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Interference of clocks: A quantum twin paradox
Sina Loriani1*, Alexander Friedrich2*†, Christian Ufrecht2, Fabio Di Pumpo2, Stephan Kleinert2,
Sven Abend1, Naceur Gaaloul1, Christian Meiners1, Christian Schubert1, Dorothee Tell1,
Étienne Wodey1, Magdalena Zych3, Wolfgang Ertmer1, Albert Roura2, Dennis Schlippert1,
Wolfgang P. Schleich2,4,5, Ernst M. Rasel1, Enno Giese2

The phase of matter waves depends on proper time and is therefore susceptible to special-relativistic (kinematic)
and gravitational (redshift) time dilation. Hence, it is conceivable that atom interferometers measure general-
relativistic time-dilation effects. In contrast to this intuition, we show that (i) closed light-pulse interferometers
without clock transitions during the pulse sequence are not sensitive to gravitational time dilation in a linear
potential. (ii) They can constitute a quantum version of the special-relativistic twin paradox. (iii) Our proposed
experimental geometry for a quantum-clock interferometer isolates this effect.
INTRODUCTION
Proper time is operationally defined (1) as the quantity measured by
an ideal clock (2) moving through spacetime. As the passage of time
itself is relative, the comparison of two clocks that traveled along dif-
ferent world lines gives rise to the twin paradox (3).Whereas this key
feature of relativity relies on clocks localized on world lines, today’s
clocks are based on atoms that can be in a superposition of different
trajectories. This nature of quantum objects is exploited by matter-
wave interferometers, which create superpositions atmacroscopic spa-
tial separations (4). One can therefore envision a single quantum clock
such as a two-level atom in a superposition of two different world lines,
suggesting a twin paradox, in principle susceptible to any form of time
dilation (5–7). We demonstrate which atom interferometers imple-
ment a quantum twin paradox, how quantum clocks interfere, and
their sensitivity to different types of time dilation.

The astonishing consequences of time dilation can be illustrated by
the story of two twins (3), depicted in Fig. 1A: Initially at the same po-
sition, one of them decides to go on a journey through space and leaves
his brother behind. Because of their relative motion, he experiences
time dilation and, upon meeting his twin again after the voyage, has
aged slower than his brother who remained at the same position. Al-
though this difference in age is notable by itself, the twin who traveled
could argue that, fromhis perspective, his brother hasmoved away and
returned, making the same argument. This twin paradox can be re-
solved in the context of relativity, where it becomes apparent that not
both twins are in an inertial system for the whole duration. In the pres-
ence of gravity, two twins that separate and reunite experience addi-
tional time dilation depending on the gravitational potential during
their travel. The experimental verifications of the effect that leads to
the difference in age, namely, special-relativistic and gravitational time
dilation, were milestones in the development of modern physics and
have, for instance, been performed by the comparison of two atomic
clocks (8–10). Atomic clocks, as used in these experiments, are based
on microwave and optical transitions between electronic states and
define the state of the art in time keeping (11).

In analogy to optical interferometry, atom interferometers mea-
sure the relative phase of a matter wave accumulated during the prop-
agation by interfering different modes. Although it is possible to
generate these interferometers through different techniques, we focus
here on light-pulse atom interferometers like the one of Kasevich and
Chu (12) with two distinct spatially separated branches, where the
matter waves are manipulated through absorption and emission of
photons that induce a recoil to the atom. Conventionally, these inter-
ferometers consist of a series of light pulses that coherently drive
atoms into a superposition of motional states, leading to the spatial
separation. The branches are then redirected and finally recombined
such that the probability to find atoms in a specific momentum state
displays an interference pattern and depends on the phase difference
Dφ accumulated between the branches that is susceptible to inertial
forces. Hence, light-pulse atom interferometers do not only provide
high-precision inertial sensors (13, 14) with applications in tests of
the foundations of physics (15–21) but also constitute a powerful tech-
nique to manipulate atoms and generate spatial superpositions.

Atom interferometry, in conjunction with atomic clocks, has led to
the idea of using time dilation between two branches of an atom in-
terferometer as a which-way marker to measure effects like the grav-
itational redshift through the visibility of the interference signal (5, 6).
However, no specific geometry for an atom interferometer was pro-
posed and no physical process for themanipulation of thematter waves
was discussed. The geometry as well as the protocols used for coherent
manipulation crucially determine whether and how the interferom-
eter phase depends on proper time (22). Therefore, the question of
whether the effects connected to time dilation can be observed in
light-pulse atom interferometers is still missing a conclusive answer.

In this work, we study a quantumversion of the twin paradox, where
a single twin is in a superposition of two different world lines, aging
simultaneously at different rates, illustrated in Fig. 1B. We show that
light-pulse atom interferometers can implement the scenario where
time dilation is due to special-relativistic effects but are insensitive to
gravitational time dilation. To this end, we establish a relation between
special-relativistic time dilation and kinematic asymmetry of closed
atom interferometers, taking the form of recoil measurements
(15, 21, 23, 24). For these geometries, a single atomic clock in a super-
position of two different trajectories undergoes special-relativistic time
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dilation. The induced distinguishability leads to a loss of visibility
upon interference such that the proposed experiment represents a
realization of the twin paradox in quantum-clock interferometry.

In general relativity, the proper time along a world line z = z(t) is
invariant under coordinate transformations and can be approxi-
mated as

t ¼ ∫dt ≅ ∫dt½1� ð:z=cÞ2=2þ U=c2� ð1Þ
where c denotes the speed of light. Here, z

� ¼ dz=dt is the velocity of
the particle and U(z) is the Newtonian gravitational potential along
the trajectory. This classical quantity is connected to the phase

φ ¼ �wCtþ Sem=ℏ ð2Þ

acquired by a first-quantized matter wave, assuming that it is suffi-
ciently localized such that it can be associated with this trajectory.
Here, wC = mc2/ℏ denotes the Compton frequency of a particle of
mass m and

Sem ¼ �∫dt Vem ð3Þ

is the classical action arising from the interaction of the matter wave
with electromagnetic fields described by the potential Vem(z, t) eval-
uated along the trajectory. For instance, if the electromagnetic fields
generate optical gratings, then this potential can transfer momentum
to the matter wave, thus changing its trajectory, which, in turn, affects
proper time.

Light-pulse interferometers (12) use this concept of pulsed optical
gratings tomanipulate matter waves. In case of interferometers closed
in phase space (25) and for potentials up to the second order in z, the
phase difference Dφ can be calculated from Eq. 2 by integrating along
the classical trajectories.
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RESULTS
Time dilation and gravito-kick action
Because the light pulses act differently on the two branches of the inter-
ferometer, we add superscripts a = 1,2 to the potentialV ðaÞ

em . Moreover,
we separate V ðaÞ

em ¼ V ðaÞ
k þ VðaÞ

p into a contribution VðaÞ
k causing

momentum transfer andV ðaÞ
p imprinting the phase of the light pulse

without affecting the motional state (26). Consequently, we find that
themotionzðaÞ ¼ zg þ zðaÞk along one branch can also be divided into
two contributions: zg caused by the gravitational potential and zðaÞk
determined by the momentum transferred by the light pulses on
branch a.

For a linear gravitational potential, the proper-time difference be-
tween both branches takes the form

Dt ¼ ∫dt €zð1Þk zð1Þk � €zð2Þk zð2Þk

h i
=ð2c2Þ ð4Þ

(see Materials andMethods). It is explicitly independent of zg as well as
of the particular interferometer geometry, which is a consequence of the
phase of a matter wave being invariant under coordinate transforma-
tions. When transforming to a freely falling frame, both trajectories re-
duce to the kick-dependent contribution zðaÞk and the proper-time
difference Dt is thus independent of gravity (22). Accordingly, closed
light-pulse interferometers are insensitive to gravitational time dilation.
Our result implies that time dilation in these interferometer configura-
tions constitutes a purely special-relativistic effect caused by the mo-
mentum transferred through the light pulses.

Our model of atom-light interaction assumes instantaneous mo-
mentum transfer and neglects the propagation time of the light
pulses. A potential Vk linear in z, where the temporal pulse shape of
the light is described by a delta function, that is €zkº dðt � tℓÞ, reflects
exactly such a transfer. For such a potential, we find the differential action

DSem ¼ 2ℏwCDtþ DSgk þ DSp ð5Þ

(see Materials and Methods), which can be interpreted (27) as the laser
pulses sampling the position of the atoms z = zk + zg. The first contribu-
tion has the form of the proper-time difference, which highlights that the
action of the laser can never be separated from proper time in a phase
measurement in the limit given by Eq. 2. It arises solely from the inter-
action with the laser, and in the case of instantaneous acceleration €zk ,
these kicks read out the recoil part of the motion zk according to
Eq. 4. Similarly, the second contribution in Eq. 5 is the action that arises
from the acceleration €zk measuring the gravitational part zg of the mo-
tion and takes the form

DSgk ¼ m∫dt D€zkzg ð6Þ

where we define the difference D€zk ¼ €zð1Þk � €zð2Þk between branch-
dependent accelerations. Although this contribution is caused by the
interaction with the light, the position of the atom still depends on
gravity and is caused by the combination of both the momentum
transfers and gravity. Hence, we refer to it as gravito-kick action. Last,
the lasers imprint the laser phase action

DSp ¼ �∫dt DVp ð7Þ

with DVp ¼ V ð1Þ
p � Vð2Þ

p .
A B

Fig. 1. Twin paradox and its quantum version. (A) As a consequence of rela-
tivity, two initially co-located twins experience time dilation when traveling along
different world lines. Upon reunion, they find that they aged differently due to
the relative motion between them. (B) In a quantum version of this gedanken-
experiment, a single individual is traveling along two paths in superposition,
serving as his own twin and aging at two different rates simultaneously.
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So far, we have not specified the interactionwith the light butmerely
assumed that the potential Vk is linear in z. In the context of our dis-
cussion, beam splitters and mirrors are generated through optical
gratingsmade from two counter-propagating light beams that diffract
the atoms (12). In a series of light pulses, the periodicity of the ℓth
grating is parameterized by an effective wave vector kℓ. Depending
on the branch and the momentum of the incoming atom, the latter
receives a recoil ±ℏkℓ in agreement with momentum and energy con-
servation. At the same time, the phase difference of the light beams is
imprinted to the diffracted atoms.

To describe this process, we use the branch-dependent potential

VðaÞ
k ¼ �∑ℓℏk

ðaÞ
ℓ zðaÞdðt � tℓÞ for themomentum transferℏkðaÞℓ of the

ℓth laser pulse at time tℓ and the potential VðaÞ
p ¼ �∑ℓℏf

ðaÞ
ℓ dðt � tℓÞ

to describe the phase fðaÞℓ imprinted by the light pulses (26). Because
the phases imprinted by the lasers can be evaluated trivially and are
independent of z, we exclude the discussion ofV ðaÞ

p from the study of
different interferometer geometries and set it to zero in the following.

Atom-interferometric twin paradox
The Kasevich-Chu–type (12) Mach-Zehnder interferometer (MZI)
has been at the center of a vivid discussion about gravitational redshift
in atom interferometers (26–28). It has been demonstrated that its
sensitivity to the gravitational acceleration g stems entirely from the
interaction with the light, i.e., DSgk, while the proper time vanishes
(26, 27). It is hence insensitive to gravitational time dilation, which,
a priori, is not necessarily true for arbitrary interferometer geometries.

Such an MZI consists of a sequence of pulses coherently creating,
redirecting, and finally recombining the two branches. The three
pulses are separated by equal time intervals of duration T. We show
Loriani et al., Sci. Adv. 2019;5 : eaax8966 4 October 2019
the spacetime diagram of the two branches zðaÞk , the light-pulse–
induced acceleration€zðaÞk as a sequence in time, and the gravitationally
induced trajectory zg in Fig. 2 on the left. The contributions zðaÞk are
branch dependent, while zg is common for both arms of the interfero-
meter. From these quantities and with the help of Eqs. 4 and 6, we
obtain the phase contributions shown at the bottom of Fig. 2 (see
Materials and Methods). The phase takes the familiar form Dφ =
−kgT2 and has no proper-time contribution, but is solely determined
by the gravito-kick action originating in the interaction with the light
pulses (26, 27).

The vanishing proper-time difference can be explained by the
light-pulse–induced acceleration €zðaÞk that acts symmetrically on both
branches.Wedrawon the classical twin paradox to illustrate the effect:
At some time, one twin starts to move away from his brother and
undergoes special-relativistic time dilation, as shown by hypothetical
ticking rates in the spacetime diagram (the dashing periods in Fig. 2).
After a time T, he stops and his brother starts moving toward him.
Because his velocity corresponds to the one that caused the separation,
he undergoes exactly the same time dilation his brother experienced
previously.Hence, whenboth twinsmeet after another time intervalT,
their clocks are synchronized and no proper-time difference arises. In
an MZI, we find the quantum analog of this configuration, where a
single atom moves in a superposition of two different world lines like
the quantum twin of Fig. 1B. However, because of the symmetry of the
light-pulse–induced acceleration, no proper-time difference is accu-
mulated between the branches of the interferometer.

A similar observation is made for the symmetric Ramsey-Bordé
interferometer (RBI), where the atom separates for a timeT, then stops
on one branch for a time T′ before the other branch is redirected. We
show the spacetime diagrams and the light-pulse–induced acceleration
Fig. 2. Time dilation in different interferometer geometries. Spacetime diagrams for the light-pulse and gravitationally induced trajectories zk and zg, as well as the accel-
erations €zk caused by the light pulses, together with the proper-time difference Dt, the gravito-kick action DSgk, the electromagnetic contribution DSem/ℏ, and the total phase
differenceDφof anMZI (left), a symmetric RBI (center), andan asymmetric RBI (right). The first twogeometries display a symmetricmomentum transfer between the twobranches,
leading to vanishing proper-time differences. However, the asymmetric RBI features a proper-time difference that has the form of a recoil term. The spacetime diagrams also
illustrate the connection to the twin paradox by displaying ticking rates (the dashes) of the two twins traveling along the two branches. Both quantum twins in the MZI and
symmetric RBI experience the same timedilation,whereas in the asymmetric RBI, one twin stays at rest and theother one leaves and returns so that their proper times aredifferent.
The arrows in the plot of €zk denote the amplitude of the delta functions that scale with ±ℏk/m. Because of the instantaneous nature of€zk, the integration over time in Eqs. 4 and 6
reduces to a sampling of the positions zk and zg at the time of the pulses such that the respective phase contributions can be inferred directly from the figure.
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€zk in the center of Fig. 2 with the phase contributions below. The two
light pulses in the middle of the symmetric RBI are also beam-splitting
pulses that introduce a symmetric loss of atoms. As for the MZI, the
proper-time difference between both branches vanishes and the phase
is determined solely by the laser contribution and the gravito-kick
phase, as shown by the ticking rates in the spacetime diagram. The
only difference with respect to the MZI is that the two branches travel
in parallel for a time T′ during which proper time elapses identically
for both of them.

The situation changes substantially when we consider an asymmetric
RBI, where one branch is completely unaffected by the two central
pulses, as shown on the right of Fig. 2. Specifically, the twin that moved
away fromhis initial position experiences a second time dilation on his
way back so that there is a proper-time difference when both twins
meet at the final pulse. It is therefore the kinematic asymmetry that
causes a nonvanishing proper-time difference, as indicated in the fig-
ure by the ticking rates. The proper-time difference

DtaRBI ¼ �ðℏk=mcÞ2T ð8Þ

is proportional to a kinetic term (23) that depends on the momentum
transfer ℏk, as already implied by Eq. 4. With the light-pulse–induced
acceleration€zðaÞk as well as the gravitationally induced trajectory zg also
shown on the right of the figure, we find the same contribution for
DSgk given in Fig. 2 as for the symmetric RBI. The other contribution
ofDSem/ℏ has the form 2wCDtaRBI, and all of them together contribute
to the phase difference Dφ.

Clocks in spatial superposition
While the twin paradox is helpful in gaining intuitive understand-
ing and insight into the phase contributions, the dashing length of
the world lines in Fig. 2 only indicates the ticking rate of a hypothetical
co-moving clock. The atoms are in a stationary internal state during
propagation, whereas the concept of a clock requires a periodic evo-
lution between two states. As a consequence, the atom interferometer
can be sensitive to special-relativistic time dilation but lacks the notion
of a clock. In a debate (28) about whether the latter is accounted for
by the Compton frequency wC as the prefactor to the proper-time
difference in Eq. 2, an additional superposition of internal states
(5, 6) was proposed. This idea leads to an experiment where a single
clock is in superposition of different branches, measuring the elapsed
proper time along each branch. In contrast to these discussions that
raised questions about the role of gravitational time dilation in quantum-
clock interferometry and where no specific model for the coherent
manipulation of the atoms was explored (6), we have demonstrated
in this article that light-pulse atom interferometers are only suscepti-
ble to special-relativistic time dilation. In a different context, a spatial
superposition of a clock has been experimentally realized, however,
through an MZI geometry that is insensitive to time-dilation effects
(29). The implementation of a twin-paradox–type experiment with
an electron in superposition of different states of a Penning trap has
been proposed, where the role of internal states is played by the spin
(30). Furthermore, quantum teleportation and entanglement between
two two-level systems moving in a twin-paradox geometry was con-
sidered in the framework of Unruh-DeWitt detectors (31).

To illustrate the effect of different internal states, we introduce an
effectivemodel for an atomic clock thatmoves along branch a = 1,2 in
an interferometer. In this framework (7, 32), the Hamiltonian
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H^
ðaÞ
j ¼ mjc

2 þ p̂2

2mj
þmjgẑ þ V ðaÞ

em ðẑ; tÞ with j ∈fa; bg ð9Þ

describes a single internal state of energy Ej = mjc
2 with an effective

potentialV ðaÞ
em , which models the momentum transfer (see Materials

and Methods). Mass-energy equivalence in relativity implies that dif-
ferent internal states are associated with different energies and there-
fore correspond to different masses mj. To connect with our previous
discussion, we take the limit of instantaneous pulses neglecting the
delay of the light front propagating from the laser to the atoms. With
these considerations, the Hamiltonian for a clock consisting of an ex-
cited state ∣a〉 and a ground state ∣b〉, both forced by Bragg pulses that
do not change the internal state (33) on two branches a = 1,2, reads

H^
ðaÞ ¼ H^

ðaÞ
a ∣a〉 〈a∣þ H^

ðaÞ
b ∣b〉〈b∣ ð10Þ

Because the Hamiltonian is diagonal in the internal states, we
write the time evolution along branch a as U^

ðaÞ ¼ U^
ðaÞ
a ∣a〉〈a∣þ

U^
ðaÞ
b ∣b〉〈b∣, where U^

ðaÞ
j is the time-evolution operator that arises

from the Hamiltonian H^
ðaÞ
j . For an atom initially in a state ∣j〉 with

j = a, b, the output state is determined by the superposition U^
ð1Þ
j þ

U^
ð2Þ
j and leads to an interference pattern Pj = (1 + cos Dφj)/2, where

the phase difference Dφj depends on the internal state.
In the case of quantum-clock interferometry, the initial state for

the interferometer is a superposition of both internal states ð∣a〉þ
∣b〉Þ= ffiffiffi

2
p

, which form a clock that moves along both branches in
superposition. The outlined formalism shows that such a superposi-
tion leads to the sum of two interference patterns, that is, P = (Pa +
Pb)/2. The sum of the probabilities Pa/b with slightly different phases,
which corresponds to the concurrent operation of two independent
interferometers for the individual states, leads to a beating of the
total signal and an apparent modulation of the visibility. Expressing
the masses of the individual states by their mass difference Dm, i.e.,
ma/b = m ± Dm/2, and identifying the energy difference DE = Dmc2 =
ℏW lead to the interference pattern

P ¼ 1
2

1þ cos h
WDt
2

� �
cos hwCDtþ

DSgk þ DSp
ℏ

� �� �
ð11Þ

where the scaling factor h = 1/[1 − Dm2/(2m)2] depends on the energy
difference of the two states. In this form, the first cosine can be inter-
preted as a slow but periodic change of the effective visibility of the
signal. To first order in Dm/m, we find that h = 1 so that the effective
visibility cos(WDt/2) corresponds to the signal of a clock measuring
the proper-time difference. In this picture, the loss of contrast can
be seen as a consequence of distinguishability (6): Because a super-
position of internal states travels along each branch, the system can
be viewed as a clock with frequency W traveling in a spatial super-
position. On each branch, the clock measures proper time and by that
contains which-way information, leading to a loss of visibility as a di-
rect consequence of complementarity.

We illustrate this effect in Fig. 3A using an asymmetric double-loop
RBI, where the gravito-kick action vanishes, i.e., DSgk = 0, because it is
insensitive to linear accelerations like other symmetric double-loop
geometries that are routinely used to measure rotations and gravity
gradients (34). The measured phase takes the form Dφ = 2wCtaRBI =
4 of 10



SC I ENCE ADVANCES | R E S EARCH ART I C L E
−2ℏk2T/m. Although this expression is proportional to a term that has
the form of proper time, it also comprises contributions from the
interaction with the laser pulses (see the first term of Eq. 5). The
two internal states, denoted by the blue and red ticking rates, travel
along both branches such that each twin carries its own clock,
leading to distinguishability when they meet. This distinguishability
depends on the frequency W of the clock and implies a loss of visi-
bility, as shown in Fig. 3B. However, because each internal state
experiences a slightly different recoil velocity ℏk/ma/b, it can be asso-
ciated with a slightly different trajectory, displayed in red and blue in
Fig. 3A. The interpretation as a clock traveling along one particular
branch is therefore only valid to lowest order in Dm/m.

In another interpretation, the quantum twin experiment is per-
formed for each state independently. The trajectories are different
for each state, and the proper-time difference as well as the Compton
frequency are mass dependent so that the interferometer phase de-
pends explicitly on the mass. The loss of visibility can therefore be ex-
plained by the beating of the two different interference signals, which
is caused by themass differenceDm=ℏW/c2. In the spacetime diagram
of Fig. 3A, the finite speed of light pulses causing the momentum
transfers is not taken into account. However, to illustrate the neglected
effects induced by the propagation time, Fig. 3C magnifies such an
interaction and showcases the assumptionwemade in our calculation:
Loriani et al., Sci. Adv. 2019;5 : eaax8966 4 October 2019
Both internal states interact simultaneously and instantaneously with
the light pulse, although theymight be spatially separated. For feasible
recoil velocities, as well as interferometer and pulse durations, this ap-
proximation is reasonable as detailed inMaterials andMethods on the
light-matter interaction.
DISCUSSION
A realization of quantum-clock interferometry in a twin experiment
requires atomic species that feature a large internal energy splitting,
suggesting typical clock atoms like strontium (Sr) with optical frequen-
cies W in the order of hundreds of terahertz. The proper-time
difference is a property of the interferometer geometry and is enhanced
for large splitting times T and effective momentum transfers ℏk. Be-
sides large-momentum transfer techniques (4, 21), this calls for atomic
fountains in the order of meters (20, 35, 36) and more or the operation
in microgravity (18, 37).

To observe a full drop in visibility and its revival, the accumulated
time dilation in the experiment needs to be on the order of femtose-
conds. In the example of Sr, this can be achieved forT = 350ms and k =
1200 km, where km = 1.5 × 107m−1 is the effective wave number of the
magic two-photon Bragg transition. At the magic wavelength (38) of
813 nm, the differential ac-Stark shift of the two clock states vanishes
to first order such that the beam splitters act equally on the two internal
states and hence leave the clock unaffected. IncreasingT and by thatDt,
one should observe a quadratic loss of visibility as a signature of which-
path information, assuming that this loss can be distinguished from
other deleterious effects. Times up to T = 350 ms and k = 580 km in-
duce a visibility reduction of 10%.

Although they do not use the same species, large atomic fountains
(20) already realize long free evolution times and large momentum
transfer with hundreds of recoil momenta has been demonstrated
(4, 21). Techniques to compensate the impact of gravity gradients (25)
and rotations (39) have already proven to be successful (20, 35, 40).
The main challenge in implementing quantum-clock interferometers
as described above lies in the concurrent manipulation of the two
clock states (29), requiring a transfer of concepts and technologies well
established for alkaline atoms to alkaline earth species. Besides magic
Bragg diffraction, other mechanisms like simultaneous single-photon
transitions between the clock states (41) are also conceivable and relax
the requirements on laser power. In view of possible applications to
gravitational wave detection (42), atom interferometry based on
single-photon transitions is already becoming amajor line of research.
To this end, the first steps toward quantum-clock interferometry have
been demonstrated by driving clock transitions of Sr to generate MZI
geometries (32).

Because the effect can be interpreted as a beating of the signal of
two atomic species (defined through their internal state), one can also
determine the phase for each state independently and infer their dif-
ference in the data analysis. A differential phase of 1 mrad assuming
T = 60 ms and k = 70 kmmay already be resolved in a table-top setup
in a few hundred shots with 106 atoms, supposing shot-noise limited
measurements of the two internal states. Equation 4 shows that
proper-time differences in our setting arise only from special-
relativistic effects caused by the momentum transfer. Such an exper-
iment is equivalent to the comparison of two recoil measurements
(15, 21) performed independently but simultaneously to suppress
common-mode noise. Beyond recoil spectroscopy, state resolving
measurements can be of particular interest for a doubly differential
Fig. 3. Interference of quantum clocks. (A) Spacetime diagram of a double-
loop RBI in superposition of two different internal states (red and blue) and detec-
tion at the zero-momentum output port. We indicate the effect of different recoil
velocities due to different rest masses of the internal states by slightly diverging
trajectories. The different ticking rates of co-moving clocks on the trajectories are
indicated by the frequency of the dashing. The dotted gray lines correspond to the
light pulses used to redirect the atoms. (B) The output signal P (solid orange) shows
a visibility modulation (dashed black), which can be interpreted as the beating of
the individual signals Pa/b of the two internal states (solid and dashed gray). To
highlight the effect, we have chosen Dm/m = 0.2 in Eq. 11. The visibility of the signal
vanishes at hWDt = p. (C) Interaction of a light pulse with the excited and ground
states (blue and red). Because the states follow slightly different world lines and the
speed of light is finite, the light pulse will not interact simultaneously with both. Our
assumption of instantaneous interaction is shown by the red and blue lines. In the
case of finite pulse propagation speed, indicated by the slightly tilted dotted green
lines, the interaction is not simultaneous and the red line for the ground state
becomes the outermost purple line.
5 of 10
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measurement scheme that, in contrast to the setup discussed above,
does not rely on an initial superposition of two internal states. In-
stead, the superposition of internal states is generated during the in-
terferometer (41) such that these setups can be used to measure the
time dilation caused by a gravitational redshift. In contrast, our dis-
cussion highlights the relevance of special-relativistic time dilation
for the interference of quantum clocks in conventional interferometers
without internal transitions.

In summary, we have shown that, for an interferometer that does not
change the internal state during the sequence, themeasured proper-time
difference is in lowest order independent of gravity and is nonvanishing
only in recoil measurements, connectingmatter-wave interferometry to
the special-relativistic twin paradox. As a consequence of this indepen-
dence, these light-pulse atom interferometers are insensitive to gravita-
tional time dilation.

The light pulses creating the interferometer cause a contribution to
its phase that is of the same form as the special-relativistic proper-time
difference and depends on the position of the branches in a freely fall-
ing frame, which can be associated with the world line of a quantum
twin. Because these trajectories and thus proper time depend on the
recoil velocity that is slightly different for different internal states, an
initial superposition causes a beating of two interference patterns. In
such a quantum version of the twin paradox, a clock is in a spatial
superposition of different world lines, leading to a genuine implemen-
tation of quantum-clock interferometry but based on special-relativistic
time dilation only.
MATERIALS AND METHODS
Recoil terms and proper time
In this section, we show that, for light pulses acting instantaneously on
both branches and gravitational potentials up to linear order, the proper
time consists only of recoil terms. We provide the explicit expressions
for the proper-time difference and find a compact form for the action of
the electromagnetic potential describing pulsed optical gratings that
contributes to the phase of the atom interferometer.

As already implied by the decomposition from Eq. 3, the interaction
of an atomwith a light pulse transfersmomentum and imprints a phase
on the atom (26). Because the latter contribution does not modify the
motion of the atom, we find ∂Vp/∂z = 0. Consequently, the classical
equations ofmotion can bewritten as m€z ¼ �∂ðmUÞ=∂z � ∂Vk=∂z ¼
m€zg þm€zk:The integration of these equations leads to the trajectory
z = z(t) that can be decomposed into two contributions associated
with these accelerations, i.e., z = zg + zk, where we collect the initial
conditions in zg.

Proper time takes in lowest order expansion in c−2, i.e., for weak
fields and low velocities, according to Eq. 1 for a linear gravitational
potential the form

c2t ¼ ∫dtðc2 � :
z2=2� €zgzÞ ð12Þ

We simplify this expression by integrating the kinetic term
:
z2=2

by parts and make the substitution z = zg + zk in the remaining in-
tegral so that we find

c2t ¼ �
:
zz
2 ∣þ ∫dt c2 þ €zkzk

2
� €zgzg

2
þ €zkzg � €zgzk

2

� �
ð13Þ
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for the proper time. Partial integration of the last term in the integral
leads to the compact form

c2t ¼
:
zkzg � :

zgzk � :
zz

2 ∣þ ∫dt c2 � €zgzg
2

þ €zkzk
2

� �
ð14Þ

that explicitly depends on the initial and final positions and velocities.
In a light-pulse atom interferometer, light pulses act independently

through the potentialsVðaÞ
k on the two branches a = 1,2 and give rise

to the light-pulse–induced trajectories zðaÞk . In turn, these branch-
dependent potentials lead to a proper-time difference Dt = t(1) − t(2)

between the upper and lower branch of the interferometer and cause
a phase contribution to the interference pattern. In an interferometer
closed in phase space, the initial and final positions as well as velo-
cities are the same for both branches, and thus, the first term in Eq. 14
vanishes. Because zg is branch independent, the first two terms in the
integral also cancel and we are left with

Dt ¼ ∫dt €zð1Þk zð1Þk � €zð2Þk zð2Þk

h i
=ð2c2Þ ð15Þ

for the lowest order of the proper-time difference of an atom interfer-
ometer in a linear gravitational potential. Hence, the proper-time
difference in a closed interferometer is independent of gravity and
constitutes a special-relativistic effect. This result can also be derived
for a time-dependent gravitational acceleration g(t).

Because proper time is invariant under coordinate transforma-
tions, the proper-time difference of a closed atom interferometer is
independent of the gravitational acceleration by considering the com-
mon freely falling frame. In this frame, the trajectories are straight
lines and correspond to zðaÞk , as implied by Fig. 2, so that the proper-
timedifference is of special-relativistic origin.Hence, Eq. 15 can also be
interpreted as a direct consequence of transforming to a freely falling
frame in a homogeneous gravitational field.

The laser contribution to the phase can be calculated from Eq. 3,
and we write the classical action in the form of

Sem ¼ �∫dt ðVk þ VpÞ ¼ m∫dt €zkz � ∫dt Vp ð16Þ

where we assumed that Vk ¼ �m€zkz is linear in z. When we again
use the decomposition of the position z = zg + zk into a part induced
by gravity and a part induced by the light pulses, we find

Sem ¼ m∫dt €zkzk þm∫dt €zkzg � ∫dt Vp ð17Þ

for the action. Because zg is branch independent in contrast to zk, the
difference

DSem ¼ m∫dt €zð1Þk zð1Þk � €zð2Þk zð2Þk

h i
þm∫dt D€zkzg � ∫dt DVp ð18Þ

between upper and lower branch depends on D€zk ¼ €zð1Þk � €zð2Þk and

DVp ¼V ð1Þ
p � Vð2Þ

p .With the expression for the proper time fromEq. 4,
the gravito-kick action fromEq. 6, and the laser phase action fromEq. 7,
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we arrive at the form of Eq. 5 for the action of the interaction with the
electromagnetic field such as pulsed optical gratings.

For the specific form of the phase contributions and proper time, we
first calculate the trajectory that arises from €zg ¼ �g and find by simple
integration that

zgðtÞ ¼ zð0Þ þ :
zð0Þ t � gt2=2 ð19Þ

which is branch independent. For the specific form of the phase con-
tributions and proper time, we calculate the trajectories that arise
from the atom-light interaction. To this end, we assume the poten-

tialV ðaÞ
k ¼ �∑ℓℏk

ðaÞ
ℓ zðaÞdðt � tℓÞthat causes themomentum transfer

m€zðaÞk ¼ ∑ℓℏk
ðaÞ
ℓ dðt � tℓÞ. Integrating the acceleration leads to the

two branches of the interferometer given by the two trajectories

zðaÞk ðtÞ ¼ ∑
n

ℓ¼1
ðt � tℓÞℏkðaÞℓ =m ð20Þ

for tn + 1 > t > tn.
Using the expression for €zðaÞk , the gravito-kick phase from Eq. 6

takes the explicit form

DSgk=ℏ ¼ ∑
ℓ
DkℓzgðtℓÞ ð21Þ

where we evaluate the gravitationally induced trajectory from Eq. 19
at the times of the pulses. Note that we defined the differential mo-
mentum transfer Dkℓ ¼ kð1Þℓ � kð2Þℓ of the ℓth laser pulse.

With the branch-dependent trajectory from Eq. 20 and €zðaÞk , we
perform the integration in Eq. 15 to arrive at the expression

wCDt ¼ ℏ

2m
∑
M

n¼1
∑
n

ℓ¼1
kð1Þn kð1Þℓ � kð2Þn kð2Þℓ

h i
ðtn � tℓÞ ð22Þ

where M is the total number of light-matter interaction points. This
phase difference is proportional to ℏ/m and includes a combination of
the transferred momenta and separation between the laser pulses.

Post-Galilean bound systems in a Newtonian
gravitational field
We consider a static spacetime with a line element of the form

ds2 ¼ gmnðxÞdx mdxn ¼ �Nðx→ÞðcdtÞ2 þ Bijðx→Þdx idx j ð23Þ

where gmn is themetric withGreek indices running from0 to 3,N is the
lapse function, and Bij is the three-metric with Latin indices from 1 to
3. In the limit of Newtonian gravity, the lapse function becomes
Nðx→Þ ¼ 1þ 2Uðx→Þ=c2 , with U being the Newtonian gravitational
potential and Bij ¼ ½1� 2Uðx→Þ=c2�dij, where dij is the Kronecker sym-
bol. The post-Newtonian correction to the spatial part of the metric
decomposition only needs to be considered for the electromagnetic
field but not for the atoms inside a light-pulse atom interferometer.

To model atomic multilevel systems inside such a background
metric including effects that arise from special-relativistic and general-
relativistic corrections due to the lapse function of the metric to the
bound state energies, one can resort to a quantum field theoretical
treatment (43) and perform the appropriate limit to a first-quantized
theory afterward. In this approach, one first performs the second quan-
Loriani et al., Sci. Adv. 2019;5 : eaax8966 4 October 2019
tization of the respective interacting field theory in the classical back-
ground metric provided by Eq. 23 and derives the bound state energies
aswell as possible spin states of, e.g., hydrogen-like systems. For each pair
of energy and corresponding internal state, one can take the limit of a
first-quantized theory andNewtonian gravity. Expanding theNewtonian
gravitational potential up to second order leads to a Hamiltonian

H^ 0;j ¼ mjc
2 þ

→̂p 2

2mj
þmj g

→⊺→̂x þ 1
2

→̂x ⊺G →̂x

� �
ð24Þ

Here, Ej = mjc
2 is the energy corresponding to the energy eigen-

state ∣j〉; →̂p and →̂x are the momentum and position operator, respective-
ly; g

→
is the (local) gravitational acceleration vector; and G is the (local)

gravity gradient tensor. This Hamiltonian includes special-relativistic
and possibly post-Newtonian contributions to its internal energies as
indicated by the different masses mj of the individual internal states,
which is a direct manifestation of the mass-energy equivalence. In

principle, terms proportional to →̂p 4 and →̂p ⊺ g
→⊺→̂x þ 1

2
→̂x ⊺G→̂x

� �
→̂p ap-

pear as a correction to the center-of-mass Hamiltonian. However, be-
cause these terms are state independent to order 1/c2, they leave the
beating in Eq. 11 unaffected andwill therefore be disregarded. The third
addend in Eq. 24 is the Newtonian gravitational potential energy, which
we denote by Vgð→̂x Þ. The fact that each state couples separately to the
(expanded) gravitational potential with its respective mass mj directly
highlights the weak equivalence principle. The full Hamiltonian of an
atomic systemwithmultiple internal states labeled by the index j is thus
H^ 0 ¼ ∑jH^ 0;j∣j〉〈 j∣. This Hamiltonian is diagonal with respect to dif-
ferent internal states, and gravity induces no cross-coupling between the
states of freely moving atoms.

Light-matter interaction and total Hamiltonian
In typical light-pulse atom interferometers, the light-matter interaction
is only switched on during the beam-splitting pulses. Hence, the prop-
agation of the atoms through an interferometer can be partitioned into
periods of free propagation and periods where the lasers are acting on
the atoms. In particular, the light-matter interaction including post-
Newtonian corrections to the atoms’ bound state energies (44, 45) in
the low-velocity, dipole approximation limit reduces to

V^ emð→̂x; tÞ ¼ �→̂℘ E
→ð→̂x; tÞ þ V^ Rð→̂x; t; ℘̂Þ ð25Þ

where →̂℘ is the electric dipole moment operator,E
→
is the external electric

field, andV^ R is theRöntgen contribution to the interactionHamiltonian.
The information about special-relativistic corrections to the energies is
included in the definition of the dipole moments. Moreover, because
the light-matter coupling is of the usual form, we can apply the stan-
dard framework of quantum optics to derive effective models for the
interaction.

However, before proceeding, we simplify our model by only
considering unidirectional motion in the z-direction and an accelera-
tion g anti-parallel to it so that the Hamiltonian for the full interfero-
meter becomes

H^ ðẑ; tÞ ¼ ∑
j

mjc
2 þ p̂2

2mj
þmj gẑ þ G

2
ẑ2

� �" #
∣j〉 〈j∣

þ∑
i≠j
Vem;ijðẑ; tÞ∣i〉〈j∣ ð26Þ
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whereVem;ij are the time-dependentmatrix elements of the light-matter
coupling, which include the switch on/off of the lasers. On the basis of
thismodel, we can derive an effective potential description, for example,
two-photon Raman or Bragg transitions, inside an interferometer. In
particular, formagic Bragg diffraction, we consider pairs of one relevant
state ∣j〉 and one ancilla state out of the atomic state manifold, each in-
teracting with two light fields. After applying the rotating wave approx-
imation, adiabatic elimination, and two-photon resonance conditions
(33) and taking the limit of instantaneous pulses, we can replace the
electromagnetic interaction by the effective potential

V^ em ¼ �ℏ∑
j
ðkℓẑ þ fℓÞdðt � tℓÞ∣j〉 〈j∣ ð27Þ

Here, we evaluate the effective momentum transfer ℏkℓ as well as
the phase fℓ of the electromagnetic field at time tℓ of the pulse. Al-
though we have written the state dependence explicitly in Eq. 27, the
effective interactionV^ em becomes state independent because the sum
over the relevant states ∣j〉 corresponds to unity in case of magic
Bragg diffraction.

During a typical light-pulse atom interferometer sequence, one
usually has multiple wave-packet components centered on different
trajectories, each of which constitutes an individual branch of the
interferometer. In this case, the previously defined interaction can
be applied (25) on each branch individually. Hence, the effective in-
teraction Hamiltonian in the case of instantaneous Bragg pulses
becomes

V^
ðaÞ
em ¼ �ℏ∑

ℓ
kðaÞℓ ẑ þ fðaÞℓ

� �
dðt � tℓÞ ð28Þ

where the superscript a labels the individual branch. A perturbative
treatment shows that the approximation of instantaneous pulses is
appropriate if the interaction time of the laser pulses with the atoms
is sufficiently short compared to the duration of the interferometer
(46). Furthermore, the propagation delay of the lightfront between
wave-packet components introduces a further phase contribution.
However, this phase is suppressed in the differential measurement
by an additional factor of ℏk/(ma/bc) compared to the phases of inter-
est; it is thus of order 1/c3 and can be neglected.

Branch-dependent light-pulse atom interferometry
As shown above, the momentum transfer caused by light pulses can
be described by an effective potential that generally depends on the
classical trajectory of the particle. In our limit, this dependence re-
duces to a mere dependence on the two branches of an atom inter-
ferometer. Because our description is diagonal in the different
internal states and we assume that, throughout the free propagation
inside the interferometer, the internal state of the atoms does not
change, the time evolution along branch a = 1,2 takes the form

U^
ðaÞ ¼ U^

ðaÞ
a ∣a〉〈a∣þ U^

ðaÞ
b ∣b〉〈b∣ ð29Þ

where U^
ðaÞ
j is the time-evolution operator for state ∣j〉 along path a

ending in one particular exit port. We limit our discussion to one
excited state and one ground state; hence, we use the labels j = a, b.
If ∣yj(0)〉 describes the initial external degree of freedom of the atoms
in state ∣j〉 and we project onto the internal state when we perform
Loriani et al., Sci. Adv. 2019;5 : eaax8966 4 October 2019
the measurement, the postselected state in one of the output ports
of the interferometer is a superposition of the two branches, i.e.,
∣yj〉 ¼ ðU^ ð1Þ

j þ U^ ð2Þ
j Þ∣yjð0Þ〉=2, leading to the interference pattern

Pj ¼ 〈yj∣yj〉 ¼
1
2

1þ 1
2
〈yjð0Þ∣U^ ð2Þ†

j U^
ð1Þ
j ∣yjð0Þ〉þ c:c:

� �
ð30Þ

The calculation of the inner product can now be performed using
the explicit form of the branch-dependent potentials. For a closed ge-
ometry and potentials up to linear order, the calculation reduces to the
description outlined in the main part of the article (26). This treatment
is also exact in the presence of gravity gradients and rotations but will
lead in general to open geometries, which can be closed through suit-
able techniques (25). When we introduce the state-dependent Comp-
ton frequency wj =mjc

2/ℏ and proper-time difference Dtj wherem has
to be replaced by mj, we find Pj = (1 + cos Dφj)/2 and the phase
difference

Dφj ¼ �wjDtj þ 2wjDtj þ DSgk=ℏþ DSp=ℏ ð31Þ

Here, we used the fact that both DSgk and DSp do not depend on
the internal state in accordance with the weak equivalence principle.
Moreover, the phases are degenerate if the proper-time difference
vanishes.

If the atoms are initially in a superposition of the two internal states,
i.e., ðja〉þ jb〉Þ= ffiffiffi

2
p

, the exit port probability without postselection on
one internal state isP= (Pa+Pb)/2, which corresponds to the sumof the
two interference patterns. After some trigonometry, we find

P ¼ 1
2

1þ cos
Dφa � Dφb

2

� �
cos

Dφa þ Dφb

2

� �� �
ð32Þ

so that the two interference patterns beat. The first term, i.e., the dif-
ference of the phases of the individual states, can be interpreted as a
visibility modulation of the concurrent measurement. Because the
two masses ma/b = m ± Dm/2 are connected to the energy difference
DE = ℏW = Dmc2 between the excited and ground state, the frequency
W determines the beating.

Connection to clock Hamiltonians
We discuss in the main body of the article that, in an expansion of the
phase difference in orders ofDm/m, the beating effect can be interpreted
as a loss of contrast due to the distinguishability of two internal clock
states. In this section, we show the connection of the Hamiltonian from
Eq. 26 to a clock Hamiltonian (6)

H^ int ¼ mc2 � ℏW
2

� �
∣b〉〈b∣þ mc2 þ ℏW

2

� �
∣a〉 〈a∣ ð33Þ

Expanding Eq. 10 up to the linear order of Dm/m, we find the
expression

H^
ðaÞ ¼ H^ int þ p̂2

2m
þmgẑ þ V ðaÞ

em þ � p̂2

2m
þmgẑ

 !
H^int
mc2

ð34Þ
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with the help of Eq. 33. In this form, the coupling of the internal dy-
namics to the external degrees of freedom is prominent and leads to the
interference signal from Eq. 11 with h = 1. Hence, the Hamiltonian de-
scribes a moving clock experiencing time dilation (6).
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