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Simple Summary: There is a widespread push toward more biologically relevant pre-clinical models
of prostate cancer that can improve the discovery and translation of new drugs and biomarkers for
this disease. Patient-derived explant culture is an innovative pre-clinical model that utilizes surgical
prostate cancer specimens in a way that retains the architecture, microenvironment and heterogeneity
of prostate tumors—factors that critically influence cell behavior and response to therapy. With
increasing tissue complexity comes increasing complexity of analysis. The aim of this study was to
provide critical information for the successful application and analysis of the patient-derived prostate
cancer explant model.

Abstract: Prostate cancer is a complex and heterogeneous disease, but a small number of cell lines
have dominated basic prostate cancer research, representing a major obstacle in the field of drug
and biomarker discovery. A growing lack of confidence in cell lines has seen a shift toward more
sophisticated pre-clinical cancer models that incorporate patient-derived tumors as xenografts or
explants, to more accurately reflect clinical disease. Not only do these models retain critical features
of the original tumor, and account for the molecular diversity and cellular heterogeneity of prostate
cancer, but they provide a unique opportunity to conduct research in matched tumor samples. The
challenge that accompanies these complex tissue models is increased complexity of analysis. With
over 10 years of experience working with patient-derived explants (PDEs) of prostate cancer, this
study provides guidance on the PDE method, its limitations, and considerations for addressing the
heterogeneity of prostate cancer PDEs that are based on statistical modeling. Using inhibitors of
the molecular chaperone heat shock protein 90 (Hsp90) as an example of a drug that induces robust
proliferative response, we demonstrate how multi-omics analysis in prostate cancer PDEs is both
feasible and essential for identification of key biological pathways, with significant potential for novel
drug target and biomarker discovery.
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1. Introduction

Tumor-derived cell lines cultured in vitro or xenografted into mice are the most widely
used pre-clinical model for cancer research. While cell lines are easy to propagate and
manipulate, and will continue to be an important resource for basic tumor biology, the
translation rate of new oncology drugs from cell line-based research is devastatingly low
at ~5% [1]. This statistic makes it clear that cell lines are limited in their predictive power
for drug and biomarker discovery research. For prostate cancer, cell line-based models
are particularly limiting as isolated primary cells do not survive in culture long term [2],
and the field has relied on cell lines, traditionally DU145, PC3 and LNCaP [3]. These
cell lines were derived from metastases, therefore do not represent primary disease, and
they harbor genetic alterations that are not frequently observed in the clinic. Furthermore,
there is now strong evidence that prostate cancer develops through reciprocal interaction
between epithelial cells and their surrounding microenvironment, consisting of a diverse
structural and cellular network of blood vessels, extracellular matrix, fibroblasts, immune
cells and stem cells [4,5]. Prostate cancer cells cultured in isolation are deprived of this
critical signaling with the tumor microenvironment. Cell lines are also unable to capture
the extensive intra- and inter-patient heterogeneity of clinical prostate cancer that has
been evident at the molecular level, via sequencing efforts that revealed a diverse range of
prostate cancer subtypes and extensive genomic and transcriptomic aberrations [6–9].

Given the above limitations, there has been a widespread push toward patient-derived
models that more accurately reflect tumors existing within the patient. Compelling evidence
for this shift is the United States National Cancer Institute’s discontinuation of its panel of
60 human cell lines (NCI-60), in favor of a rejuvenated repository of cancer models derived
from fresh patient samples [10]. A range of patient-derived models exist for prostate cancer,
each with their unique advantages and disadvantages [11]. Three-dimensional (3D) culture
models, including spheroids and organoids, involve dissociation of the patient tumor into
single cell populations that are grown in the presence of a scaffold that facilitates 3D growth
in gland-like structures [12]. These techniques have markedly improved the ability to
establish and maintain primary prostate cancer cells, but are limited in that components of
the microenvironment are still missing and the success rate for prostate cancer organoids
is low at ~20% [13]. Patient-derived xenograft (PDX) models, wherein primary human
tumor specimens are directly transplanted into immunodeficient mice, are advantageous
in that they retain the original architecture and microenvironment of the tumor [14,15].
Importantly, close correlation between PDX sensitivity and clinical response in patients
from which the PDX were derived has been demonstrated [16–19], but again the take rate
for prostate cancer PDX is extremely low, the technique is time consuming, costly and tends
to favor a limited spectrum of metastatic disease rather than primary disease.

Over the past decade, our group and others have utilized a patient-derived explant (PDE)
technique that, similar to PDX models, utilizes primary human tumors but instead of trans-
planting the tissue into mice they are cultured on a gelatin sponge that sits in media, reviewed
in [20]. PDE culture is much more high-throughput than PDX but still captures the heterogeneity,
architecture and microenvironment of prostate tumors [11]. While these complex tumor features
are desired for more accurate drug and biomarker development, they make downstream analysis
inherently more challenging. Through our evaluation of many different molecular targeted
therapeutics and chemotherapies for prostate cancer [21–29], some of which directly initiated
Phase II clinical trials [30], we have encountered the limitations and considerations needed
when using highly heterogeneous prostate tumors. This study presents the critical aspects
of patient-derived explant culture and data analysis and provides an example of how PDEs
can be used for novel target discovery using an integrated omics approach.

2. Materials and Methods
2.1. Patient Consent and Tissue Collection

The urologist made initial contact with patients regarding donation of tissue for re-
search purposes and provided information and consent forms approved by the appropriate
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ethical regulatory committee. For this study, ethical approval was obtained from St An-
drews Hospital (Adelaide, SA, Australia) and St Vincent’s Private Hospital (Darlinghurst,
NSW, Australia). Tumors from four independent cohorts of patients were used in this study.
Clinicopathologic characteristics of each cohort are detailed in Supplementary Table S1.

Following surgical removal of the prostate, either by robotic radical prostatectomy
or transurethral resection of the prostate (TURP), the prostate of consenting patients was
transported to pathology on ice to keep it cold but not frozen. Within 30–60 min of surgery,
the pathologist used the patient’s diagnostic biopsy results to locate malignant regions.
A 4–8 mm skin punch biopsy through the prostatic capsule was used to provide a fresh
tissue sample of approximately 10–20 mm in length. The size of the sample taken was
determined by the pathologist, typically according to prostate size, as the overall integrity
of the prostate must be maintained for diagnostic purposes. Although our method was
designed to collect specimens containing malignant foci, there is no guarantee that the
tissue obtained contains tumor cells. In our experience, the above method yields a success
rate of obtaining tumor tissue of approximately 70%, a factor that must be taken into
consideration when forecasting time and budget for PDE-based projects. Upon provision
by the pathologist, samples were placed into a vial containing 5 mL cold phosphate buffered
saline (PBS) or culture medium and transported to the laboratory on ice.

2.2. Explant Tissue Culture

All steps were performed under sterile conditions in a biohazard hood. The first
step was to soak 10 mm3 gelatin sponges (Spongostan–Ethicon Inc., Raritan, NJ, USA;
Gelfoam–Pfizer Inc., Brooklyn, NY, USA) in RPMI 1640 medium supplemented with 10%
fetal calf serum, 1xantimycotic/antibiotic solution (Sigma, St. Louis, MO, USA), 10 µg/mL
hydrocortisone (Sigma), and 10 µg/mL insulin (Sigma). Treatments used include 17-AAG
(500 nM), AUY922 (500 nM), enzalutamide (10 µM) and DMSO was used as vehicle control.
One sponge and 1 mL of medium was prepared for each well to be used. The sponges
were gently agitated in the medium so that all sides were wet, and then soaked for no
longer than 5–10 min, otherwise they start to shrink. While the sponges were soaking,
the prostate specimen was placed onto a sterile petri dish along with the 5 mL of PBS or
media it was transported in, to keep the tissue wet. Using a disposable sterile scalpel, one
longitudinal section of the core, approximately 1 mm in diameter, was cut (Figure 1A)
and placed into 10% neutral buffered formalin for paraffin embedding. This tissue was
called T0 and used to determine the presence and percentage of malignant cells in the
specimen following staining with hematoxylin and eosin (H&E) and PIN4 triple stain.
PIN4 is a clinically used stain, consisting of a cocktail of antibodies directed to Amethylacyl
CoA racemase (AMACR), p63 and high molecular weight cytokeratin (HMWK), which are
used to distinguish prostate adenocarcinoma (AMACR positive and p63+HMWK negative)
from benign prostate glands (AMACR negative and p63+HMWK positive) [31,32]. After
obtaining the T0 sample, the remaining tissue was dissected into 1 mm3 pieces, called
explants (Figure 1A). There was usually sufficient tissue to dissect 20–30 explants from a
single radical prostatectomy specimen. A critical factor in maintaining tissue morphology
and integrity is the size of the dissected tissue as explants that are too small or too large
undergo significant necrosis. The tissue culture plate was prepared once the specimen
had been dissected, by adding 500 µL treatment media and a single soaked sponge to
corresponding wells of a 24-well plate. The treatment media was taken from the container
the sponges were being soaked in, and tweezers used to very carefully handle the corners
of the sponge and ensure it was not squashed when being transferred to the plate. Tweezers
were used to gently transfer explants from the Petri dish onto the sponge, each of which fits
a maximum of 4 explants. In a typical experiment, each well of a 24-well plate is dedicated
to a specific treatment and/or endpoint and contains a minimum of triplicate explant
samples (Figure 1B). The plate was incubated at 37 ◦C, 5% CO2 for the desired period of
time, after which, explants were harvested and stored according to desired downstream
analysis. For histological analysis, explants were formalin-fixed and paraffin embedded.
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For RNA analysis, explants were stabilized in RNAlater® (Ambion, Austin, TX, USA) at
4 ◦C overnight and then stored at −80 ◦C. For protein or lipid analysis, explants were
snap frozen and stored at −80 ◦C. Conditioned explant media from replicate wells were
combined, snap frozen and stored at −80 ◦C.
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Figure 1. Schematic patient-derived explant culture diagram. (A) Fresh prostate tumor specimens
obtained from surgery are dissected longitudinally to obtain an uncultured sample at time zero (T0).
The remaining sample is dissected into 1 mm3 pieces for explant culture. (B) Explants are cultured
on gelatin sponges sitting in medium in 24-well plates, where each well is dedicated to a specific
treatment and/or endpoint and contains a minimum of triplicate explants.

2.3. Histology

All samples, both T0 and cultured explants, were routinely stained with H&E. Formalin-
fixed paraffin-embedded sections (2 µm) were heated to 62 ◦C for 2 h and then de-
paraffinized in xylene, dehydrated in ethanol, and hydrated in tap water prior to staining
in concentrated Lillie–Meyers hematoxylin for 4 min. Slides were rinsed in tap water,
differentiated in 0.3% acid alcohol, blued in running tap water and counterstained with
eosin. Slides were again rinsed in tap water before dehydrating in ethanol, clearing in
xylene and then fixed with DPX mounting media (Sigma, St. Louis, MO, USA).

2.4. Immunohistochemistry

Immunostaining of formalin-fixed paraffin-embedded sections (2–4 µm) was per-
formed with the Bond RX automated stainer (Leica Biosystems, Wetzlar Germany). Antigen
retrieval was 20 min at 100 ◦C using the Bond Epitope Retrieval solution 2 (EDTA based
buffer, pH 9). Incubation with the PIN4 cocktail of antibodies was 1 h at concentrations of
1:200 AMACR (p504S) rabbit antibody (Clone 13H4, DAKO, Glostrup, Denmark), 1:100 p63
mouse antibody (Clone DAK-p63, DAKO, Denmark), and 1:200 34βE12 HMWK mouse
antibody (Clone 34BETAE12, Leica Biosystems, Germany). Detection was performed with
ChromoPlex 1 Dual Detection (Leica Biosystems), with incubation times of 15 min each for
the poly-horseradish anti-mouse IgG conjugate and poly-alkaline phosphatase anti-rabbit
IgG conjugate. The first substrate chromogen, 3–3′-diaminobenzidine (DAB), was used to
stain basal cells and nuclei of normal glands and prostatic intraepithelial neoplasia (PIN)
(brown precipitate for mouse antibodies). Fast Red was applied as the second substrate
chromogen to stain the cytoplasm of the adenocarcinoma cells red (red precipitate for
rabbit antibodies). Ki67 was used as a marker of proliferation. Slides were incubated
1:200 with Ki67 primary antibody (Clone MIB-1, DAKO, Denmark) for 1 h, followed by
goat anti-mouse IgG biotinylated secondary antibody (DAKO, Denmark). Detection was
performed using DAB chromogen (Sigma, MO, USA) and counterstained with hematoxylin.
In all runs, transurethral resection of the prostate (TURP) tissue was used as the positive
control, and explant tissue with no primary antibody used as the negative control. Per-
cent positivity was quantified manually by a specialist prostate cancer pathologist who
was blinded to the treatments. Statistical analysis of Ki67 staining was carried out using
GraphPad Prism software v7.02 (2016, GraphPad Software, San Diego, CA, USA). Box plots
represent the mean ± interquartile, and whiskers represent minimum and maximum val-
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ues. Statistical significance was determined using one-way analysis of variance (ANOVA).
A p-value ≤ 0.05 was considered statistically significant.

2.5. Statistical Modeling of Ki67 Immunostaining Cell Positivity

While it is appropriate to assume that Ki67 cell positivity in tumors from different
patients is independent, the positive cell counts from different areas, or fields-of-view (FoV),
within a tumor are not. To determine what distribution best describes these intra-tumor
cell counts, we compared Akaike information criterion (AIC) using mixed effects models
with different error distributions. In particular, we evaluated the binomial, beta-binomial,
Poisson, generalized Poisson, and negative binomial (both with the variance related linearly
and quadratically with the mean) distribution. For all models except binomial and beta-
binomial, log link was employed and the log transformed total count was included as an
offset. In the binomial and beta-binomial models the logit link was employed. In all models,
treatment (control vs. active treatment) and batch (samples assessed in four batches) were
included as fixed effects. Random intercepts were included for each sample nested within
each individual.

Having determined the model of best fit (above), we used the model to determine the
appropriate sample size for evaluating Ki67 staining data. Parameters were set from the ob-
served data, including mean % Ki67 positivity in control and treated samples, and variation
across both patients and samples. Data were simulated assuming 25 individuals each with
two samples, control vs. treated, and an assumed reduction in Ki67 cell positivity due to
active treatment of 0.2 on the logit scale, corresponding to a reduction of approximately 4%.
The number of FoVs were varied from 10 through 25 by increments of 5, and the number
of cells counted per FoV were 10, 25, 50, 75, and 100. For each combination of FoV count
and cell count, 2000 simulations were performed and analyzed using the optimal mixed
effects model (as determined above). For each parameter setting, we report the probability
of detecting the treatment effect, i.e., the power of the analysis. Statistical modeling and
analyses were performed using R packages glmmTMB (v1.0.2.1) and bbmle (v1.0.24).

2.6. RNA Sequencing Analysis

Differentially expressed (DE) transcripts in Hsp90 inhibitor treated PDEs were iden-
tified by RNA sequencing, as described in our previous report [33]. Proteins in Hsp90
inhibitor treated PDEs were detected using liquid chromatography tandem mass spectrom-
etry (LC-MS/MS) as previously reported [34], and subjected to statistical analysis to detect
proteins that were differentially abundant (DA) using a voom-eBayes approach under the
paired design (R 3.5.0, limma 3.38.0) [35]. The threshold for statistical significance was set
at a false discovery rate (FDR) <5%. FDR was calculated using the Benjamini and Hochberg
(1995) method. Principal component analysis (PCA) was performed using the prcomp
function from the R stats package. The corresponding PCA plots were drawn using the
ggbiplot function from the R ggbiplot 0.55 package. Cross-tissue correlation heat maps
were generated using the ggplot2 (version 3.1.0) R package. After matching proteins to
their gene IDs, pathway over-representation analysis (ORA) was conducted against the
Molecular Signatures Database v6.1 [36]. To assess statistical significance in the pathway
analysis, a hypergeometric test was implemented using a one-sided Fisher exact test (R
stats package fisher.test function). Molecular Signatures Database “Hallmark” pathways
with an FDR <5% were considered to be significantly over-represented.

3. Results
3.1. Histology of Patient-Derived Explants Enables Visualization of the Tumor Microenvironment

Fresh primary prostate cancer samples obtained from patients undergoing radical
prostatectomy were explanted and cultured for up to 4 days, with tissue harvested for
histological analysis every 24 h. Hematoxylin and Eosin (H&E) staining demonstrated
that the tumor architecture and cellularity of PDEs was maintained over the entire culture
period, as compared with matched uncultured (T0) tumor specimens (Figure 2A). This
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window of time is another major consideration for PDE culture, to prevent adaptation to
ex vivo conditions and loss of cellularity that is observed in tissues cultured longer than
7 days (data not shown). The short time frame of PDE culture makes it high-throughput
for measuring intrinsic sensitivity or resistance to therapeutic agents, but limits capacity to
evaluate acquired resistance using this model. Within the recommended PDE culture time
frame, a heterogeneous mix of cell populations that comprises the tumor microenvironment
can be observed, including basal and luminal epithelial cells, immune cells, muscle cells,
and stromal cells. Not only are these cells present, but their distribution within the tumor
microenvironment can also be seen, highlighting the intra-tumor heterogeneity of prostate
cancer. Additionally visible in approximately 20–30% of PDE tissues, are regions of necrosis
that are not present in matched T0 tissue (Supplementary Figure S1A) and must therefore
represent a response to culture conditions. To minimize necrosis, optimization of media,
serum and other additives used in culture is critical at the initial stages of setting up PDE
culture for any given tumor or tissue type. In addition to evaluating tumor content upon
initial histological analysis (described below), the presence of necrosis should also be noted
and used as exclusion criteria for further analysis if more than half of the tissue is necrotic.
PIN4 triple staining of T0 and PDE tissues delineates benign from malignant regions, both of
which are well conserved (Figure 2A). PIN4 staining was used to approximate the presence
and percentage tumor area in PDE tissues (Figure 2B) and facilitate analysis of Ki67 staining
in benign and malignant tissue regions. As expected for benign prostatic hyperplasia
(BPH) tissues, a higher level of Ki67 positivity was observed in benign hyperplastic cells
compared with malignant (Figure 2C). Analysis of Cleaved Caspase-3 (CC3) staining
showed no significant change in cell death over the 4-day culture period for either benign
or malignant tissue areas (Supplementary Figure S1B).
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Figure 2. Patient-derived explant (PDE) culture preserves primary tumor characteristics. (A) Mainte-
nance of intra-tumoral heterogeneity and tissue viability in PDEs after the indicated culture periods
as determined by hematoxylin and eosin staining (H&E), benign and malignant glands identified
by PIN-4 prostate triple stain, and tumor cell proliferation by Ki67 staining. Scale bars 200 µm. (B)
Prostate cancer PDEs (n = 4) cultured for 48 h were evaluated for percent glandular tissue containing
tumor and benign areas. Data is presented at mean ± SEM of triplicate samples. (C) Ki67 positivity
in prostate cancer PDEs (n = 4) was evaluated in benign and tumor cells. Data is presented as mean
± SEM triplicate samples. ANOVA, time points versus T0, * p < 0.05.
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3.2. Incorporating Field-of-View Cell Counts Provides Accuracy in Immunostaining Quantification

As illustrated in Figure 1, PDE tissues are highly heterogeneous in their cellular
composition, which means there is underlying variance within and between individual
samples that must be considered upon quantitative analysis of immuno-stained explants.
To develop a reliable and accurate scoring method for PDE tissues, we undertook statistical
modeling of our most widely used immunohistochemistry stain, the proliferative marker
Ki67. Ki67 staining is evaluated by counting the number of positively and negatively
stained tumor/epithelial cells to calculate the percent of positively stained cells. Cell
numbers are manually counted across an entire PDE section using multiple fields-of-view
(FoV; Figure 3A), which allows for the modeling of variation across samples. We set out to
determine the model of best fit as a way of improving evaluation of staining positivity. Used
for analysis were Ki67 positivity data from a cohort of PDEs obtained from 122 prostate
cancer patients that were cultured in the presence of vehicle control (DMSO) or clinically
used prostate cancer drug enzalutamide (10 µM), as previously described [37]. Mixed
effect modeling was applied to the data-set using both total cell count and FoV counts.
The different assumptions regarding cell count distributions resulted in variation in the
estimate of the mean percent positivity for the average subject. For the control (untreated)
samples this ranged from 25% to 32% and from 24% to 29% in enzalutamide treated samples
(Figure 3B). The model assuming a beta-binomial distribution provided the best fit with the
lowest AIC (Figure 3B). With regards to sample assessment and sample size, the number of
FoV had a much larger effect on the power to detect treatment-induced changes in Ki67
positivity, than the number of cells counted per FoV, and must therefore be taken into
consideration when analyzing immuno-staining of PDE tissues. For example, there was
80% power to detect a treatment effect of 0.2 (logit scale, 2-sided alpha = 0.05) when at
least 25 FoV per sample were assessed with at least 25 cells per FoV, for a total of 625 cells
counted (Figure 3C). In contrast, counting 100 cells per FoV but only 10 FoVs, for a total of
1000 cells counted, provided less than 50% power (Figure 3D).
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Figure 3. Variation–response modeling of histological cell counts. (A) Ki67 cell counts were manually
counted across the entire section of PDE tissues using multiple fields-of-view (FoV) for modeling
cellular heterogeneity. Each box represents one FoV. (B) Mixed effects modeling results for Ki67
immunostaining of PDE tissues cultured in the presence of control or treated with 10 µM enzalutamide
(n = 122). Coef = coefficient; CI = confidence interval; DF = degrees of freedom; AIC–Aikake
information criterion. * ∆AIC is the difference from that of the beta-binomial model, which had the
smallest AIC. (C,D) Ki67 data were simulated assuming a beta-binomial mixed effects model, using
set parameters estimated for Ki67. Power is plotted against the number of (C) FoV, and (D) cell counts
per FoV.

3.3. Transcriptomic and Proteomic Analysis of Patient-Derived Explants Identifies Consistent
Expression Changes Irrespective of Heterogeneity

The natural variability between PDE samples means that designing omics experiments
with adequate power to detect differential expressions at the level required to answer
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research questions must be carefully considered. A pilot RNAseq experiment was pre-
viously conducted and validated [33], and we now reanalyze this dataset to establish
the influence of PDE heterogeneity on transcriptomic analysis. PDEs treated with two
molecular therapies targeting Hsp90 were used for the pilot RNAseq study, as we have
published the proliferative (Ki67) response of prostate PDEs to highly effective Hsp90 in-
hibitor AUY922 and the less potent inhibitor 17-AAG [22]. PDEs obtained from six prostate
cancer patients were cultured in the presence of vehicle control (DMSO), 17-AAG (500 nM)
or AUY922 (500 nM) for 48 h, and as previously observed [22], AUY922 significantly sup-
pressed prostate cancer cell proliferation compared to vehicle, whereas 17-AAG did not
(Figure 4A). RNA extracted from matched whole PDEs was sequenced using a stranded
total RNA approach (Illumina HiSeq, San Diego, CA, USA), which resulted in 32 million
reads/sample on average with an alignment rate >90%. Principal component analysis
(PCA) of the RNAseq data demonstrated that despite visible inter-patient tissue variation
in responses, a significant treatment effect was observed with the most efficacious agent,
AUY922 (Figure 4B). Applying the genas (“genuine association”) function in limma [35],
the correlation between 17-AAG treatment and AUY922 treatment was evaluated in terms
of magnitude and directionality compared to vehicle treatment. Figure 4C plots the log-fold
changes for AUY922 vs. vehicle against 17-AAG vs. vehicle, and demonstrates that while
gene expression changes with each treatment tended to change in the same direction, the
magnitude of change is smaller for 17-AAG than for AUY922, which is consistent with the
differential potency of these two agents, illustrated in Figure 4A. Differential expression
analysis identified 1691 differentially expressed (DE) genes upon AUY922 treatment (apply-
ing a >1.8 fold change, FDR < 0.05 threshold, listed in Supplementary Table S2A), which is
3.7 times more than the 461 DE genes identified upon 17AAG treatment (applying a milder
>1.2 fold change to account for the milder potency of the drug, FDR < 0.05 threshold),
with the majority of gene expression changes being downregulation compared to vehi-
cle treatment (Figure 4D). Correlation analysis of gene expression between PDE samples
demonstrated strong positive pairwise correlations between the biological replicates (Fig-
ure 4E). The average correlation coefficients were 0.9597 for DMSO, 0.9546 for 17-AAG and
0.9551 for AUY922, indicating consistent and systematic treatment-related gene expression
changes across the six PDE samples. This pilot RNAseq data was utilized as input into
Scotty [38], a web-based tool for estimating statistical power in RNAseq experiments. Scotty
estimated we would have >90% power to detect a statistically significant change in gene
expression of at least 1.5 log-fold between two groups with a similar treatment effect size
to AUY922 with a sample size of n = 15. An independent cohort of PDE samples obtained
from 16 prostate cancer patients was cultured in the absence or presence of either 17-AAG
or AUY922 for 48 h, achieving very similar proliferative outcomes to the RNAseq cohort
above (Figure 4F). Using proteomics data previously generated and validated from this
cohort of PDEs [34], we again re-analyzed the dataset to establish the influence of PDE
heterogeneity on proteomic analysis. PCA revealed a significant treatment effect with the
more potent AUY922 compared to both control and 17-AAG (Figure 4G). AUY922 treatment
resulted in 3.5 times as many differentially abundant proteins as 17-AAG (1172 DA proteins
with AUY922, listed in Supplementary Table S2B; 333 DA proteins with 17-AAG) most
of which were downregulated (Figure 4H). Cross-tissue correlation in protein abundance
was strongly positive, although not as high as our transcript data, with average pairwise
correlation coefficients of 0.9083 for DMSO, 0.8866 for 17-AAG and 0.8737 for AUY922
(Figure 4I). Collectively, these results demonstrate that RNAseq and proteomic analysis
of PDE tissue is highly feasible, and capable of identifying robust expression changes in
response to a drug treatment, irrespective of tissue heterogeneity.
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Figure 4. Transcriptomic and proteomic analysis of patient-derived explants. (A) Box plot showing
significant inhibition of proliferation (Ki67 immunostaining) in AUY922 treated prostate cancer PDEs
used for RNAseq analysis (n = 6). Box represents the median, 25th and 75th percentile values, and
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whiskers represent minimum and maximum values. (B) Principal component analysis (PCA) of
the RNAseq data in A. (C) Graphical output from the limma genas function. The plotted log-fold
changes indicate that gene expression upon 17-AAG or AUY922 tend to change in the same direction.
(D) Table summarizing the number of differentially expressed genes identified via RNAseq in prostate
cancer PDEs treated with Hsp90 inhibitors. (E) Heatmap visualization of cross-tissue correlation in
log2-CPM values between all 6 samples assessed for each treatment group. The high positive pairwise
correlation coefficients (mean correlations: DMSO = 0.9597, 17-AAG = 0.9546, AUY922 = 0.9551)
indicate consistent treatment-related gene expression changes across different biological samples.
(F) Box plot showing significant inhibition of proliferation (Ki67 immunostaining) in AUY922 treated
prostate cancer PDEs used for proteomic analysis (n = 16). (G) PCA analysis of the proteomic log2-
abundance values. (H) Table summarizing the number of differentially abundant proteins identified
via proteomics in prostate cancer PDEs treated with each inhibitor. (I) Heat map visualization of
cross-tissue correlation in log2-abundance values for each pair of 16 tissue samples observed for
each treatment. The positive pairwise correlation coefficients (mean correlations: DMSO = 0.9083,
17-AAG = 0.8866, AUY922 = 0.8737) indicate consistent treatment-related gene expression changes
across the samples. ANOVA, treatment versus DMSO, ** p <0.01, *** p < 0.001.

3.4. Integration of Transcript and Protein Expression Profiles Identifies Key Pathways of Interest

Comparison of differentially expressed (DE) transcripts and proteins, in AUY922-
treated PDEs compared to vehicle, demonstrated that only a fraction of the individual
DE genes/proteins were common between the two datasets (Figure 5A). There were
111 genes/proteins identified as differentially expressed at the transcript level and differen-
tially abundant at a protein level (Supplementary Table S3). Interestingly, all 111 genes/proteins
were differentially regulated in the same direction (up or downregulated) in the treated
PDE versus the matched control PDE for every transcriptomic (n = 6) and proteomic (n = 16)
sample (Figure 5B). Gene Set Enrichment Analysis (GSEA) of the DE genes identified in the
RNAseq dataset identified 33 enriched Hallmark genesets/pathways in AUY922 treated
samples (Figure 5C). Six Hallmark genesets were identified as significantly enriched among
differentially abundant proteins (Figure 5D). All Hallmark genesets identified in the tran-
scriptomics data were decreased upon AUY922 treatment (Figure 5C). For the proteomics
data, four of the six Hallmark genesets were decreased upon AUY922 treatment (Fig-
ure 5D) and all four corresponded to Hallmark genesets identified in the transcriptomics
data analysis (Figure 5C). This association between RNA and protein profiles provides
critical biological validation for omics analysis of heterogeneous PDE tissues. Further, it
demonstrates how analysis of multiple datasets facilitates refinement of omics data for
identification of key biological pathways. By comparing both transcriptomic and pro-
teomic data, three prominent pathways associated with Hsp90 and prostate cancer were
identified, namely MYC targets, E2F targets and androgen response. Two pathways that
were stimulated by AUY922 according to proteomics analysis, myogenesis and hedgehog
signaling (Figure 5D), were not significantly differentially expressed at the transcript level,
which demonstrates that proteomics can reveal novel pathway alterations not detected by
transcriptomics.
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Figure 5. Omics analysis of patient-derived explants identified key biological pathways and novel
targets. (A) Venn diagram representing the overlap between genes and proteins identified as dif-
ferentially expressed (DE) or differentially abundant (DA) in AUY922 treated PDEs versus DMSO
(FDR < 0.05). (B) Heatmap representing 111 genes/proteins that were identified both as differentially
expressed in the RNAseq analysis and differentially abundant in the proteomics analysis. (C,D)
Pathway over-representation analysis of (C) DE genes and (D) DA proteins from Venn diagram in A.
Pathways highlighted in green were identified by both RNAseq and proteomics analysis.

4. Discussion

The search for effective new prostate cancer treatments remains a major challenge due
to the significant heterogeneity that is characteristic of prostate cancer but is not reflected
in current cell line or animal models. There is an urgent need for more biologically relevant
pre-clinical models of prostate cancer that can improve the discovery and translation of
new drugs and biomarkers for this disease. PDEs are an innovative tool that capture the
complexity of prostate cancer by preserving the native architecture and microenvironment
of the tissue. As the interest and uptake of patient-derived models continues to rise,
successful application of this culture technique will provide a platform for the development
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of new drugs, for prediction of clinical efficacy of treatments, and for identification of
predictive biomarkers.

Central to any PDE study is a multi-disciplinary collaboration with urologists and
pathologists for the collection of high-quality biological samples using consistent and
precise protocols. When setting up PDE culture, three key aspects need to be kept in mind
for success, these include (1) time, (2) tissue viability, and (3) endpoint analysis. The hands-
on time needed to set up a PDE experiment is not extensive compared to working with cell
lines, but the amount of time needed to process and evaluate samples for histological and
endpoint analysis is considerably more time consuming and varies significantly depending
on the number of samples in the study. Moreover, not all tissues can be included for
analysis due to lack of viability or insufficient numbers of epithelial/tumor cells, and this
typically necessitates 20–30% more tissues to be acquired and evaluated histologically
before reaching the desired sample size, which can be one of the most time-consuming and
unpredictable aspects of PDE culture. PDE tissue viability is influenced by numerous factors
detailed throughout this study, and includes dissection of tissues into the correct size, use
of aseptic technique, optimized culture medium, and short-term timeframes to minimize
adaptation. An increase in necrosis can be seen in PDE tissues when these aspects are not
upheld. Necrotic tissues are not suitable for endpoint analysis and it is important that PDEs
containing significant necrosis are excluded from further investigation. Post-cultivation
histological analysis must therefore be conducted to select PDEs with good viability and
tumor content for robust endpoint analysis. The heterogeneity of prostate tumor PDEs
is their major advantage, but also their major challenge in terms of endpoint analysis.
Inclusion of biological replicates is an absolute requirement for addressing heterogeneity
as it ensures that a sufficient number of epithelial/tumor cells is present for analysis, but
also allows for the use of FoV in evaluating immunostaining of PDEs. Our modeling
demonstrated that the number of FoVs counted had more influence on power than the
total number of cells counted, therefore incorporating FoV counts improves accuracy of
evaluating drug efficacy. Given that efficacy studies are often the first PDE experiments
with any given drug, and evidence of significant drug efficacy is typically a gateway to
further evaluation into mechanism, resistance, biomarker development and selection for
clinical trials, having high confidence in these initial tumor responses is critical. Robust
treatment efficacy data is also key to successful PDE-based omics experiments and should
form the basis of experimental design.

Hsp90 is a molecular chaperone that is responsible for the folding and function
of over 300 “client” proteins involved in prostate cancer development and progression;
thus, targeting Hsp90 results in broad inhibition of critical signaling pathways (reviewed
in [39,40]). Hsp90 has been extensively investigated as a target in prostate cancer both pre-
clinically and clinically [41], but Hsp90 inhibitors such as 17-AAG and AUY922 have not
yet been clinically approved despite continuing efforts [42]. 17-AAG was the first-in-class
Hsp90 inhibitor, and it has far less potency than 2nd generation agents such as AUY922 [22].
We detected the differential potency between these drugs, not only through differences in
the proliferative response of PDEs, but through the magnitude of gene/protein expression
changes in response to each treatment. We also identified three pathways, androgen
response, MYC targets and E2F targets, that were commonly inhibited at both the transcript
and protein levels. These are well established oncogenic pathways in prostate cancer, driven
by transcription factors AR, MYC and E2F1/2. AR is undeniably one of the most critical
drivers of all stages of prostate cancer development, progression and treatment resistance,
and it has been the mainstay of prostate cancer treatment for decades [43]. Another
major driver of prostate tumorigenesis and progression, MYC expression correlates with
increased disease severity and it is frequently mutated in prostate cancer, making MYC an
intensely researched therapeutic target [44]. E2F1 has been attributed to numerous cancer
hallmarks in prostate cancer, including cell cycle, proliferation and apoptosis [45], and its
expression is so closely aligned with disease stage that it has been proposed as a potential
biomarker [46,47]. Notably, AR, MYC and E2F1/2 are all established Hsp90 client proteins,
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and targeting Hsp90 inhibits expression of AR in prostate cancer (reviewed in [41]), and
MYC [48–51] and E2F1 [52,53] in other cancers. Our ability to identify known pathways
associated with Hsp90 and prostate cancer through omics analysis of PDE tissues highlights
the capacity for omics identification of novel targets and biomarkers in the face of prostate
tumor heterogeneity.

What remains to be seen is whether prostate cancer PDE data will correspond with
patient data. Studies in other cancers suggest that there will be a strong correlation. In both
ovarian cancer [54] and lung cancer [55], PDE sensitivity to chemotherapy was positively
associated with survival in clinical trial patients. We are actively seeking to validate our
published prostate cancer PDE data that showed efficacy of CDK4/6 inhibitors [23], through
a pharmacodynamic neoadjuvant clinical study of CDK4/6 inhibitors in prostate cancer [30].
Demonstrating that our clinical data mirrors pre-clinical PDE results will provide irrefutable
evidence for the use of PDEs in drug and biomarker discovery. It will also support recent
studies suggesting PDEs as a platform to directly inform clinical management through
precision medicine [56].

5. Conclusions

Patient-derived models hold significant promise for translational research and rep-
resent a new era in prostate cancer research. Similar to all models, PDEs have limitations
that mostly include lack of an immune system, although immune cells are indeed present
with the tumor environment of PDEs, and inability to evaluate acquired resistance due to
adaptation to culture conditions within 7 days. Despite these limitations, the fact that they
are actual tumors from patients that are cultured and treated in the laboratory makes PDEs
the most biologically relevant pre-clinical representation of the heterogeneity and diversity
of prostate cancer. Harnessing the complexity of PDEs to guide the development and
implementation of new drugs and biomarkers will lead to better management of prostate
cancer and ultimately improve patient survival and quality of life.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14071708/s1, Table S1: Clinicopathologic characteristics
of patients included in this study; Table S2A: Differentially expressed genes in AUY922 treated PDEs
versus vehicle treated PDEs; Table S2B: Differentially expressed proteins in AUY922 treated PDEs
versus vehicle treated PDEs; Table S3: List of 111 common genes/proteins; Figure S1A: Histology of
H&E demonstrating necrosis in PDEs; Figure S1B: Cleaved Caspase-3 staining of PDEs.
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