) oxide and titania in a novel inorganic polymer (geopolymer) matrix for destruction of dyes and hazardous organic pollutants. J. Hazard Mater. 318, 772–782. https://doi.org/10.1016/ j.jhazmat.2016.06.016.
- Shao, Y.Y., Yuan, J.H., Li, X.N., Li, Z.M., Hu, Y.L., Cheng, Z.L., Liu, R.W., Zheng, R., Hou, Y.D., Li, M., et al. (2023). Compositional dependence of high temperature oxidation resistance in the L12-strengthened highthermostability copper alloys. Corrosion Sci. 220, 111281. https://doi.org/10.1016/j.corsci. 2023.111281.
- Ozkan, D.M., Uzun, A., Caglayan, B.S., and Aksoylu, A.E. (2023). A DFT study on the role of oxygen vacancy on m-ZrO₂ (111) in adsorption and dissociation of CO₂. Surf. Sci. 736, 122336. https://doi.org/10.1016/j.susc. 2023.122336.

STAR***METHODS**

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Chemicals, peptides, and recombinant proteins		
copper acetate	Macklin	6064-93-1
tetrabutyl titanate	Macklin	5593-70-4
potassium ferricyanide	Macklin	13746-66-2
Ethanol	Macklin	64-17-5
sodium hydroxide	Aladdin	1310-73-2
ethylenediamine tetraacetic acid		
sodium citrate	Shanghai Chemical Reagent	6132-04-3
sodium sulfate	Shanghai Chemical Reagent	7757-82-6

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Binxia Yuan (yuanbinxia100@ 163.com).

Materials availability

This study did not generate new materials.

Data and code availability

- Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
- Data Availability Statement: All data reported in this paper will be shared by the lead contact upon request.
- Code: This paper does not report original code.

METHOD DETAILS

Materials

All chemicals are used directly without further purification. Copper acetate (Cu(CH₃COO)₂, AR, 99.0%), titanium butoxide (C₁₆H₃₆O₄Ti, analytical reagent), potassium ferricyanide (K₃[FeC₆N₆], AR, 99.5%), and ethanol (C₂H₅OH, 99.7%) are purchased from Macklin. Sodium hydroxide (NaOH, GR, 97%) is purchased from Aladdin. Ethylenediamine tetraacetic acid, sodium citrate, and sodium sulfate (Na₂SO₄, AR) are purchased from Shanghai Chemical Reagent.

Preparation of Cu₂O/TiO₂

In a typical program, a certain amount of copper acetate, ethylenediaminetetraacetic acid (EDTA), sodium citrate, and NaOH are added to 50 mL of distilled water, and 0.5 mL of tetrabutyl titanate is dropped into the suspension and stirred at room temperature for 30 min. Then, the mixed solution is transferred in a 100 mL stainless steel high-pressure vessel lined with polytetrafluorethylene and heated at 180°C for 4 h. Afterward, the solid products are collected by centrifugation, washed several times with ethanol and distilled water, and dried at 60°C for 12 h. The obtained samples are named in the form of "A-B", where "A" represents the composition of the sample, and "B" represents the millimolar amount of copper acetate used.

Characterization of the catalyst

Scanning with an X-ray diffractometer (Bruker D8 Advance) determines the sample's composition. The morphology is characterized by transmission electron microscopy (JEM2100). Thermo Scientific K-Alpha obtains X-ray photoelectron spectroscopy (XPS). The absorption spectrum of the sample is measured using the Shimadzu UV-3600 spectrophotometer. The content of the Cu element is obtained through the inductively coupled plasma (ICP) technology (PerkinElmer NexION 300X). The photoluminescence spectra (PL) and time-resolved photoluminescence spectra (TRPL) of the sample are measured using a fluorescence spectrometer (OmniFluo 900). Measure oxygen vacancies using an electron paramagnetic resonance spectrometer (ESR-5000). The functional groups contained in the sample are measured using a Fourier transform infrared spectrometer (IRTracer-100). The surface potential of the sample is obtained using a scanning probe electron microscope (SPM-9700HT).

Electrochemical measurement

CellPress

The CHI760E electrochemical workstation measures the electrochemical properties of the sample. In a typical three-electrode system, Ag/ AgCl electrode and Pt foil are used as reference electrode and counter electrode, respectively, and the sample is dried onto 1 × 1.5 cm² FTO conductive glass to form a film as the working electrode. A 2.5 M K₃[FeC₆N₆] electrolyte solution is used for electrochemical impedance spectroscopy (EIS) measurements, and a 0.1 M Na₂SO₄ solution is used for the I-t curve. Use a 500W xenon lamp (CEL-S500-T5) with an AREF total reflection filter as the light source.

iScience

Article

Photocatalytic performance

 CO_2 photocatalytic reduction experiments are conducted using a photocatalytic system (MC-SPH2O-a) equipped with a 5°C circulating cooling water apparatus. The testing system employs a solid-liquid mode, where the photocatalyst (50 mg) is dispersed in deionized water (100 mL). The system is degassed and purged to -0.1 MPa, and then illuminated by a 300W xenon lamp (full spectrum). Gas chromatography (GC2014C) with argon gas as the carrier is utilized for the analysis and quantification of the generated CO gas through reduction.

DFT calculation models and methods

The DMol3 module in the Material Studio (MS) software based on density functional theory is used for the calculation. Choose Perdew Burke Ernzerhof (PBE) as the calculation method in the generalized gradient approximation. The geometric structure of anatase TiO₂ (space group 141 I41/AMD) is optimized, and its (101) crystal plane is cut out. The TiO₂ model is obtained by adding a 2 × 2 × 1 supercell and a vacuum degree of 20 Å (Figure S5A). Create oxygen vacancies on the TiO₂ model surface and add the Cu₂O model near the oxygen vacancies to obtain the Cu₂O/TiO_{2Ov} model (Figure S5B). Then, *CO₂ molecules, *COOH, and *CO are adsorbed on Ti atoms near oxygen vacancies in the Cu₂O/TiO_{2Ov} model to construct a catalytic reaction process model. Select the k-point grid of the Brillouin zone as 2 × 3 × 1. Perform complete relaxation on all atoms within the crystal cell, with a relaxation convergence accuracy of 1.0 × 10⁻⁶ Ha, maximum stress set to 0.002 Ha/Å, and maximum displacement not exceeding 0.05 Å. The optimized geometric structure model uses DMol3 to calculate properties, such as free energy, energy band, density of states, and work function.