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Integrative pan‑cancer 
analysis of MEK1 aberrations 
and the potential clinical 
implications
Zhiyang Zhou1,5, Bi Peng2,5, Juanni Li2, Kewa Gao2, Yuan Cai2, Zhijie Xu2 & Yuanliang Yan3,4*

Alterations of mitogen-activated protein kinase kinase 1 (MEK1) are commonly associated 
with tumorigenesis, and MEK1 is thought to be a suitable targeted therapy for various cancers. 
However, abnormal MEK1 alterations and their relevant clinical implications are unknown. Our 
research comprehensively analyzed the MEK1 alteration spectrum and provided novel insight for 
targeted therapies. There were 7694 samples covering 32 types of cancer from The Cancer Genome 
Atlas (TCGA) database. They were used to conduct an integrative analysis of MEK1 expression, 
alterations, functional impacts and clinical significance. There was a dramatic difference in the 
alteration frequency and distribution and clinical implications in 32 types of cancer from the TCGA. 
Skin cutaneous melanoma (SKCM) has the most alterations and has therapeutic targets located 
in the protein kinase domain, and the growing expression of SKCM is positively related to patient 
prognosis. MEK1 expression in lung adenocarcinoma (LUAD), kidney renal papillary cell carcinoma 
(KIRP), esophageal carcinoma (ESCA) and liver hepatocellular carcinoma (LIHC) is decreased, 
which is associated with better prognosis, while MEK1 expression in thymoma (THYM), stomach 
adenocarcinoma (STAD), kidney renal clear cell carcinoma (KIRC), testicular germ cell tumors (TGCTs) 
and head and neck squamous cell carcinoma (HNSC) is increased, which is associated with better 
prognosis. Mesothelioma (MESO) has the second highest alterations but has no therapy targets. 
This study provided a great and detailed interpretation of MEK1 expression, alterations and clinical 
implications in 32 types of cancer and reminded us to fill the gap in MEK1 research from a new 
perspective.

Mitogen-activated protein kinase kinase 1 (MEK1), a small molecular substance belonging to the family of recep-
tor tyrosine kinases (RTKs), has a key function in the mitogen-activated protein kinase (MAPK) cascade1, which 
primarily contains the RAS/MAPK signaling pathway, JNK signaling pathway, p38MAPK signaling pathways 
and extracellular signal regulated kinase (ERK) signaling pathways2–4. Human MEK1 is composed of 393 amino 
acids, which include a trifunctional N-terminal sequence, a kinase catalytic domain and a C-terminal sequence5. 
MEK1 is one of the downstream effectors of RAS/MAPK signaling pathways, which not only governs normal cell 
proliferation, survival, and differentiation, but also triggers excessive cell division and promotes the occurrence 
and development of tumors6. Moreover, MEK1 also serves as a key signal node to regulate isoforms ERK1 and 
ERK2 and deliver signals to the nucleus7. In this signaling pathway, the adaptor proteins and guanine nucleotide 
exchange factors, such as Son of Sevenless (SOS), are recruited to promote the combination of RAS and GTP. 
After then, RAS-GTP catalyzes the activation of RAF kinases, including ARAF, BRAF and CRAF. Activated RAF 
kinases promote MEK phosphorylation and activation. ERK1/2 are phosphorylated and activated by phosphoryl-
ated MEK1/2, and then promote the expressions of transcription factors to collectively regulate multiple cellular 
and biological functions during cancer development and development8.

Because of the aforementioned MEK1 regulating mechanism, MEK1 is able to be regarded as an effective 
therapeutic target and plays a vital role in oncogenesis processes9. MEK1 can be considered to be an oncogene, 
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resulting in a series of tumorigenesis and alloplasia. It was previously found that a diverse set of MEK1 gene 
mutations are associated with various somatic tumors such as melanoma, histiocytic neoplasms, colorectal 
cancer and lung cancer10.

Accordingly, MEK1 inhibitors have been deemed to be an attractive strategy for the treatment of numerous 
cancers due to their crucial functions. Many MEK1 inhibitors have been naturally created and extensively used 
to treat a wide range of cancers due to their preclinical and clinical potentialities11. Méndez-Martínez et al. found 
that MEK1 inhibitors for the treatment of metastatic BRAF-mutant cutaneous melanoma and NRAS mutant 
melanoma were ground-breaking therapeutic regimens, respectively12. Kim et al. found that MEK1 inhibitors 
contributed to the treatment of NSCLC and confirmed their anticancer activity13. Additionally, MEK1 inhibitors 
also had a positive influence in advanced thyroid cancer (THCA), neurofibromatosis type 1 (NF1), BRAF-mutant 
pediatric low-grade gliomas, colon cancer and histiocytic neoplasms10. Thus, many tumors are related to MEK1, 
which should receive more attention and be explored deeper. Surprisingly, there are a lot of MEK1 inhibitors 
that have been approved for the treatment of various cancers by the Food and Drug Administration (FDA). 
For instance, the combination of highly selective inhibitors of MEK1/2, including trametinib, cobimetinib and 
binimetinib, and BRAF inhibitors have been served as the FDA-approved strategies for the treatment of BRAF 
V600E-mutant melanoma14. On April 10, 2020, selumetinib received FDA approval for pediatric patients with 
neurofibromatosis type 1, and they must be at least 2 years old, symptomatic and unable to surgery15. Moreover, 
Researches on other MEK1 inhibitors are also performing, such as PD-0325901, TAK-733 and Refametinib11.

However, prior studies have failed to identify the comprehensive and acknowledged profiling and significance 
of MEK1 due to a limited number of samples and/or limited types of cancer. We conducted this research using 
bioinformatics tools such as The TCGA and Kaplan–Meier analysis. Systematic mutation, copy number vari-
ants (CNVs) and expression were obtained across 32 different types of cancer from the TCGA. Then, we take 
advantage of Kaplan–Meier curves to analyze the clinical significance and promising insights according to the 
corresponding alterations.

Materials and methods
Data acquisition from various bioinformation databases.  MEK1 expression in 53 normal tissues 
was acquired using genotype-tissue expression (GTEx), whose primary functions include the collection of 
the genetic impact on transcriptome and gene regulation mechanism, and MEK1 expression data were log10 
transformed16. Then, cBioPortal was applied to obtain MEK1 mRNA expression data. cBioPortal is very useful 
for the exploration, visualization, and analysis of cancer genomics and clinical data17. We further utilized GEPIA, 
which is a practical and comprehensive website contributing to gene expression profiling and interactive analy-
sis, to compare the transcriptional levels between 32 types of cancer and matched normal tissues18. Moreover, 
MEK1 protein expression was extracted from the first reverse phase protein array (RPPA) dataset containing 
more than 8000 samples of 32 types of cancer from TCGA​19.

To determine MEK1 in terms of mutational and clinical significance, we utilized cBioPortral again to 
obtain these related data. The mutation data included indels, single-nucleotide variants (SNVs) and CNVs that 
contained amplification and deep deletion. The log ratio value of CNVs was set as follows: − 2/ − 1 = deletion, 
0 = diploid, 1 = gain, and 2 = amplification. Then, the exploration of the clinical significance was mainly based on 
Kaplan–Meier curves. Kaplan–Meier curves are a method to predict the future and a convenient way to evaluate 
the effect of genes on patient survival20,21. Survival indexes such as overall survival (OS) and progression-free 
survival (PFS) were primarily used to analyze the association with MEK1 alterations. The 95% confidence inter-
vals and the hazard ratios were plotted as forest plots.

Data  analysis.  IBM SPSS Statistics v26.0.0.5 (https://​www.​ibm.​com/​cn-​zh/​produ​cts/​spss-​stati​stics) was 
used for data analysis. Student’s t-tests, Cox regression analysis and linear regressions were appropriately applied. 
A p value less than 0.05 was considered significant. All cancer samples were statistically analyzed. A single sam-
ple at the genetic level was classified into two major categories: altered and unaltered. The Onco Query Language 
(OQL) was mainly applied.

Results
MEK1 expression across 32 types of cancer.  Prior studies have substantiated that RAS/MAPK path-
way overactivation promotes overexpression, leading to changes in MEK1 expression in various tumors17, but 
these results were far from sufficient. Studies on MEK1 expression remain a daunting challenge. Thus, we uti-
lized GTEx to obtain an integrative analysis of MEK1 expression in pancancer and 53 normal tissues, and then 
we compared abnormal MEK1 expression with normal. Supplementary Figure S1A shows that MEK1 was dif-
ferentially and markedly expressed in different normal tissues. The top three expression levels were as follows: 
cell EBV-transformed lymphocytes, brain-cerebellar hemisphere and brain-frontal cortex (BA9), respectively. 
Conversely, MEK1 was expressed at low levels in the kidney cortex, left ventricle of the heart and pancreas. Then, 
the MEK1 mRNA expression levels were profiled in pancancer. The spectrum of MEK1 mRNA expression was 
dramatically variable, indicating that MEK1 harbored some distinct traits to be expressed widespread, such as 
diffuse large B cell lymphoma (DLBC), acute myeloid leukemia (LAML) and uterine carcinosarcoma (UCS); 
or to be expressed narrowly, such as KIRC, THCA and pancreatic carcinoma (PAAD). The generation of this 
difference may be associated with multiple subtypes in one cancer and diverse gene phenotypes (Fig. 1A). To 
determine the actual changes in MEK1 expression in pancancer, we made a comparison between tumors and 
matched normal tissues. Obviously, these expression changes were markedly differential. As shown in the Sup-
plementary Figure S1B, 18 types of tumors were upregulated [bladder urothelial carcinoma (BLCA), cervical and 
endocervical cancers (CESC), cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), DLBC, HNSC, 
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kidney chromophobe (KICH), lung squamous cell carcinoma (LUSC), PAAD, rectum adenocarcinoma (READ), 
sarcoma (SARC), skin cutaneous melanoma (SKCM), STAD, TGCT, THCA, KIRC, and THYM] , 12 types of 
tumors were downregulated [adrenocortical carcinoma (ACC), breast invasive carcinoma (BRCA), ESCA, glio-
blastoma multiforme (GBM), kidney renal papillary cell carcinoma (KIRP), LAML, brain Lower Grade Glioma 
(LGG), LIHC, LUAD, ovarian serous cystadenocarcinoma (OV), and uterine corpus endometrial carcinoma 
(UCEC)] and the results of remaining 3 types of cancer were invalid because of the limited number of samples 
[pheochromocytoma and paraganglioma (PCPG), uveal melanoma (UVM), and MESO]. Moreover, obviously 
increased expression of MEK1 was detected in DLBC, HNSC, SKCM, STAD and TGCT. In contrast, distinctly 
decreased expression of MEK1 was found in LAML and LIHC.

Figure 1.   The expression of MEK1 mRNA and protein from The Cancer Genome Atlas (TCGA). (A) MEK1 
mRNA expression in pancancer. (B) MEK1 protein expression in pancancer. (C) MEK1 mRNA expression had a 
positive correlation with MEK1 protein expression across 32 types of cancer types.
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Because of the correlation between mRNA expression and protein expression22, we further analyzed the MEK1 
protein expression in pancancer and these data obtained from the Cancer Proteome Atlas (TCPA)19. The results 
presented a striking similarity to MEK1 mRNA. Likewise, the profile of MEK1 protein expression was wide, and 
there were significant differences in different tumors (Fig. 1B). Furthermore, we observed that there was a high 
positive correlation between MEK1 mRNA and protein expression in pancancer (r = 0.6703, p < 0.0001). These 
observations implied that MEK1 gene expression was the key to driving and regulating protein expression and 
had a tremendous impact on tumor functions (Fig. 1C).

The specific mutation frequency and distribution of MEK1 in pancancer.  Increasing evidence has 
demonstrated that mutation plays a promising role in regulation of gene expression and activation in mamma-
lian cells23,24. Hence, we next wanted to evaluated the frequency and distribution of MEK1 mutation in pan-can-
cer. The 1.4% (108/7867) MEK1 total mutation frequency for patients was obtained from cBioPortral, and the 
range in the samples was from 36 (CHOL) to 1084 (BRCA) (Table 1). Across the 32 types of cancer, the SKCM 
mutation frequency was the highest (6.7%) and was more than twice as high as the second highest of CHOL 
(2.8%). The three highest frequencies were UCEC, CESC, and colorectal adenocarcinoma (COEADRE); and 
the frequencies were 2.6%, 2.4% and 2.2%, respectively. Conversely, TCTA and KIRC had low MEK1 mutation 
frequencies; and GBM, LGG, SARC, testicular germ cell tumor (TGCT), PRAD, PAAD and KIPR had almost no 
MEK1 mutation frequencies (Fig. 2A). These results may have some limitations in the sample and the range, but 
we believe the limitations may be solved perfectly because the importance attached to MEK1 and the accumula-
tion of samples gradually increased.

In the following work, we analyzed functional domains in which MEK1 mutations were located. The func-
tional domains of MEK1 were classified as protein kinase domains (68–361 aa) and other domains using the 
Pfam database. The protein kinase domain is involved in cell metabolism though regulating cell signaling and 
activating other proteins by adding phosphate groups to protein substrates19. As Fig. 2B and Supplementary 
Table S1 show, in general, the mutations in the protein kinase domain (68–361 aa) were twice as many as others 
across the 32 types of cancer. The cancers whose mutations were most commonly distributed in the protein kinase 
domain were SKCM, UCEC, LUAD, STAD, LUSC, HNSC and BRCA. Importantly, STAD and LUAC mutations 
were all in the protein kinase domain. The opposite was that the mutations in CESC and COADREAD were 
distributed primarily in other domains whose functions were learned little, and their roles and profiles must 
continue to be explored.

Based on the classification of MEK1 functional mutation domains, our research was extended to further 
explore the defined mutation sites. Regarding the functional effects on protein coding, 108 MEK1 mutations 
were divided into three categories: missense mutations, truncating mutations and in-frame mutations. The 
most frequent mutation site, far more than the mutation of any other site, was located at 124 aa belonging to the 
protein kinase domain (Supplementary Figure S2A). Furthermore, the mutation of MEK1 in P124S/L almost 
exclusively occurred in SKCM (Supplementary Figure S2B). This finding implied that P124S/L was a mutational 
hotspot, having great potential to become a new therapeutic target for clinical treatment. As elaborated by Dia-
mond et al., cobimetinib was significantly effective for the treatment of SKCM harboring the P124L mutation25. 
However, there was no FDA approval, and the mechanism of P124S/L mutation leading to tumors was thought 
to be unknown.

Table 1.   The MEK1 total mutation frequency obtained from cBiopotral.

突变数 总数 Ratio (%)

LUAD 9 566 1.590106

LUSC 5 487 1.026694

STAD 7 440 1.590909

HNSC 5 523 0.956023

SKCM 30 448 6.696429

COADREAD 13 594 2.188552

THYM 1 123 0.813008

UCEC 14 529 2.646503

THCA 1 500 0.2

ESCA 3 182 1.648352

PCPG 1 178 0.561798

CHOL 1 36 2.777778

LIHC 1 372 0.268817

CESC 7 297 2.356902

OV 2 585 0.34188

KIRC 1 512 0.195313

BLCA 2 411 0.486618

BRCA​ 5 1084 0.461255
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Next, we wanted to explore the biological significances of MEK1 mutations in tumorigenesis.108 MEK1 
mutations were divided into three categories based on the oncogenic effects and predictive significance. They 
were unknown (48 mutations), oncogenic (33 mutations), and likely oncogenic (27 mutations). The majority of 
these mutations were unknown, indicating that it is a major challenge to determine their functions and that it 
is necessary for us to make greater efforts. Of note, the top four are SKCM (18/33), COADREAD (5/33), STAD 
(3/33) and LUAD (2/33) in oncogenic. Interestingly, in likely oncogenic, the top four are also SKCM (6/27), 
COADREAD (4/27), LUAD (4/27) and STAD (2/27) (Fig. 3A). Then, we analyzed the oncogenic effect separately 
according to the type of cancer. The oncogenic class accounted for the largest proportion in SKCM (18/30), 
COADREEAD (5/13) and STAD (3/7). The unknown class made up a large majority of UCEC (13/14), CESC 
(4/7), LUSC (4/5), HNSC (3/5), BRCA (4/5), ESCA (2/3) and BLCA (2/2) (Fig. 3B).

To identify the clinical targeted therapy significance of MEK1 mutations and practical clinical operability, we 
classified each MEK1 somatic mutation into three levels using mainly cBioPortal17 and OncoKB26. These levels 
were level NA (50 mutations), level 3A (31 mutations) and level 3B (27 mutations). Surprisingly, SKCM (24/31), 
LUAD (6/31) and LUAD (1/31) take up all of level 3A. The top four are COADREAD (9/27), STAD (5/27), CESC 
(3/27) and HNSC (2/27) in level 3B (Fig. 4A). Level 3A mutation represented the highest oncogenic evidence 
and was allowed to use off-label FDA-approved drugs or investigational agents not yet FDA approved for any 
indication26. Level NA mutations were primarily detected in ECEC (13/14), BRCA (5/6), OV (2/2) and BCLA 
(2/2) and had no targeted therapeutic significance. Level 3A mutations accounted for the largest proportion in 
SKCM (24/30) and AUAD (6/9). Level 3B mutations were the majority in COADROAD (9/13) and STAD (5/7) 
(Fig. 4B).

MEK1 CNVs across 32 types of cancer.  In addition to mutations, CNVs can also affect the expression 
and activation of cancer-associated genes, involving in the occurrence and development of many tumors27,28. 
MEK1 CNV frequency varied greatly in different tumors. There were almost amplification and deep deletion. 
The top three total MEK1 CVN frequencies were MESO (3.5%), KICH (1.5%) and SARC (1.2%). The bottom 
three were LUSC (0.2%), PRAD (0.2%) and LUAD (0.18%). Importantly, SARC and UCES had both amplifica-

Figure 2.   The mutation frequency and distribution of MEK1 in pancancer. (A) MEK1 mutation frequency in 
pancancer. (B) MEK1 mutation distribution belonging to different functional domains for all and the top 12 
tumors.
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tion and deep deletion while only one type of CNV was observed in other cancers (Fig. 5A). From the point of 
view of the number of cases with MEK1 CNV, the numbers in descending order were BRCA, OV, LUAD, LUSC, 
COADREAD, etc. (Fig. 5B). To clarify the correlation between MEK1 CNVs and mRNA expression, we made a 
scatter diagram according to the data from cBioPortral. This result suggested that there was a positive correlation 
between MEK1 CNVs and mRNA expression across 32 types of cancer (r = 0.3768, p < 0.0001) (Supplementary 
Figure S3). Our work revealed that MEK1 CNVs play a crucial role in the mRNA expression and functions of 
tumors.

Integrated MEK1 alterations (mutation and CNVs) in different tumors.  The total MEK1 altera-
tion proportion accounted for approximately 7% across all types of cancer, and mutations were found more com-
monly in general. Nevertheless, the frequency varies markedly in different types of cancers. MEK1 alterations 
were more common in MESO, UCS, CHLO and ESCA. It is worth noting that there were exclusive amplifica-
tions in MESO, renal chromophobe cell carcinoma (RCCC) and prostate cancer (CRPC) while there were exclu-
sive mutations in CHOL, COAD, HNSC and THCA. Furthermore, we observed neither MEK1 mutations nor 
MEK1 CNVs in ACC, UCS, UVM, DLBC, acute myeloid leukemia (AML), GBM, renal papillary cell carcinoma 
(PRCC), LGG and PAAD (Fig. 6A). Surprisingly, we observed that the MEK1 CNV frequency varied with the 
mutation sites. More than 50% of mutations in the protein kinase domain and other domains were accompanied 
by shallow MEK1 deletion and copy gain. The difference was that shallow deletion was dominant in the protein 
kinase domain while copy gain was dominant in other domains (Fig. 6B).

MEK1 alterations and patient survival.  The correlation between MEK1 mRNA expression and survival 
time was discussed to determine the clinical interpretation of MEK1 expression. According to the actual clinical 

Figure 3.   MEK1 mutation classification based on the functional impact. (A) MEK1 mutation classification 
based on the functional impact in pancancer. (B) MEK1 mutation classification based on the functional impact 
on all and top 12 tumors.
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needs, we analyzed patients with abnormal MEK1 expression overall time (OS) and progression-free survival 
(PFS) in individual tumors. Our results revealed that high MEK1 expression was a risk factor for patient OS in 
AUAD and LIHC. However, it was a protective factor for patient OS in melanoma, THYM, STAD, KIRP and 
ESCA (Fig. 7A,B). Next, the results of MEK1 expression and patient PFS are shown in Fig. 8A. High MEK1 
expression was positively correlated with patient PFS in KIRC, STAD, TGCT and HNSC. Interestingly, a nega-
tive association between high expression and patient PFS was not observed.

Discussion
In this research, we analyzed MEK1 in depth across 32 types of cancer from the following aspects: MEK1 expres-
sion, alterations, functional impact and clinical significance. Melanoma accounted for the largest proportion 
of alterations, and mutations were more common. Furthermore, MEK1 expression increased significantly, and 
mutations were mainly distributed in the protein kinase domain in SKCM. Overall, mutations occurred more 
often in the protein kinase domain, which was more likely to have therapeutic targets. Other types of cancer with 
high MEK1 alterations included UCEC, CHOL and COADREAD. There were several similarities such as the 
alteration frequency was approximately 2.8%, mutations were dominant and MEK1 expression decreased slightly 
compared with normal tissues. Notably, MESO had the second highest alterations in which amplification was 

Figure 4.   MEK1 mutation distribution by targeted therapy implication. (A) MEK1 mutation distribution by 
treatment level evidence as annotated in OncoKB. (B) MEK1 mutation distribution by targeted treatment in the 
top 12 types of cancer.
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considered to be a single type and the highest CNV frequency was observed but had no therapy targets. MEK1 
expression in LUAD, KIRP, ESCA and LIHC decreased, which is associated with better prognosis. Conversely, 
the MEK1 expression in THYM, STAD, KIRC, TGCT and HNSC increased, which is associated with better 
prognosis. Regarding the other aspects of the expression profile, there were no alterations in ACC, UCS, UVM, 
DLBC, AML, GBM, PRCC, LGG or PAAD.

With deeper research and bioinformation database application development, a growing number of cancers 
have been found to be linked to MEK1. Previous studies have shown that high MEK1 expression is observed in 

Figure 5.   MEK1 copy number variant (CNV) distribution across 32 types of cancer. (A) MEK1 CNV frequency 
in 32 types of cancer. (B) MEK1 CNV distribution in top 15 types of cancer.
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various tumors. Moreover, many small molecule inhibitors targeting MEK1 have been developed. Malignant 
melanoma is an aggressive skin cancer29. Presently, malignant melanoma incidence is consistently growing, but 
mortality is not decreasing30. Many researchers have shown high MEK1 expression in BRAF-mutated melanoma 
due to the activation of RAF–MEK–ERK pathway. The MEK inhibitors, such as trametinib, cobimetinib and 
binimetinib, combined with the BRAF inhibitors has been approved for BRAF-mutated melanoma by FDA14. 
Long et al. revealed that dabrafenib plus trametinib was one of the established combination strategies for stage III 
BRAF-mutated melanoma patients. This clinical trial showed that 3-year overall and relapse-free survival rate in 
combination-therapy group were 86% and 58%, which are both significantly higher than that in placebo group31.

Patients with NF1 often have a high burden of genetic disorder owing to improved tumor predisposition 
syndrome and limited management options. This disease is a genetically heterogeneous disorder and leads 
to multiple manifestations and complications, such as pain, function damage, disfigurement and malignant 
transformation32,33. NF1 patients lack neurofibromin which leads to some dysregulated signaling molecules, 
including RAS, RAF, MEK1/2 and ERK34. Nowadays, MEK1 inhibitors can be used to treat the NF1 patients. 
Previous clinical researches indicated that treatment with selumetinib could obviously shrank the quantities of 
plexiform neurofibromas in patients with NF1. Moreover, selumetinib treatment could prevent the worsening 
of spinal canal distortion, reducing the need for surgical interventions and enhancing the clinical benefit35.

Histiocytic sarcoma is a rare, aggressive, and poorly understood hematopoietic neoplasm, and the major-
ity of patients diagnosed live only 6 months36. One study found that histiocytic neoplasms might drive the 
RAF–MEK–ERK pathway and result in the overexpression of MEK137. Naturally, trametinib was used to treat 
histiocytic neoplasms and preliminarily proved to be effective38. And a previous clinical research confirmed that 

Figure 6.   MEK1 alteration distribution in 32 types of cancer. (A) MEK1 alteration frequency in 32 types of 
cancer. (B) MEK1 CNV distribution located in different functional domains.
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the overall clinical benefit rate of patients with histiocytic neoplasms was significantly improved after trametinib 
treatment. More importantly, 72% patients (13/18) achieved a complete response, 17% patients (3/18) achieved 
a partial response and no patients had progressive disease25. Similarly, ARAF recurrent mutation excessively 
activating the RAF–MEK–ERK pathway leads to a central conducting lymphatic anomaly treatable with a MEK 
inhibitor39. MEK1 expression was increased in DLBC, and this result might be significantly related to driving 
the RAF–MEK–ERK pathway.

Emerging evidence that certain MEK1 mutations are thought to be carcinogenic has been presented in recent 
years. NCI-H1437 harboring the MEK1 Q56P mutation is a lung adenocarcinoma cell line. Preclinical research 
works have demonstrated that NCI-H1437 developed sensitivity to various MEK1 inhibitors. Similar situations 
were established in other cell lines. SNU-C1 belongs to the colorectal cancer cell line and harbors the MEK1 F53L 
mutation. OCUM-1 MEK1 harboring the MEK1 Q56P mutation is a gastric cancer cell line. These two cell lines 
were proven to be sensitive to MEK1 inhibitors40. Our findings showed that CORDREAD had high MEK1 expres-
sion, which was little associated with prognosis because these samples possibly had no MEK1 F53L mutation.

MEK1 is regulated by upstream factors and undergo a series of corresponding implications. Several seminal 
studies over the past decades have delineated upstream factors of MEK1 correlate with a greater risk of cancers, 
such as BRAF. It is well known that prooncogenic BRAF V600E-mutation could drive the malignant biological 

Figure 7.   The relationship between MEK1 expression and patient overall survival (OS).
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properties of melanoma cells41. Neurofibromin encoded by NF1 is a tumor suppressor and acts as a negative 
regulator of RAS activity. Lack of Neurofibromin causes RAS overactivation and RAS-driven cancers such as 
pancreatic ductal adenocarcinoma (PDA)42,43. These abnormal upstream signalings could eventually participate 
in tumorigenesis by regulating the cellular MEK1.

In this article, we discussed the expression, mutation frequency and CNVs of MEK1 in pan-cancers. However, 
the interrelationship between these three issues remains to be expected. Wee et al. gave a comprehensive analysis 
to identify the relationship between CNVs and gene expression in pan-cancers. This group reported that numer-
ous oncogenes with frequent copy number of gain (CNG) were concentrated in the RAS-MAPK pathways44. The 
neuroendocrine carcinoma (NEC) patients harboring BRAF V600E mutations had 46.7% mutation frequency, 
which was significantly related to high levels of RAF, MEK and advanced tumor stages29.With the development 
of detection methods and scientific understanding, the findings in this study would represent a novel therapeutic 
strategy for patients with MEK1-related cancers.

Conclusions
Overall, our study identified MEK1 characterizations across 32 TCGA types of cancer from four aspects including 
MEK1 expression, alterations, functional impact and clinical implications. Some alterations are closely related to 
tumorigenesis while others are strongly associated with targeted therapy. In addition, some kinds of cancer with 
high alteration frequency are involved in better prognosis, but others are just the opposite. Furthermore, some 
cancers with high expression or target sites can be treated with targeted drugs. Genomic profiling may provide 
significant insight into cancer treatment for using targeted drugs. Collectively, our results implicated the biologi-
cal significances and applications of MEK1 in a variety of cancers. Future researches should be used to explore 
the potential regulation of MEK1 and evaluate the possible applications of MEK1 inhibitors in pan-cancer, 
which might provide promising therapeutic strategies and choices for cancer patients with MEK1 dysregulation.
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