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A B S T R A C T   

Existing medical image segmentation methods may only consider feature extraction and infor
mation processing in spatial domain, or lack the design of interaction between frequency infor
mation and spatial information, or ignore the semantic gaps between shallow and deep features, 
and lead to inaccurate segmentation results. Therefore, in this paper, we propose a novel fre
quency selection segmentation network (FSSN), which achieves more accurate lesion segmenta
tion by fusing local spatial features and global frequency information, better design of feature 
interactions, and suppressing low correlation frequency components for mitigating semantic gaps. 
Firstly, we propose a global-local feature aggregation module (GLAM) to simultaneously capture 
multi-scale local features in the spatial domain and exploits global frequency information in the 
frequency domain, and achieves complementary fusion of local details features and global fre
quency information. Secondly, we propose a feature filter module (FFM) to mitigate semantic 
gaps when we conduct cross-level features fusion, and makes FSSN discriminatively determine 
which frequency information should be preserved for accurate lesion segmentation. Finally, in 
order to make better use of local information, especially the boundary of lesion region, we employ 
deformable convolution (DC) to extract pertinent features in the local range, and makes our FSSN 
can focus on relevant image contents better. Extensive experiments on two public benchmark 
datasets show that compared with representative medical image segmentation methods, our FSSN 
can obtain more accurate lesion segmentation results in terms of both objective evaluation in
dicators and subjective visual effects with fewer parameters and lower computational complexity.   

1. Introduction 

Deep neural network (DNN) can learn complex representation relationship and realize pixel-level classification of the input image 
with its powerful learning ability. Therefore, medical image segmentation methods based on DNN have become a research hotspot in 
the field of medical image processing. Among these methods, convolutional neural network (CNN) and Transformer have shown 
excellent performance in various medical image segmentation tasks, especially for the segmentation of lesion areas. CNN-based 
methods [1–8] sually employ an encoder-decoder structure to perform layer-wise encoding and features restoration, which 
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facilitates high quality segmentation results. Recently, Transformer-based medical image segmentation methods have become a 
research hotspot, and have outperformed most CNN-based methods with excellent performance. Transformer-based methods usually 
take vision Transformers [9–14] as a backbone (encoder) because of their abilities of capturing long-range dependencies, and mainly 
design the decoder [15–21]. However, most of existing CNN-based and Transformer-based methods either only consider feature 
extraction and information processing in the spatial domain or ignore the influence of semantic gaps between shallow features and 
deep features and directly conduct concatenation and fusion between features of different levels, resulting in poor discriminations 
between lesion features and background features, and thus make it hard to segment accurate lesion contours and hinder model 
performance. Therefore, there are still much rooms for improvement in the performance of existing medical image segmentation 
methods. 

According to above analysis, we propose a novel frequency selection segmentation network (FSSN) which performs the fusion of 
spatial domain local features and frequency domain global information, as well as the adaptive sifting of different frequency com
ponents in the frequency domain. Specifically, we first propose a global-local aggregation module (GLAM) to realizes complementary 
fusion of local detailed features and global semantic information. Secondly, we propose a feature filter module (FFM) to bridge se
mantic gaps between shallow features and deep features so that our FSSN can discriminatively preserve the important features for 
accurate lesion segmentation. Finally, deformable convolution is introduced to accurately extract associated features in the local range 
so that our FSSN can focus on relevant image content better, and further enhances the capabilities of feature capture and expression. 
Our FSSN can be put forward by end-to-end training, and achieves more accurate lesion area segmentation with fewer parameters and 
lower computational complexity. In summary, the main components our method are listed as follows:  

(1) Inspired by the global characteristic of Fourier theory [22], we propose a GLAM. GLAM consists of a spatial domain branch and 
a frequency domain branch. Spatial domain branch captures local detailed features through a set of convolution layers with 
different receptive fields, while frequency domain branch realizes the exploitation of all frequency components by using Fourier 
transform. And by fusing spatial domain branch and frequency domain branch, the complementary learning of local detail 
features in spatial domain and global semantic information in frequency domain is realized.  

(2) In medical image segmentation tasks, semantic gaps between features of different levels often bring interferences and affect 
segmentation results. Therefore, we propose an FFM to bridge semantic gaps between shallow features and deep features by 
discriminatively treating the frequency components of fusion features. And FFM makes our FSSN can discriminatively deter
mine which frequency information should be protected for accurate lesion segmentation, and greatly reduces the adverse 
impact caused by semantic gaps when we conduct cross-level features fusion.  

(3) In order to mitigate the influence caused by irrelevant information, we employ deformable convolution (DC) to accurately 
extract pertinent features so that our FSSN can focus on pertinent image contents better for more powerful features capture and 
network representation. 

2. Related work 

Among the existing methods, Transformer-based methods usually perform better, but the complexity of the model is usually higher 
than that of CNNs. Transformer-based methods can capture long-range dependencies, while CNNs are good at extracting local features. 
Table 1 shows their differences. 

2.1. CNN-based methods 

In 2014, Long et al. proposed a fully convolutional network (FCN) [23] and pioneered CNN-based image segmentation. Subse
quently, Ronneberger et al. proposed a U-shaped fully convolutional neural network U-Net [1] based on FCN for medical image 
segmentation. Zhou et al. [2], Huang et al. [3] and Feng et al. [4], introduced the idea of multi-scale feature fusion into their works. Gu 
et al. [5] and Lou et al. [24] won a larger receptive field by using dilated convolution. Oktay et al. [6], Cai et al. [7] and Fan et al. [8] 
introduced attention mechanism into medical image segmentation, so that the network can filter out redundant information and focus 
more attention on the foreground region of interest. In Jin et al.’s work, deformable convolution [25,26] was used to learn the desired 
region. Furthermore, Fan et al. have shown that using a backbone network [27–30] often results in higher performance than training a 
network from scratch. 

2.2. Transformer-based methods 

In recent years, Transformer has achieved significant success in medical image segmentation tasks due to its ability of capturing 

Table 1 
Comparison of different types of methods.   

Local Feature Long-range Low-complexity Performance 

CNN-based ✓  ✓  
Transformer-based  ✓  ✓ 
Ours ✓ ✓ ✓ ✓  
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long-range dependencies and global information extraction (i.e., multi-scale self-attention mechanism [31]: MSA). Huang et al. [15] ’s 
work explored global dependencies and local context by re-integrating local and global information. Zhang et al. [16] adopted a hybrid 
architecture and cooperatively encoded feature information by using ViT [9] branch and CNN branch. Wang et al. [32] achieved 
significant performance gains through multi-scale channel-wise information fusion. Wang et al. [17] ’s work deeply mined local in
formation by upsampling the outputs of encoder from each layer to same resolution and conducting cascading fusion. Yue et al. [21] 
directly fused deep features and shallow features to guide shallow features, and aggregated feature information of all layers to achieve 
better segmentation. Rahman et al. [18] used attention mechanism [6,33–35] to refine deep features and shallow features. Duc et al. 
[19] designed a residual axial reverse attention (RA-RA) to analyze localization information and multi-scale features. Zhou et al. [36] 
simultaneously used convolution kernels of different sizes to mine similar information in multi-scale features and conducted the fusion 
of features of different scales. 

2.3. Frequency-based methods 

The work by Liu et al. [37] performed a sifting of frequency information in the frequency domain and used filtered frequency 
information to guide the decoding process. Nam et al. [38] simultaneously encoded the high frequency, low frequency and original 
features. Chi et al. [39] proposed a fast frequency domain convolution to obtain global receptive fields by transforming features into 
frequency domain and processing them in global and local ranges respectively. Li et al. [40] proposed a global-frequency-domain 
network (GFUNet) to correctly identify small areas by differently treating frequency components and restraining irrelevant fea
tures. Wang et al. [41] proposed g fast Fourier convolutional ResNet (FFC-ResNet) by combining spatial and frequency domain 
learning. Zou et al. [42] proposed a Fourier channel attention, which improves segmentation performance by encoding 
frequency-domain information of different channels. Wang et al. [43] proposed an effective foreground masking pre-training strategy 
to generate better segmentation representations by modeling high and low frequency components of medical images separately. Han 
et al. [44] introduced Fourier transform to enrich the information of RGB images and achieved good segmentation performance. Li 
et al. [45] analyzed the frequency domain features in terms of amplitude and phase, and fused shallow and deep information based on 
the graph structure. Yang et al. [46] introduced deformable convolution to extract localized features, but they ignored the semantic 
gaps between cross-level features. 

In summary, the existing DNN-based medical image segmentation methods, either only consider feature extraction and information 
processing in the spatial domain [1,2,4–8,15–20,24,32,36,47–50], or ignore semantic gaps between shallow features and deep fea
tures, and directly fuse features of different levels [1,3,7,15–17,37–40,42–47,49], resulting in poor discriminations between lesion 
features and background features. Therefore, there are still much rooms for improvement in the performance of existing medical image 
segmentation methods. 

3. Methods 

3.1. Overall architecture 

As Fig. 1 illustrated, our FSSN consists of four parts: features encoding (encoder: PVT-v2 [14]), fusion of local features and global 
features (GLAM), discriminative integration of shallow features and deep features (FFM and convolutional block attention module: 
CBAM [51]), and pertinent features extraction in the local range (DC). We use a four-stage network named PVT-v2-B2 [14] as our 
encoder. And the outputted features of four stages are denoted as Fs1, Fs2, Fs3 and Fs4 respectively. Where Fs2, Fs3 and Fs4 are the inputs 
of GLAM1, GLAM2 and GLAM3 respectively. As we discussed above, the main components of our FSSN are: GLAM, FFM and DC. 
Therefore, in this section, we will discuss these modules in detail. 

Fig. 1. Our proposed frequency selection segmentation network (FSSN).  
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3.2. Global-local aggregation module (GLAM) 

Han et al. [52] have proved that a well-trained deep neural network usually contains rich or even redundant feature maps to ensure 
a comprehensive understanding of the input data. Therefore, the features with partial channels may have similar expressive ability as 
full features. Inspired by the work of Han et al. as shown in Fig. 2, our proposed GLAM consists of a local spatial branch (LSB) and a 
global frequency branch (GFB) for local details features capture and global frequency information exploitation respectively. Denoting 
Fsi as the input of GLAMi-1, where i ∈ [2,4]. We averagely split Fsi into two parts along channel dimension: Fsi-LSB (first n/2 channels) 
and Fsi-GFB (last n/2 channels) as the inputs of LSB and GFB. 

For the LSB, Fan et al. [53] have proved that a set of various sized receptive fields help to highlight the area of small/local space, 
which helps to incorporate more discriminative feature representations during the searching stage. Ding et al. [54] have proved that by 
decomposing a k × k standard convolution into a k × 1 convolution and a 1 × k convolution in parallel rather than serial can enrich the 
feature space during training. And the depthwise separable convolution (DS-conv) proposed by Howard et al. [55] can reduce the 
number of parameters and computational complexity. Based on these designs, our LSB includes three parallel branches with three 
different receptive fields respectively. From left to right: a 7 × 1 DS-conv, a 3 × 3 DS-conv, and a 1 × 7 DS-conv. Then, the outputs of 
three parallel branches are pixel-wise added and further refined by a 1 × 1 convolution, so that FSSN can aggregate features at different 
scales. Finally, two identity shortcut branches are multiplied and added in, respectively. LSB are similar to the spatial attention (SA) 
[34], it can be formulated as: 

Fds
m×n = Conv(dsm×n(Fsi− LSB)), (1)  

attn = σ
(
Conv1×1

(
Fds

7×1 + Fds
3×3 + Fds

1×7
))
, (2)  

Fsi
LSB = Fsi− LSB ⨀ attn + Fsi− LSB, (3)  

where dsm×n(•) denotes the DS-conv with a receptive field of m × n. Convm×n(•) denotes a m × n convolutional layer. ⊙ is Hadamard 
product and σ(•) is Sigmoid function. 

For the GFB, according to Fourier theory [22], processing information in Fourier space is capable of capturing global frequency 
representation in the frequency domain. And by directly processing information in the frequency domain, different image components 
can be exploited better, such as low-frequency contours and high-frequency texture details. Therefore, in our GFB, we first use a 1 × 1 

Fig. 2. The proposed global-local aggregation module (GLAM).  
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convolution to process Fsi-GFB, and then adopt Fourier transform to convert it to the Fourier space as Fsi-Fourier by Equation (4). To 
process frequrency-domain representation Fsi-Fourier, we adopt two 1 × 1 convolutions and a ReLU [56] activation function to exploit 
global frequency information and finally invert it back to the spatial domain. GFB can be formulated as Equation (6): 

Fsi− Fourier = F (Conv1×1(Fsi− GFB)), (4)  

MLP
(
xinput

)
= Conv1×1

(
ReLU

(
Conv1×1

(
xinput

)))
, (5)  

Fsi
GFB = F

− 1
(MLP(Fsi− Fourier)), (6)  

where, F (•) and F − 1 (•) denote 2D discrete Fourier transform and 2D inverse discrete Fourier transform, respectively. ReLU(•) 
denotes ReLU activation function, and xinput denotes the input of MLP(•). 

Finally, we fuse the outputs of LSB and GFB by concatenation operation and a 1 × 1 convolution, which can be formulated as: 

Fʹ
si = GLAM(Fsi) = Conv1×1

(
©
(
Fsi

GFB, F
si
LSB

))
, (7)  

where, ©(•) denotes concatenate operation. From Equations (1)–(7) we can see that, by capturing multi-scale local features in the 
spatial domain and exploiting global frequency information in the frequency domain simultaneously, our proposed GLAM achieves the 
complementary fusion of local details features and global frequency information well. Therefore, in our FSSN, the representation 
capability of Fs2, Fs3 and Fs4 are further improved by using GLAM1, GLAM2 and GLAM3 respectively. The effectiveness of our GLAM will 
be verified in Sec. 4. 

3.3. Feature filter module (FFM) 

Aggregating multi-level features is essential for precise segmentation. However, the improvement by directly fusing shallow fea
tures and deep features becomes limited as the semantic gaps between them increases [57]. Therefore, we propose a FFM to mitigate 
semantic gaps when we conduct cross-level features fusion. As shown in Fig. 3, our FFM contains two parts: frequency selection and 
multi-scale features refinement. In FFM, the frequency selection part is mainly responsible for the mitigation of semantic gaps. And it’s 
different from GLAM, FFM aggregates global and local information serially because we wish them to interact with each other, whereas 
GLAM needs to independently mine useful global and local information before fusing them together. 

Before FFM, we first use CBAM [51] to rescale the shallow feature Fs1. CBAM consists of a channel attention (CA) branch and a 
spatial attention (SA) branch and it can be formulated as Equation (8): 

Fre− shallow = CBAM(Fs1) = SA(CA(Fs1)), (8)  

CA(Fs1) = Fs1 ⊙ σ( MLP(Pm(Fs1)) + MLP(Pa(Fs1))),

Fc = CA(Fs1),
(9)  

SA(Fc) = Fc ⊙ σ(Conv1×1(C(Pm(Fc),Pa(Fc)))), (10)  

where CA(•) and SA(•) denote the CA operation and SA operation, respectively. And Pm(•) and Pa(•) represent maximum pooling and 
average pooling operations, respectively. And Fc is denoted as the output features of CA branch. 

As shown in Fig. 1, we denote the outputs of DC2 and CBAM as Fdeep and Fre-shallow respectively. In FFM, we first concatenate Fdeep and 
Fre-shallow and coarsely fuse them as Ffuse by Equation (11). Similar to GLAM, we convert Ffuse to the Fourier space for global receptive 
field, then FSSN can adaptively sift significant information in the global range, and invert sifted results back to the spatial domain. 
Finally, an identity shortcut branch is added to the result of inverse Fourier transform. The frequency selection part can be formulated 
as: 

Ffuse = Conv1×1
(
©
(
Fdeep, Fre− shallow

))
, (11)  

Ff = F
− 1( W

(
F

(
Ffuse

)))
+ Ffuse, (12) 

Fig. 3. The proposed feature filter module (FFM).  
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where, W(•) is a learnable weight map with same resolution as Ffuse. 
As we discussed above (Sec. 3.2), the combination of features with various sized receptive fields helps to incorporate more 

discriminative feature representations, thereby highlighting regions of small/local space. Therefore, in our FFM, we again adopt four 
parallel convolution layers with different sized receptive fields to refine Ff. Then, the outputs of four parallel branches are concatenated 
along channel dimension and further refined by a 1 × 1 convolution. Finally, an identity shortcut branch is added in, which can be 
formulated as: 

Fcat = ©
(
ds7×1

(
Ff
)
, ds1×7

(
Ff
)
,Conv1×1

(
Ff
))
, (13)  

FFM
(
Fdeep, Fre− shallow

)
= Conv1×1(Fcat) + Ff , (14)  

from Equations (11)–(14) we can see that, by sifting frequency components of Ffuse in the frequency domain and mining multi-scale 
local features in the spatial domain, our proposed FFM can effectively mitigate semantic gaps between cross-level features and 
facilitate more accurate lesion segmentation. The effectiveness of our FFM will be verified in Sec. 4. 

3.4. Deformable convolution (DC) 

It is well-known that, in medical images, the distinction between lesion and background is small. Therefore, accurate lesion features 
extraction is crucial, especially at the boundary of lesion area. In existing medical image segmentation methods, almost all works just 
used standard convolution with different sizes kernels (e.g. 3 × 3 or 5 × 5) to extract local information. However, because of fixed 
receptive field and sampling locations, the learned features by standard convolution will be influenced by irrelevant information when 
we conduct standard convolution operation at the boundary of lesion area. Therefore, as shown in Fig. 1, in order to mitigate the 
influence caused by irrelevant features, we employ two deformable convolutions (DC1 and DC2) [25,26] to extract pertinent features in 
the local range. We use x(p) and y(p) to denote the feature at location p in the input feature maps x and output feature maps y, 
respectively [26], then the deformable convolution can be formulated as: 

y(p) =
∑K

k=1

ωk · x(p + pk + Δpk) ·Δmk, (15)  

where, K and k denote the number of sampling locations and the k-th sampling location (e.g. K = 9 and pk ∈ {(-1, − 1), (− 1, 0), …, (1, 
1)}), respectively. ωk, pk and Δpk denote the weight, original location and learnable offset for k-th sampling location, respectively [26]. 
Δmk is a learnable modulation scalar for each sampling location. And whole process of two deformable convolutions can be formulated 
as: 

Fʹ́
s3 = Fʹ

s3 ⊙ Conv3×3
(
up2

(
Fʹ

s4
))
, (16)  

Fʹ́
s2 = Fʹ

s2 ⊙ Conv3×3
(
up2

(
Fʹ

s3
))

⊙ Conv3×3
(
up4

(
Fʹ

s4
))
, (17)  

where, up2( •) and up4( •) denote bilinear interpolation upsampling operations by the factors of 2 and 4, respectively. And ⊙ is 
Hadamard product. 

Fdeep = DC2
(
©
(
Fʹ́

s2, up2
(
DC1

(
©
(
Fʹ́

s3, up2
(
Fʹ

s4
))))))

, (18)  

where DC1 and DC2 denote two 3 × 3 deformable convolution operations. The effectiveness of our two deformable convolutions will be 
investigated in Sec.4. The pseudocode of our FSSN is shown in Algorithm 1. 

Algorithm 1. FSSN Architecture  

1: function FSSN(Input)
2: Fs1 , Fs2, Fs3, Fs4 ←PVTv2(Input)
3: output1,output2←Decoder(Fs1 ,Fs2,Fs3,Fs4)

4: Output←output1,output2 

5: return Output 
6: end function 
7: function DECODER(Fs1,Fs2,Fs3 ,Fs4 )

8: F́s2←GLAM1(Fs2)

9: F́s3←GLAM2(Fs3)

10: F́s4←GLAM3(Fs4)

11: Fre− shallow←CBAM(Fs1)

12:  
13: Fʹ́

s3←F́s3 ⊙ Convolution
(
up2

(
Fś4

))

14: Fʹ́
s2←F́s2 ⊙ Convolution

(
up2

(
Fś3

))
⊙ Convolution

(
up4

(
Fś4

))

15: Fdeep←DeformConv
(
©
(
Fʹ́

s2 ,up2
(
DeformConv

(
©
(
Fʹ́

s3,up2
(
Fś4

))))))

(continued on next page) 
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(continued ) 

16:  
17: output1←Convolution

(
Fdeep

)

18: output2←FFM
(
Fdeep ,Fre− shallow

)

19: return output1,output2 

20: end function 
21: function GLAM (Fsi)

22: Fsi− GFB,Fsi− LSB←Split(Fsi)

23: F́si− GFB←GlobalBranch(Fsi− GFB)

24: F́si− LSB←LocalBranch(Fsi− LSB)

25: F́si←Convolution
(
©
(
Fʹ

si− GFB, F́si− LSB
))

26: return F́si 
27: end function 
28: function FFM 

(
Fdeep,Fre− shallow

)

29: Ffuse←Convolution
(
©
(
Fdeep ,Fre− shallow

))

30: Ff ←GlobalFilter
(
Ffuse

)
+ Ffuse 

31: Fcat←MultiScale
(
Ff
)

32: output2←Convolution
(
Ff+Convolution(Fcat)

)

33: return output2 

34: end function   

4. Experiments 

To demonstrate the effectiveness of our method, extensive experiments are performed on a PC with a NVIDIA Geforce RTX 3090 
GPU, a Intel Core I9–10900K CPU, and PyTorch platform 1.11.0 Library. We train our models on two datasets: Polyp datasets and ISIC- 
2018 dataset. 

Polyp datasets contain two seeable datasets named CVC-ClinicDB [58], Kvasir and three unseen datasets, namely CVC-300, 
CVC-ColonDB [59] and ETIS-LaribDB [60]. Specifically, CVC-ClinicDB contained 612 polyp images and corresponding labels 
extracted from 29 different endoscopic video clips. Kvasir contains 1000 polyp images and corresponding labels from Kvasir-SEG [61]. 
CVC-300 is a subset of EndoScene [62], which refers to the remaining part after subtracting 612 samples of EndoScene from 
CVC-ClinicDB. CVC-ColonDB and ETIS-LaribDB contain 380 and 192 polyp images and corresponding labels, respectively. ISIC-2018 
dataset contains 2594 training images and 100 test images and their corresponding labels. 

4.1. Implement details 

Following [18], for Polyp datasets, we use 1450 images for training and 798 images for testing. The epoch is set to 50 with batch 
size of 16. For ISIC-2018 dataset, we use 2594 images for training and 100 images for testing, and the epoch is set to 50 with batch size 
of 16. No validation set for all experiments. The random flip, random rotation and a scaling strategy {0.75,1.0, 1.25} [8] are used. 

We train models end-to-end by using AdamW [63] optimizer with an initial learning rate 1e-4 gradually reduced to 1e-6, and we 
kept the model that performs best. For fair comparison, we standardized the size of images in each dataset. For Polyp datasets, the size 
of training image is 352 × 352 and that of ISIC-2018 dataset is 224× 224. In our experiments, we use dice coefficient (Dice), mean 
intersection over union (mIoU), Mean Absolute Error (MAE) to evaluate the performance of our method. 

We use combined weighted IoU and weighted binary cross entropy (BCE) as our loss function for all experiments, which can be 
formulated as Equations (19) and (20): 

L total = L
w
IoU + L

w
BCE, (19)  

L oss = L total(output1) + L total(output2), (20)  

where L w
IoU represents the weighted IoU loss [8], and L w

BCE represents the weighted BCE loss [8]. output1 and output2 represent two 
outputs of our FSSN respectively, and the final segmentation mask of our FSSN is the sum of them. 

4.2. Ablation study 

To demonstrate the effectiveness of each component of our FSSN, we first perform ablation experiments on Polyp datasets. In all 
ablation experiments, the scores we obtained were averaged over multiple experiments. 

4.2.1. Effectiveness of GLAM 
As we discussed in Section 3.2, in our GLAM, LSB employs three parallel depthwise separable convolutions with different receptive 

fields to capture local details features, and GFB adopts Fourier transform to achieve global frequency information exploitation. 
Therefore, to fairly verify the effectiveness of our proposed GLAM, we compare our proposed FSSN with models FSSN-NoFT, FSSN- 
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Sdsconv, FSSN-NoGLAM and FSSN-Full. Here, FSSN-NoFT refers to the model that only removes Fourier transform and inverse Fourier 
transform from GFB and keeps the others untouched. FSSN-Sdsconv refers to the model that, in the LSB, replaces three parallel DS- 
convs with three serial DS-convs of the same receptive field sizes, and the rest parts of FSSN-Sdsconv are untouched. FSSN- 
NoGLAM refers to the model that simultaneously removes Fourier transform and inverse Fourier transform from GFB and replaces 
the parallel DS-convs with serial DS-convs in the LSB, and keeps the others untouched. FSSN-Full refers to the model that does not split 
features along channel dimension in GLAM, and inputs all channels into LSB and GFB respectively. 

From Table 2 we can see that our proposed GLAM plays an important role in improving the performance: compared with FSSN, the 
average Dice values of FSSN-NoFT, FSSN-Sdsconv and FSSN-NoGLAM are reduced by 1.53%,1.12% and 1.56%, respectively. More
over, FSSN performs 0.03% better than FSSN-Full, and FSSN slightly reduces the parameters (from 25.234M to 25.203M) and 
computational complexity (from 4.133G to 4.127G at the resolution of 224× 224). Therefore, Table 2 demonstrates the effectiveness 
of LSB, GFB and GLAM. 

4.2.2. Effectiveness of FFM 
To verify the effectiveness of FFM, we conduct ablation experiments specifically for our learnable weight map W( · ) in Equation 

(12) and FFM’s serial structure. For fair comparison, we compare our proposed FSSN with FSSN-NoWeight and FSSN-Parallel. Here, 
FSSN-NoWeight refers to the model removing the W( · ) from Equation (12), which means that here is no any information sifting 
process. And FSSN-Parallel refers to the model that feeds forward the two parts of FFM in parallel. As shown in Table 3, compared with 
FSSN, the average Dice value of FSSN-NoWeight and FSSN-Parallel are reduced by 1.56 % and 0.32 %, which demonstrates the 
effectiveness of learnable weight map and serial structure (different from GLAM). To further demonstrate the effectiveness of our 
learnable weight map W( · ), in Figs. 4 and 5, we visualize the heat maps of FFM with and without the W( · ) respectively. From Fig. 4 we 
can see that, without W( · ), the small lesion area cannot be learned by using FSSN-NoWeight. And from Fig. 5 we can see that, without 
W( · ), FSSN-NoWeight cannot locate lesion area correctly. By contrast, our FSSN can not only learn all lesion areas (both large lesion 
area and small lesion area), but also can achieve accurate lesion area location. Table 3, Figs. 4 and 5 demonstrate the effectiveness of 
our FFM well. 

4.2.3. Effectiveness of DC 
The third component of our FSSN is DC. So, in order to verify the effectiveness of deformable convolution, we compare our pro

posed FSSN with FSSN-RegularConv. Here, FSSN-RegularConv refers to the model that replaces two 3 × 3 deformable convolutions 
with two 3 × 3 standard convolutions. As shown in Table 4, compared with FSSN, the average Dice value of FSSN-RegularConv is 
reduced by 0.36 %. Fig. 6 visualizes the receptive field and sampling locations of DC2 for two pixels in representative locations. From 
Fig. 6 we can see that, in the local range, compared with standard convolution, our DC can not only reduce the influence caused by 
different image components greatly, but also can enlarge receptive field and pay more attention to the fusion of pertinent image 
contents. And our DC almost only extracts the same image components related to the reference pixel, even at the boundary of lesion 
area. Tables 2–4 and Figs. 4–6 demonstrate the effectiveness of our components very well. 

4.3. Comparisons with representative medical image segmentation methods 

To demonstrate the superiority of our method, we compare our proposed FSSN with representative CNN-based and Transformer- 
based medical image segmentation methods [1,8,15–21,24,32,36,38,40,50] on Polyp and ISIC-2018 datasets respectively. 

4.3.1. Objective metrics results on polyp datasets 
The performance of FSSN and other methods on Polyp datasets are shown in Tables 5 and 6. From Tables 5 and 6 we can see that, 

our proposed FSSN has competitive performance. On the Kvasir, CVC-300 and ETIS-LaribDB datasets, in term of Dice, our FSSN 
outperforms methods [18] (the second best method on Kvasir) [19], (the second best method on CVC-300) and [21] (the second best 
method on ETIS-LaribDB) by 0.27 %, 0.03 % and 2.18 %, respectively. And, on the unseen ETIS-LaribDB dataset, we outperform other 
methods by a significant advantage of more than 2.18 %. 

In addition, from Tables 6 and 7 we can see that, first, our FSSN not only can achieve the highest average Dice and average IoU: for 
all five Polyp datasets, our FSSN surpasses CASCADE [18] (the second best method) 0.23 % and 0.39 % in terms of both average Dice 
and average IoU respectively. Second, compared with representative medical image segmentation methods, our FSSN has competitive 
or better performance, and has fewer parameters and lower computational complexity. Although the Dice values of our FSSN are 
0.0017 and 0.0144 lower than those of [18] on CVC-ClinicDB and CVC-ColonDB datasets respectively, our FSSN reduces the number of 

Table 2 
Ablation studies on GLAM.   

Fourier transform Parallel DS-convs Full-channels avg-Dice↑ 

FSSN-NoGLAM    0.8667 
FSSN-NoFT  ✓  0.8670 
FSSN-Sdsconv ✓   0.8711 
FSSN-Full ✓ ✓ ✓ 0.8820 
FSSN (Ours) ✓ ✓  0.8823  
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parameters and computational complexity by 28.55 % and 33.83 % respectively. 

4.3.2. Objective metrics results on ISIC-2018 dataset 
The results of objective evaluation indicators of our FSSN and other methods on ISIC-2018 are shown in Table 8. As shown in 

Table 8, although the MAE of our FSSN is 0.0009 lower than that of TransFuse-L [16], the Dice and mIoU of our FSSN are 0.38 % and 
0.65 % higher than those of TransFuse-L [16] (the second best method). And as shown in Table 9, compared with TransFuse-L, our 
FSSN reduces the number of parameters and computational complexity by 82.50 % and 93.35 % respectively, which proves that our 
FSSN can achieve good performance while maintaining a low number of parameters. 

Finally, considering that Fourier transform is a complex-valued transform, so it may slow down the inference significantly in some 
scenarios. Therefore, we compare the inference time of FSSN with that of [1,8,15–18,32,36,38,40]at the input resolution of 224 × 224 
(single image). As shown in Table 10, the inference speed of CNN-based methods is quite fast, but their performance tends to be low. 
Even though our FSSN is about 0.01 s slower than most Transformer-based methods, it outperforms other methods in 
performance-overhead balance. 

Taken together, inference delay within 0.01 s is clearly an acceptable range. It is also worth noting that M3FPolypSegNet [38] and 

Table 3 
Ablation studies on FFM.   

Learnable Weight Map Serial Structure avg-Dice↑ 

FSSN-NoWeight  ✓ 0.8667 
FSSN-Parallel ✓  0.8791 
FSSN (Ours) ✓ ✓ 0.8823  

Fig. 4. The heat maps with and without the learnable weight map. The yellow curve shows the ground truth boundary outline of the lesion area. 
Obviously, FSSN-NoWeight misses out the small lesion area. (For interpretation of the references to color in this figure legend, the reader is referred 
to the Web version of this article.) 

Fig. 5. The heat maps with and without the learnable weight map. The yellow curve shows the ground truth boundary outline of the lesion area. 
Obviously, FSSN-NoWeight incorrectly locates the lesion area. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Table 4 
Ablation study on DC.   

Deformable convolution avg-Dice↑ 

FSSN-RegularConv ✓ 0.8787 
FSSN (Ours) 0.8823  

S. Tang et al.                                                                                                                                                                                                           



Heliyon 10 (2024) e35698

10

GFUNet [40] both introduce Fourier transform to their model, but they lack the design of interaction between frequency information 
and spatial information. This lack may be responsible for the poor performance of them. GFUNet [40] performed well only on 
ISIC-2018 dataset and poorly for datasets with insignificant lesion areas (Polyp datasets). Even though they may have lower pa
rameters and computational complexity (especially GFUNet [40]), our FSSN clearly strike a better balance. 

In order to further verify the effectiveness of our FSSN, we use the Mean Absolute Error (MAE) to evaluate the performance of our 
method. The comparison results are shown in Table 11. From Table 11 we can see that, our FSSN can achieve the best MAE values on all 
five datasets, which again demonstrates the superiority of our FSSN. 

Fig. 6. The visualization of the sampling locations (3×3 = 9 blue points in each image) for two pixels in different locations (red points) respectively. 
From left to right: the pixel on the boundary (yellow curve) of lesion area (located in the background), and the pixel on the boundary of lesion area 
(located in lesion area). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 5 
Results of all methods on CVC-ClinicDB, Kvasir and CVC-300 datasets. The best, second best and 
third best performance are marked , and colors re spectively. 
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4.3.3. Subjective visual comparisons 
We also show visual comparisons of methods [8,15–18,32,36] and our FSSN on Polyp and ISIC-2018 datasets in Figs. 7–8, 

respectively. From Figs. 7–8 we can see that, the above methods suffer from various different degrees flaws. By contrast, our FSSN can 
obtain the most accurate lesion segmentation results: closest to the ground-truth masks. Tables 5–11 and Figs. 7–8 demonstrate the 
superiority of our method in terms of both qualitative evaluation and quantitative metrics. 

5. Conclusion 

In this paper, we propose a novel frequency selection segmentation network (FSSN) for high quality lesion segmentation. Inspired 
by Fourier theory, GLAM and FFM are proposed for the complementary fusion of local details features and global frequency infor
mation, better interaction between features, and the adaptive sifting of different frequency components respectively. In addition, we 
employ deformable convolution (DC) to make our FSSN focus on relevant image contents better for more powerful performance. All 
these designs effectively improve the abilities of features capture and network representation, and make our FSSN more suitable for 
lesion segmentation. Extensive experiments on both public benchmark datasets show that our proposed FSSN can achieves better 
segmentation results than existing representative medical image segmentation methods in terms of both objective evaluation 

Table 6 
Results of all methods on CVC-ColonDB, ETIS-LaribDB. And the average Dice and average IoU of all 
methods for all five Polyp datasets. The best, second best and third best performance are marked , 
and colors respectively. 

Table 7 
The parameters and computational complexity of methods [1,8,16–19,21,36,38,40] and our FSSN. The size of input image is 352 × 352.  

Method Params (M) FLOPs (G) Journals/Conferences 

U-Net [1] 7.76 25.99 MICCAI 2015 
M3FPolypSegNet [38] 22.39 68.71 ICIP 2023 
GFUNet [40] 3.94 5.57 CIBM 2023 
PraNet [8] 30.50 13.11 MICCAI 2020 
CFA-Net [36] 25.24 55.36 PR 2023 
TransFuse-L [16] 43.39 62.10 (192 × 256) MICCAI 2021 
SSFormer-L [17] 66.20 34.60 MICCAI 2022 
APCNet-v2 [21] 33.11 16.33 IEEE TIM 2023 
ColonFormer-L [19] 52.94 22.94 IEEE Access 2022 
CASCADE [18] 35.27 15.40 WACV 2023 
FSSN (Ours) 25.20 10.19 –  
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indicators and subjective visual effects, while has fewer parameters and lower computational complexity. However, In GLAM, our 
FSSN does not focus on phase and amplitude information separately (e.g. Ref. [45]), and compared to lightweight models (e.g. 
Ref. [40]), FSSN is slightly large. In the future, we will investigate how to handle the frequency domain information in a more 
comprehensive way, and further reduce the model size and computational complexity while achieving better performance. And 
extending our FSSN to 3D medical image segmentation is also our future work. 

Table 8 
Results of all methods on ISIC-2018. The best, second best and third 
best performance are marked , and colors respectively. 

Table 9 
The parameters and computational complexity of the methods [1,8,15,16,18,32,38,40,64] and our FSSN. The size of the input image is 224 × 224.  

Method Params (M) FLOPs (G) Journals/Conferences 

M3FPolypSegNet [38] 22.39 27.83 ICIP 2023 
GFUNet [40] 3.94 2.26 CIBM 2023 
U-Net [1] 7.76 10.52 MICCAI 2015 
MISSFormer [15] 35.45 7.28 TMI 2023 
UCTransNet [32] 66.24 32.98 AAAI 2022 
PraNet [8] 30.50 5.33 MICCAI 2020 
CASCADE [18] 35.27 6.24 WACV 2023 
DermoSegDiff-A [64] – – PRIME 2023 
TransFuse-L [16] 143.39 62.10 (192 × 256) MICCAI 2021 
FSSN (Ours) 25.10 4.13 –  

Table 10 
Comparison of inference time at 224 × 224 resolution.  

Method Type Inference Time (s) 

U-Net [1] CNN 0.041 
PraNet [8] CNN 0.067 
CFA-Net [36] CNN 0.071 
M3FPolypSegNet [38] CNN 0.056 
GFUNet [40] CNN 0.041 
TransFuse-L [16] Hybrid 0.071 (192 × 256) 
SSFormer-L [17] ViT 0.083 
CASCADE [18] ViT 0.063 
MISSFormer [15] ViT 0.064 
UCTransNet [32] ViT 0.067 
FSSN (Ours) ViT 0.073  
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Table 11 
The MAE results of all methods on CVC-ClinicDB, Kvasir and CVC-300 datasets. The best is marked 
color respectively. 

Fig. 7. The visual comparisons of representative methods and our FSSN on Polyp datasets.  
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