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SUMMARY

In this study, a method was developed to create oxygen vacancies in Cu2O/TiO2 heterojunctions. By
varying the amounts of ethylenediaminetetraacetic acid (EDTA), sodium citrate, and copper acetate,
Cu2O/TiO2 with different Cu ratios were synthesized. Tests on CO2 photocatalytic reduction revealed
that Cu2O/TiO2’s performance is influenced byCu content. The ideal Cumass fraction in Cu2O/TiO2, deter-
mined by inductively coupled plasma (ICP), is between 0.075% and 0.55%,with the highest CO yield being
10.22 mmol g�1 h�1, significantly surpassing pure TiO2. High-resolution transmission electron microscopy
and electron paramagnetic resonance studies showed optimal oxygen vacancy in the most effective het-
erojunction. Density functional theory (DFT) calculations indicated a 0.088 eV lower energy barrier for
*CO2 to *COOH conversion in Cu2O/TiO2with oxygen vacancy compared to TiO2, suggesting that oxygen
vacancies enhance photocatalytic activity.

INTRODUCTION

TiO2 is one of themost widely studied semiconductors for environmental and energy issues.1–3- However, the photocatalytic efficiency of TiO2

is limited by its wide bandgap and high recombination rate of photo-generated charge carriers. The use of narrow bandgap semiconductor

Cu2O modification to construct heterojunctions has also attracted widespread attention.4,5

In theory, the difference in band structure between TiO2 and Cu2O can easily lead to the formation of type II heterojunctions,6 S-type

heterojunctions,7 and Z-type heterojunctions.8 However, TiO2 and Cu2O may not form heterostructures during preparation, or the resulting

heterostructures may not significantly improve catalytic activity.9 The catalytic performance of heterojunction materials is related to the

morphology, interfacial contact, dispersibility, and oxygen vacancy defects.10–13 Among them, the heterojunction with strong interface con-

tact is helpful to electron transfer, and the oxygen vacancies can also provide more active sites for CO2 adsorption. Xue et al.14 prepared a

p-type Cu2O nanoparticle-coated n-type TiO2 nanotube (TNTs) array-based coaxial heterostructure using a combination of anodization and

electrodeposition methods. It was found that the ribs formed during anodization and the added thiourea during electrodeposition played a

crucial role in forming the Cu2O nanoparticle heterostructure. Bai et al.15 fabricated a uniform p-Cu2O/n-TiO2 heterojunction electrode using

electrochemical anodization and pulse electrodeposition methods, which exhibited enhanced photoelectrocatalytic (PEC) activity for the

degradation of chloramphenicol. Wei et al.16 stabilized Cu2O by adjusting the exposed surfaces and structural defects of TiO2, showing

that oxygen vacancy defects enhanced charge separation and effective removal of oxidized holes of Cu2O. However, the fabricationmethods

for Cu2O/TiO2 heterojunctions are complex and not conducive to large-scale production. Although small-sized samples increase surface

area, they are more prone to aggregation, thereby reducing catalytic performance.17 Meanwhile, excessive bulk oxygen vacancies can

also create electron traps,18 which are detrimental to catalytic reactions. Therefore, controlling the ratio of surface oxygen vacancies to

bulk oxygen vacancies is crucial for improving performance.

This work uses a simple one-step hydrothermal method to prepare Cu2O/TiO2 heterojunction photocatalytic materials with strong inter-

face contact, high dispersion, and oxygen vacancies. The experimental results indicate that an appropriate amount of Cu2+ is beneficial for

improving photocatalytic properties, and the photocatalytic reaction mechanism of Cu2O/TiO2 with oxygen vacancies has been calculated

using density functional theory (DFT).

RESULTS AND DISCUSSION

The influences of EDTA, sodium citrate, and copper acetate on the composition of samples are investigated. Generally, the XRD diffraction

peak of Cu2O gradually increases with the increase of copper acetate. Comparing Figures 1A and S1A, it can be observed that as the amount

of EDTA increases, the XRDdiffraction peak of Cu2O decreases, while the diffraction peak of TiO2 remains unchanged. Comparing Figures 1A

and S1B, it can be seen that as the amount of sodium citrate increases, the diffraction peak of Cu2O becomes more pronounced, while the
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Figure 1. The samples obtained at the different amounts of Cu(OAc)2 under the conditions of 1 mmol EDTA and 0.3 mmol sodium citrate

(A and B) XRD patterns; XPS spectra.

(C) Survey.

(D) Cu2p.

(E) Ti2p, and (F) O1s.
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diffraction peak of TiO2 is significantly affected. It indicates that EDTA and sodium citrate are essential in generating Cu2O and TiO2,

respectively.

Figures 1A and 1B show the XRD patterns of samples obtained by different copper acetate contents under 1 mmol EDTA and 0.3 mmol

sodium citrate. When themolar amount of Cu(OAc)2 is less than or equal to 1 mmol, only the diffraction peak of anatase TiO2 (PDF # 21–1272)

can be seen. It can be seen from the TiO2/Cu2O-1 sample that there is a significant right shift in the TiO2 (101) crystal plane, indicating the

presence of lattice defects in TiO2. When the molar amount of Cu(OAc)2 is greater than 1.5 mmol, the Cu2O (PDF # 78–2076) diffraction

and Cu diffraction peaks are detected, indicating Cu2O/TiO2/Cu composite material.

Through X-ray photoelectron spectroscopy (XPS) testing, it is found that there are characteristic peaks of Cu2p orbitals in the TiO2/Cu2O-1

sample (Figure 1C). After fitting the XPS spectra of the Cu2p orbitals (Figure 1D), the characteristic peaks at 931.46 eV and 951.37 eV corre-

spond to Cu+, indicating the presence of Cu2O. Although the characteristic peak of the Cu2p3/2 orbitals near 931.5 eV in the TiO2/Cu2O-0.5

sample is not significant, a trending peak can still be observed. The Ti 2p peak in TiO2/Cu2O-0.5 has an asymmetric shape, with four peaks at

456.93 eV, 462.83 eV, 457.78 eV, and 463.48 eV, corresponding to Ti3+ 2p3/2, Ti
3+ 2p1/2, Ti

4+ 2p3/2, and Ti4+ 2p1/2, respectively.
19 Based on

the peak area calculations, the ratio of Ti3+/Ti4+ in TiO2/Cu2O-0.5 and TiO2/Cu2O-1 is approximately 27% and 21%, respectively. Thus,

TiO2/Cu2O-0.5 exhibits more surface oxygen vacancies compared to TiO2/Cu2O-1.20 The peaks at 529.00 eV, 530.57 eV, and 531.57 eV in

the O1s orbital correspond to lattice oxygen (Cu2O and TiO2), oxygen vacancies, and hydroxyl groups adsorbed on the catalyst surface,

respectively.21–23 In addition, oxygen vacancies can enhance the catalyst’s adsorption capacity for hydroxyl and H2O molecules, thereby

increasing the adsorption of H+ and enhancing catalytic performance in CO2 reduction reactions.

FromFigure 2A, the anatase TiO2 obtainedwithout Cu(OAc)2 exhibits amixture of rhombic and small particles.When the copper acetate is

added, the large rhombic TiO2 is decomposed into small particles.When the amount of copper acetate is 0.1–1mmol, the sample has uniform

morphology and high dispersibility, see Figures 2B–2D. In the high resolution transmission electron microscope (HRTEM) image of the TiO2/

Cu2O sample (Figure 2G), we detected that lattice spacings of 0.242 nm and 0.353 nm correspond to the Cu2O (111) and TiO2 (101) crystal

planes, respectively. Furthermore, significant oxygen vacancies are observed in both TiO2 and Cu2O, particularly with noticeable lattice dis-

tortions near the interface of TiO2 and Cu2O (Figure S6). Lattice distortions can result in displacements and distortions of atomic positions,

causing local strains and distortions. The distortions can lead to changes in the positions of nearby oxygen atoms, creating vacancies or de-

fects in the vicinity, thereby forming oxygen vacancies. Meantime, the formation of oxygen vacancies may also induce lattice distortions.

When oxygen atoms depart from their original positions in the lattice, surrounding atoms may readjust to maintain overall balance and sta-

bility, leading to lattice distortions. Comparing the TEM images of different EDTA and sodium citrate samples (Figure S2), when the amount of

copper acetate used is small, increasing sodium citrate or reducing EDTAwill cause the development of the sample toward a sheet-like struc-

ture.When the amount of copper acetate is high, sodium citrate and EDTA have little effect on the sample’s morphology, mainly consisting of
2 iScience 27, 109578, May 17, 2024



Figure 2. TEM images of different sample

(A) TiO2.

(B) TiO2-0.1.

(C) TiO2/Cu2O-0.5.

(D) TiO2/Cu2O-1.

(E) TiO2/Cu2O/Cu-1.5.

(F) TiO2/Cu2O/Cu-3.

(G) HRTEM images of TiO2/Cu2O-1.
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small particles. It is consistent with the conclusion obtained by XRD that EDTA and sodium citrate affect the generation of Cu2O and TiO2,

respectively.

Figures 3A and 3B show the CO yield of CO2 reduction in all samples. As the amount of copper acetate increases, the average CO yield

decreases. When the amounts of copper acetate are 0.5 mmol and 1 mmol, the yields of CO are 10.22 mmol g�1 h�1 and 9.41 mmol g�1 h�1,

which are 1.85 times and 1.70 times that of the sample without copper acetate. The results indicate that the formation of Cu2O/TiO2 hetero-

junction significantly improves the catalytic performance of TiO2. To further confirm the stability of the catalytic performance of the hetero-

junction catalyst, the cyclic photocatalytic tests are conducted on the TiO2/Cu2O-0.5 sample, as shown in Figure 3D. After 3 cycles, the CO

production remains at the same level, indicating the excellent photocatalytic stability. Compared to other heterojunctions reported in the

literature, the TiO2/Cu2O-0.5 sample prepared in our work exhibits excellent catalytic activity (Figure 3E).8,24–34 When the amounts of copper

acetate are 1.5 mmol and 3 mmol, the yields of CO are 7.91 mmol g�1 h�1 and 5.7 mmol g�1 h�1, respectively. The increase of Cu and the

decrease of TiO2 is not conducive to CO2 conversion. In the meantime, the contents of Cu element in TiO2/Cu2O-0.1, TiO2/Cu2O-0.5, and

TiO2/Cu2O-1 samples are determined by inductively coupled plasma technology (ICP). Thus, when the Cu element content in the sample

is between 0.075% and 0.5501%, the catalytic activity of the Cu2O/TiO2 heterojunction catalyst is the best. Excessive proportion of Cu2O

in Cu2O/TiO2 system can affect its catalytic performance, see Figure S3.

To investigate the reasons for the improved CO2 reduction performance of Cu2O/TiO2 photocatalysts, the instantaneous photocurrent

response (i-t curve) is used to characterize the photo response ability (Figure 3F). It can be seen that there is no apparent photocurrent record

in the dark and the photocurrent of all samples increases at themoment of illumination. However, the TiO2 sample shows a clear ‘‘shark peak’’

after illumination. In contrast, the TiO2/Cu2O-0.5 sample shows a ‘‘rectangular peak’’, indicating that the photo-generated electrons and holes

in the TiO2/Cu2O-0.5 sample can quickly reach the optimal separation state after illumination excitation, which is conducive to the rapid
iScience 27, 109578, May 17, 2024 3



Figure 3. Photocatalysis and optoelectronic performance

(A) photocatalytic CO production.

(B) photocatalytic CO yield.

(C) ICP plot.

(D) TiO2/Cu2O-0.5 sample photocatalytic cycling test for CO production.

(E) Comparison chart of catalytic activity.

(F) I-t curve.

(G) EIS curve.

(H) M-S curve.
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progress of catalytic reactions.35 EIS is an effective technique for studying the interface resistance between semiconductors and electrolytes.

In Figure 3G, the radii of all composite materials are smaller than that of the TiO2 sample, indicating that the increase of Cu2O reduces the

resistance in the chemical reaction.

The Mott-Schottky (M-S) curve can be used to analyze the sample semiconductor material’s type and carrier concentration. Figure 3H

shows that as the amount of copper acetate increases, the curve exhibits positive and negative slopes, indicating the simultaneous presence

of n-type (TiO2) and p-type (Cu2O) semiconductors in the composite material. Meanwhile, due to the low content of Cu2O, the M-S curves of

TiO2-0.1, TiO2/Cu2O-0.5, and TiO2/Cu2O-1 samples are similar to that of the TiO2 curve. The Mott-Schottky equation shows that the carrier

concentration of a material is inversely proportional to the slope of the tangent line. The higher the carrier concentration, the lower the slope

of the tangent line. Figure 3F shows that the slope of TiO2/Cu2O-1 is the smallest, indicating that the carrier concentration and electronmigra-

tion rate in the TiO2/Cu2O-1 sample are the best.

When a small amount of copper acetate is added, the UV-visible spectra of the samples and the corresponding band gaps remain almost

unchanged (Figure 4A). However, as the amount of copper acetate increases to 1.5 mmol and 3 mmol, the light response intensity decreases

significantly, as shown in Figure S4. However, there is no significant difference in the band gap width, which is mainly because the content of
4 iScience 27, 109578, May 17, 2024



Figure 4. Optical performance and EPR measurement

(A) UV-vis absorption spectra.

(B) Band gap conversion spectra.

(C) PL.

(D) TRPL.

(E) EPR, and (F) FTIR.
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Cu is very low. Photoluminescence (PL) spectroscopy evaluates the separation efficiency of photo-generated electrons and holes. As shown in

Figure 4C, TiO2/Cu2O-0.5 exhibits theweakest PL signal, indicating the slowest electron-hole recombination rate. In addition, the dynamics of

photo-generated carriers are further studied using TRPL measurements. Through fitting the corresponding TRPL curve with a third-order

exponent, the average lifetime of TiO2, TiO2/Cu2O-0.5, and TiO2/Cu2O-1 is 6.53 ns, 3.77 ns, and 3.91 ns, respectively (Table S1). Therefore,

the average PL lifetime decay of heterojunction composite materials accelerates, indicating that Cu2O/TiO2 heterojunction formation accel-

erates interface charge transfer [16].

Electron paramagnetic resonance (EPR) measurement is the most potent characterization to confirm the presence of oxygen vacancies, as

shown in Figure 4E. There is no signal of oxygen vacancies in the TiO2 sample. As the amount of Cu+ increases, the signal of oxygen vacancies

gradually strengthens, indicating that the Cu2O/TiO2 heterojunction increases the number of oxygen vacancies in the composite material.

The signal of TiO2/Cu2O-1 sample is significantly higher than that of TiO2/Cu2O-0.5 sample, indicating the presence of a large number of

bulk oxygen vacancies.36 Surface oxygen vacancies can enhance the separation of photo-generated electrons and holes, thereby improving

catalytic activity. However, an excess of bulk oxygen vacancies can form electron traps, leading to increased recombination centers for photo-

generated electrons and holes, thus inhibiting the participation of electrons in catalytic reduction reactions and reducing catalytic activity. It is

consistent with the analysis from XPS and catalytic activity tests.

Fourier transform infrared spectroscopy (FTIR) has been used to study lattice vibrations. The peaks near 3,421 cm�1 and 3,150 cm�1 corre-

spond to the O-H stretching vibration of hydroxyl groups and the O-H stretching vibration of hydrogen bonds, respectively. The peak at

2,365 cm�1 confirms the presence of CO2 molecules measured in the air. 1,636 cm�1 belongs to the H-O-H bending vibration of water mol-

ecules physically adsorbed on the sample surface.23 The peak near 1,400cm�1 corresponds to changes in the bond length of Ti-O-Ti and

weaker Ti-OH bonding. The broadband in the 700–480 cm�1 region corresponds to anatase TiO2, which belongs to Ti-O stretching and

Ti-O-Ti bridging stretching.37–39 Meanwhile, the stretching vibration of Cu-O also occurs around 500 cm�1. Figure 4F shows that the O-H

vibrational peaks in the TiO2/Cu2O-0.5 and TiO2/Cu2O-1 samples are more pronounced than the TiO2 sample, exhibiting better water mole-

cule adsorption capacity and providing more H+ for CO2 reduction. In addition, there is a significant enhancement of vibration peaks around

3,150 cm�1 and 1,400 cm�1 in the TiO2/Cu2O-1 sample, indicating that TiO2 provides more oxygen vacancies for the co-absorption of water

molecules and oxygen and forms hydrogen bonds. Meanwhile, there is a significant change in the frequency peak of Ti-O for 580 cm�1, indi-

cating the presence of more defects, especially oxygen vacancies. It confirms that the Cu2O/TiO2 heterojunction promotes the formation of

TiO2 oxygen vacancies and improves the hydrophilicity of the sample.

To further verify the mechanism of enhancing the catalytic activity of the heterojunction model, a perfect TiO2 model and a Cu2O/TiO2Ov

heterojunctionmodel containing oxygen vacancies (Figure S5) are constructed byMaterials Studio (MS) software. The catalytic properties are
iScience 27, 109578, May 17, 2024 5



Figure 5. DFT theory

(A) Band energy of TiO2.

(B) PDOS of TiO2.

(C) Work function of TiO2.

(D) SPM of TiO2.

(E) Band energy of Cu2O/TiO2Ov.

(F) PDOS of Cu2O/TiO2Ov.

(G) Work function of Cu2O/TiO2Ov.

(H) SPM of TiO2/Cu2O-1.

(I) Free energy step diagrams of TiO2 and Cu2O/TiO2Ov.
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calculated using the DMol3 module. The energy band and density of states effectively reflect the occupied state and density of electrons at

the Fermi level. With the emergence of oxygen vacancies and the recombination of Cu2O, the energy band of the Cu2O/TiO2Ov model signif-

icantly shifts toward the valence band, indicating that the formation of heterostructures and oxygen vacancies has changed the original band

edge position (Figures 5A and 5E). In addition to the original O2p orbitals, there are also electrons fromCu3d orbitals on the conduction band
6 iScience 27, 109578, May 17, 2024



Figure 6. Reaction mechanism diagram
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side, indicating that Cu2O mainly affects the position of the conduction band and the electron distribution of O (Figures 5B and 5F). From

Figures 5C and 5G, the work function of Cu2O/TiO2Ov (0.254 Ha) is smaller than that of perfect TiO2 (0.281 Ha), indicating that

Cu2O/TiO2Ov is more likely to become an electron acceptor. Cu2O/TiO2Ov has more electrons and a higher Fermi level, which is consistent

with the changes in Fermi levels in energy bands and density of states. Meanwhile, the surface potentials of TiO2 and TiO2/Cu2O-0.5 are

measured using scanning probe microscopy (SPM) on a highly oriented pyrolytic graphite (HOPG) substrate, as shown in Figures 5D and

5H. The work function range obtained by selecting the electric potential with negative and positive potentials in the image through Equa-

tion 1,40 is consistent with the calculated value by DFT. According to the free energy step diagram in Figure 5I, the free energy of the

Cu2O/TiO2Ov sample decreased by 0.088 eV compared to the perfect TiO2 in the *CO2 to *COOH step, indicating that Cu2O/TiO2Ov has

better catalytic performance.41

Vsample = VHOPG + eðTestHOPG �TestsampleÞ (Equation 1)

Based on the above experimental and theoretical results, the possible reaction mechanism is shown in Figure 6. When Cu2O and TiO2 are

in close contact, electrons from the conduction band of Cu2O transfer to the conduction band of TiO2 for photocatalytic CO2 reduction, while

holes from the valence band of TiO2 transfer to the valence band of Cu2O for oxidation reactions, illustrating a typical Type II heterojunction.

To investigate the stability of the samples, XRD and TEM characterizations of the catalyst are performed before and after the catalytic re-

action, as shown in Figure 7. The composition and morphology of the samples remain unchanged, indicating excellent stability of the het-

erojunction catalyst in terms of composition and morphology. Additionally, repeated preparations of the TiO2/Cu2O-0.5 sample are per-

formed, and the samples are stored in ambient air at room temperature for 2 weeks and 4 weeks. The photocatalytic results show similar

catalytic performances for the samples even after different storage times, demonstrating the good reproducibility of the catalyst preparation

(Figure S7).

Conclusions

In summary, Cu2O/TiO2 heterojunction photocatalysts are prepared using a one-step method. Through adjusting the EDTA, sodium citrate,

and copper acetate content, it can be found that EDTA and sodium citrate affect the composition and formation of Cu2O and TiO2. When the

molar ratio of EDTA and sodium citrate is 1:0.3, the dispersion and photocatalytic performance of the sample are relatively good. When the
iScience 27, 109578, May 17, 2024 7



Figure 7. XRD and TEM before and after photocatalytic reaction

(A) XRD of samples TiO2/Cu2O-0.5 and TiO2/Cu2O-1 before and after photocatalytic reaction.

(B) HRTEM of TiO2/Cu2O-1 after photocatalytic reaction; TEM images after photocatalytic reaction.

(C) TiO2/Cu2O-0.5.

(D) TiO2/Cu2O-1.
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copper acetate content is between 0.5 mmol and 1 mmol, ICP characterization reveals that the mass fraction of Cu element in Cu2O/TiO2

heterojunction is 0.075%–0.55%. The catalytic performance of TiO2/Cu2O-0.5 and TiO2/Cu2O-1 is better with 10.22 mmol g�1 h�1 and

9.41 mmol g�1 h�1. XPS analysis confirms the presence of Cu2O, Ti2p, and O1s orbitals in the 1 mmol copper acetate sample, indirectly con-

firming oxygen vacancies. In HRTEM, it is evident that the sample exhibits good dispersibility, lattice distortion, and oxygen vacancies. EPR

characterization confirmed the presence of oxygen vacancies in the TiO2/Cu2O-0.5 and TiO2/Cu2O-1 samples. Compared with single TiO2,

the average fluorescence lifetimes of TiO2/Cu2O-0.5 and TiO2/Cu2O-1 samples decrease to 2.76 ns and 2.62 ns, respectively. FTIR analysis

shows that the formation of Cu2O/TiO2 heterojunction enhances the hydrophilicity of the sample, providing more H+ for CO2 reduction to

generate CO. The energy bands and density of states obtained from DFT calculations further illustrate the formation of Cu2O/TiO2 hetero-

junctions. Work function calculations and SPM characterization confirm that Cu2O/TiO2 heterojunctions have better electron transfer capa-

bilities than TiO2. Meanwhile, the free energy of Cu2O/TiO2Ov in the * CO2 to * COOH step is 0.088 eV lower than that of TiO2, indicating that

the Cu2O/TiO2 heterojunction containing oxygen vacancies has better catalytic performance.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

copper acetate Macklin 6064-93-1

tetrabutyl titanate Macklin 5593-70-4

potassium ferricyanide Macklin 13746-66-2

Ethanol Macklin 64-17-5

sodium hydroxide Aladdin 1310-73-2

ethylenediamine tetraacetic acid

sodium citrate Shanghai Chemical Reagent 6132-04-3

sodium sulfate Shanghai Chemical Reagent 7757-82-6
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Binxia Yuan (yuanbinxia100@

163.com).

Materials availability

This study did not generate new materials.

Data and code availability

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
� Data Availability Statement: All data reported in this paper will be shared by the lead contact upon request.
� Code: This paper does not report original code.

METHOD DETAILS

Materials

All chemicals are used directly without further purification. Copper acetate (Cu(CH3COO)2, AR, 99.0%), titaniumbutoxide (C16H36O4Ti, analyt-

ical reagent), potassium ferricyanide (K3[FeC6N6], AR, 99.5%), and ethanol (C2H5OH, 99.7%) are purchased from Macklin. Sodium hydroxide

(NaOH, GR, 97%) is purchased from Aladdin. Ethylenediamine tetraacetic acid, sodium citrate, and sodium sulfate (Na2SO4, AR) are pur-

chased from Shanghai Chemical Reagent.

Preparation of Cu2O/TiO2

In a typical program, a certain amount of copper acetate, ethylenediaminetetraacetic acid (EDTA), sodium citrate, and NaOH are added to

50mL of distilled water, and 0.5mL of tetrabutyl titanate is dropped into the suspension and stirred at room temperature for 30min. Then, the

mixed solution is transferred in a 100 mL stainless steel high-pressure vessel lined with polytetrafluorethylene and heated at 180�C for 4 h.

Afterward, the solid products are collected by centrifugation, washed several times with ethanol and distilled water, and dried at 60�C for

12 h. The obtained samples are named in the form of "A-B", where "A" represents the composition of the sample, and "B" represents

the millimolar amount of copper acetate used.

Characterization of the catalyst

Scanning with an X-ray diffractometer (Bruker D8 Advance) determines the sample’s composition. The morphology is characterized by trans-

mission electronmicroscopy (JEM2100). ThermoScientific K-Alpha obtains X-ray photoelectron spectroscopy (XPS). The absorption spectrum

of the sample is measured using the Shimadzu UV-3600 spectrophotometer. The content of the Cu element is obtained through the induc-

tively coupled plasma (ICP) technology (PerkinElmer NexION 300X). The photoluminescence spectra (PL) and time-resolved photolumines-

cence spectra (TRPL) of the sample are measured using a fluorescence spectrometer (OmniFluo 900). Measure oxygen vacancies using an

electron paramagnetic resonance spectrometer (ESR-5000). The functional groups contained in the sample are measured using a Fourier

transform infrared spectrometer (IRTracer-100). The surface potential of the sample is obtained using a scanning probe electron microscope

(SPM-9700HT).
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Electrochemical measurement

The CHI760E electrochemical workstation measures the electrochemical properties of the sample. In a typical three-electrode system, Ag/

AgCl electrode and Pt foil are used as reference electrode and counter electrode, respectively, and the sample is dried onto 1 3 1.5 cm2

FTO conductive glass to form a film as the working electrode. A 2.5 M K3[FeC6N6] electrolyte solution is used for electrochemical impedance

spectroscopy (EIS) measurements, and a 0.1 MNa2SO4 solution is used for the I-t curve. Use a 500W xenon lamp (CEL-S500-T5) with an AREF

total reflection filter as the light source.
Photocatalytic performance

CO2 photocatalytic reduction experiments are conducted using a photocatalytic system (MC-SPH2O-a) equipped with a 5�C circulating cool-

ing water apparatus. The testing system employs a solid-liquid mode, where the photocatalyst (50 mg) is dispersed in deionized water

(100 mL). The system is degassed and purged to�0.1 MPa, and then illuminated by a 300W xenon lamp (full spectrum). Gas chromatography

(GC2014C) with argon gas as the carrier is utilized for the analysis and quantification of the generated CO gas through reduction.
DFT calculation models and methods

The DMol3 module in the Material Studio (MS) software based on density functional theory is used for the calculation. Choose Perdew Burke

Ernzerhof (PBE) as the calculation method in the generalized gradient approximation. The geometric structure of anatase TiO2 (space group

141 I41/AMD) is optimized, and its (101) crystal plane is cut out. The TiO2 model is obtained by adding a 2 3 2 3 1 supercell and a vacuum

degree of 20 Å (Figure S5A). Create oxygen vacancies on the TiO2 model surface and add the Cu2O model near the oxygen vacancies to

obtain the Cu2O/TiO2Ov model (Figure S5B). Then, *CO2 molecules, *COOH, and *CO are adsorbed on Ti atoms near oxygen vacancies

in the Cu2O/TiO2Ov model to construct a catalytic reaction process model. Select the k-point grid of the Brillouin zone as 23 33 1. Perform

complete relaxation on all atoms within the crystal cell, with a relaxation convergence accuracy of 1.03 10�6 Ha, maximum stress set to 0.002

Ha/Å, andmaximumdisplacement not exceeding 0.05 Å. The optimized geometric structure model uses DMol3 to calculate properties, such

as free energy, energy band, density of states, and work function.
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