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The induction of stem cells toward a desired differentiation direction is required for the advancement of stem cell-based therapies.
Despite successful demonstrations of the control of differentiation direction, the effective use of stem cell-based therapies suffers
from a lack of systematic knowledge regarding the mechanisms underlying directed differentiation. Using dynamic modeling and
the temporal microarray data of three differentiation stages, three dynamic protein-protein interaction networks were constructed.
The interaction difference networks derived from the constructed networks systematically delineated the evolution of interaction
variations and the underlying mechanisms. A proposed relevance score identified the essential components in the directed
differentiation. Inspection of well-known proteins and functional modules in the directed differentiation showed the plausibility
of the proposed relevance score, with the higher scores of several proteins and function modules indicating their essential roles in
the directed differentiation. During the differentiation process, the proteins and functional modules with higher relevance scores
also became more specific to the neuronal identity. Ultimately, the essential components revealed by the relevance scores may play
a role in controlling the direction of differentiation. In addition, these components may serve as a starting point for understanding
the systematic mechanisms of directed differentiation and for increasing the efficiency of stem cell-based therapies.

1. Background

Stem cell-based therapies require precise control of the pro-
cesses involved in the differentiation of pluripotent stem cells
into specific cell types. For therapeutic purposes, the induced
stem cells have to proliferate and differentiate to produce a
sufficient quantity of the desired cell type; however, prolif-
eration and differentiation have to be controlled to prevent
abnormal proliferation (e.g., a source of cancer). Embryoge-
nesis exemplifies the concept of balance between promotion
and restriction of the proliferation and differentiation of stem
cells. Several experimental protocols to induce stem cells
toward a desired differentiation direction have therefore been
developed based on knowledge of themolecular mechanisms
of embryogenesis. Most of these protocols successfully pro-
duce the desired outcomes by manipulating the regulators or
members of embryogenesis-related pathways.

For example, in the directed differentiation of human
pluripotent cells into ureteric bud kidney progenitor-like
cells, a newplatform for renal lineage commitmentwas devel-
oped by adding the requiredmolecules during kidney embry-
ogenesis [1]. A robust and efficient process to direct differenti-
ation using a series of temporal growth factor manipulations
that mimicked embryonic intestinal development was estab-
lished for the directed differentiation of human pluripotent
cells into intestinal tissue [2]. In the dual inhibition of SMAD
signaling, a possible mechanism was presented and a highly
efficient neural conversionwas performed [3]. A key objective
for neural induction in human embryonic stem cells (hESCs)
is the knowledge and capability to initiate signaling pathways
[4].The derivation of floor plate (FP) precursors was induced
by a modified dual-SMAD inhibition protocol, progressing
to dopamine (DA) neurons with fibroblast growth factors
(FGF) and sonic hedgehog (SHH) signals that have the ability
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to control dopaminergic cell production. Under both LSB
and LSB/S/F8 control conditions, and based on previous
studies of dual-SMAD inhibition of neural induction, a new
midbrain DA neuron protocol was developed [5]. Exposure
to CHIR99021 (CHIR), a potent GSK3B inhibitor, was found
to activateWNT signaling [6]. Protocols that aim at known or
specific pathways and mechanisms to control differentiation
work on the basis of the assumption that if these mechanisms
are invoked, then the desired cell types can be obtained.
Despite the successful examples mentioned above, we believe
that there are still numerous failures in the design of effective
protocols to control the differentiation outcomes. These
failures can be attributed to a lack of knowledge about the
systematic mechanisms of directed differentiation.

The directed differentiation process from stem cells to
specific neuron types through the induction of a series of
molecular events in a systematic manner has proven difficult
because the normal developmental process that generates
most classes of CNS neurons remains poorly defined [7].
However, in the directed differentiation of mouse induced
pluripotent stem cells (iPSCs) into cardiovascular cells,
researchers succeeded in inducing the correct direction of
differentiation based on systematic knowledge of the differ-
entiation process of cardiovascular cells from iPSCs [8].Thus,
systematic understanding of the mechanisms of directed dif-
ferentiation can provide a systematic perspective for design-
ing protocols. The molecular interaction network of dif-
ferentiation can provide promising molecular or modular
candidates to balance the promotion and restriction of stem
cell growth and to control the differentiation direction.

In a modified dual-SMAD protocol study [5], the authors
induced three different outcomes using three different treat-
ment schemes (LSB, LSB/S/F8, and LSB/S/F8/CHIR), then
measured the temporal gene expression profiles for each
treatment, and verified that the derived DA neurons were
engraftable and had the same activity as endogenous DA
neurons. The three outcomes are regarded as three stages in
the directed differentiation of iPSCs to DA neurons. Accord-
ing to the temporal gene expression profiles of the three
treatments, we constructed protein-protein interaction net-
works for the three stages in the differentiation process. The
constructed networks describe the dynamics of the proteins
as the interactions between proteins. The dynamic network
modeling of biological processes has been acknowledged
as furthering our understanding of these processes from
systematic viewpoints [9, 10]. Through a comparison of the
three networks and the phenotypes observed under the three
treatment schemes, we utilized the interaction difference
networks to identify proteins with large interaction activity
variation. As protein-protein interactions (PPIs) are essential
elements in biological processes, the roles of themost variable
components of the PPIs in directed differentiation are worth
further examination. We propose a relevance score to quan-
tify the importance of proteins and functional modules in
the directed differentiation process. Based on these scores, we
discuss how the balance between promotion and restriction
of stem cell proliferation and differentiation is achieved and
how the differentiation direction is controlled. We believe
that this may serve as a starting point for understanding

the systematic mechanisms of directed differentiation and
increase the efficiency of stem cell-based therapies.

2. Methods

In this study, the analysis procedure used to identify essential
proteins and functional modules in the directed differen-
tiation process consists of three key steps: (i) microarray
data preprocessing, (ii) dynamic PPI network construction,
and (iii) relevance score calculation from IDNs between
the different differentiation stages. Details for each step are
described in the following sections.

2.1.MicroarrayData Preprocessing. Thegenome-widemicro-
array data used in this study were obtained from the
GSE32658 dataset in the GEO database [5] using an Expres-
sion BeadChip Kit (Illumina, San Diego, CA, USA).The data
consist of measurements of temporal gene expression in the
directed differentiation of hESCs into DA neurons over a
range of 0 to 13 days under three different differentiation con-
ditions (LSB, LSB/S/F8, and LSB/S/F8/CHIR) (Figure 1(a)).
For each condition, there are three replications for each time
point (days 0, 1, 3, 5, 7, 11, and 13) used in this study. The
microarray data were obtained from a study conducted by
Kriks et al. According to GEO database documentation, no
normalization or background correction was performed on
the GSE32658 dataset. We therefore performed simple quan-
tile normalization and selected differentially expressed genes
using MATLAB for data preprocessing before network con-
struction.We defined three consecutive differentiation stages
over 13 days according to the three induction conditions in [5]
and the resultant phenotypes of these induction conditions.
The first stage corresponding to the LSB induction condition
(i.e., the iPSCs were only induced by LSB at the beginning of
the experiments) consisted of the temporal gene expression
profiles at 0, 1, 3, 5, 7, 11, and 13 days under the LSB induction
condition. The second stage corresponding to the LSB/S/F8
induction condition (i.e., the iPSCs were induced by LSB at
the beginning of the experiments and then SHH and FGF8
at one day after LSB addition) consisted of the temporal gene
expression profiles at 0 and 1 days under the LSB induction
condition and 3, 5, 7, 11, and 13 days under the LSB/S/F8
induction condition. The third stage corresponding to the
LSB/S/F8/CHIR induction condition (i.e., the iPSCs were
first induced by LSB at the beginning of the experiments,
SHH and FGF at one day after LSB addition, and CHIR at
three days after LSB addition) consisted of the temporal gene
expression profiles at 0 and 1 days under the LSB induction
condition, 3 days under the LSB/S/F8 induction condition,
and 5, 7, 11, and 13 days under the LSB/S/F8/CHIR induction
condition. The resultant phenotypes of the three stages are
dorsal forebrain precursors, ventral/hypothalamic precur-
sors, and midbrain DA neurons, respectively (Figure 1(a)).
Data were normalized relative to the controls to avoid
masking biological effects [11]. To construct the PPI network,
differentially expressed probes were further filtered from
the normalized data using an ANOVA and a significance
threshold of FDR-corrected𝑃 values< 1× 10−3. After filtering,
there were 3556, 3731, and 6460 differentially expressed genes
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Figure 1: Overview of data, flowchart, and summary of the dynamic PPI networks in the differentiation process from hESCs to DA neurons.
(a) The upper part of the timeline shows three experimental conditions (LSB: 󳵳, LSB/S/F8: ◼, and LSB/S/F8/CHIR: e) used in [5]. The
numbers on the timeline indicates the sampling time points of microarray data (days 0, 1, 3, 5, 7, 11, and 13). The lower part of the timeline
shows the three differentiation stages comprising of the data from the three experimental conditions. (b) A brief flowchart of dynamic network
construction. Using PPI candidates from databases, the data of the three differentiation stages, and dynamic network modeling, three PPI
networks corresponding to three differentiation stages are constructed. Then the interaction difference network (IDN) can be derived from
the two networks of differentiation stages. (c) In the table at left, it shows the total number of nodes and edges at three stages. The Venn
diagram at top-right shows the distribution of number of nodes between stage I and stage II and between stage II and stage III. The Venn
diagram at lower right shows the distribution of number of edges between stage I (black) and stage II (red) and between stage II (black) and
stage III (red).

for the three differentiation stages, respectively, which were
used to investigate and construct the dynamic PPI networks.

2.2. Dynamic PPI Network Construction. The flowchart for
the dynamic PPI network construction used in this study is
summarized in Figure 1(b) and briefly described in the fol-
lowing text.

First, the candidate PPIs from different databases were
collected before identifying the interaction activities between
the differentially expressed proteins in the dynamic PPI
network model. These PPI candidates consisted of interac-
tions from computational predictions and biological exper-
iments. We collected candidates from 10 frequently used PPI
databases (BIND [12], BioGrid [13], DIP [14], HPRD [15], I2D
[16], INTACT [17], MINT [18], PIP [19], Reactome [20], and
STRING [21]). The candidate PPIs were then pruned using
the microarray data to construct the realistic dynamic PPI
network.

The logic of our methodology to construct a network
is that the experimental data (e.g., the microarray in this
study) are used to examine all potential protein-protein
interactions. We then considered the PPI information from
the databases as the potential PPIs rather than all possible
interactions, due to the computation complexity.Therefore, if
PPI information was not included in the database, it does not
appear in our constructed networks.Moreover, the sources of
PPI information, such as text mining or interlogue mapping,
reflect the confidence in the reality of the PPIs. Hence, we
pooled all PPIs from the different sources to avoid missing
PPI information if a specific source was used as a criterion to
construct a network. However, this also increases the number
of false positive PPIs if PPIs of different sources are integrated.
Thiswas addressed by using the experimental data to examine
possible PPIs to reduce bias.

A discrete dynamic PPI model was employed to describe
the PPIs in the network at different differentiation stages.
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The dynamic model for a target protein 𝑝 in the candidate
PPI network was proposed as follows [22]:
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where 𝑧
𝑝

[𝑡] is the protein level of 𝑝 at time 𝑡, 𝑏
𝑝𝑞

is the inter-
action activity of the 𝑞th protein and the 𝑝th target protein,
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[𝑡] is the protein level of the 𝑞th protein that interacts with
the target protein 𝑝 at time 𝑡, 𝛼
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from mRNA to protein, 𝑥
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expression level of the target protein 𝑝, 𝛽
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is the degradation
rate of the target protein 𝑝, and 𝜔
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[𝑡] is stochastic noise.
The biological interpretation of (1) is that the protein level
of the target protein 𝑝 at time 𝑡 + 1 is associated with the
current target protein level, the regulatory interactions with
𝑄
𝑝

interactive proteins, the translation effect from mRNA
of target protein 𝑝, the degradation effect, and stochastic
noise at time 𝑡 + 1. As the protein-protein interaction is
in fact a chemical reaction of two proteins, we adopted the
formulation of the rate equation for a chemical reaction,
that is, the rate coefficient multiplied by the product of
the reactants. Dynamic PPI modelling of 𝑝 in (1) can be
represented using the following regression form:
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where 𝜙
𝑝

[𝑡] is the regression data vector and 𝜃
𝑝

is the kinetic
parameter vector to be identified. In order to avoid overfitting
to a small amount of data when identifying parameters,
original data points were interpolated to 𝐿 data points using a
cubic spline method [23, 24].The desirable data size number,
𝐿, is approximately 3–5 times the number of estimated
parameters. Thus, after assembling the 𝐿 data points, (2) can
be rewritten as the following equation:
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Because large-scale measurements of protein levels are
still lacking, mRNA expression profiles were used as substi-
tutes for protein levels when identifying the protein inter-
action parameters. Even if the mRNA expression level is
not completely representative of the protein expression level,
there are partly positive correlations between them [25, 26].
Therefore, the mRNA microarray can represent the trend of
the corresponding protein expression level; that is, we assume
that the gene expression level is representative of the protein
expression level. Once the protein interaction activity 𝑏

𝑝𝑞

was estimated, Akaike’s information criterion (AIC) [27, 28]
was applied to eliminate models with false positive protein
interactions. This model order detection technique has been
widely used in different fields (e.g., ecology, signal processing,
engineering, systems biology, etc.) and can provide a fair
view of the elimination of false positive interactions based
on the microarray data when compared with the curated
information. Realistic PPI networks were then constructed
from the remaining candidate PPI networks. Details of the
dynamic network construction can be found in [22].

2.3. Relevance Score Calculation from Interaction Difference
Networks (IDNs) under Different Differentiation Stages. The
resultant PPI networks at different differentiation stages can
be represented as a matrix according to the constructed
dynamic PPI networks:
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where 𝑏̂
𝑝𝑞

is the interaction activity between protein 𝑝 and
protein 𝑞 in the realistic PPI networks and the superscript 𝑠
of interaction activity 𝑏̂
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represents the differentiation stage.
The interaction difference of two dynamic PPI networks at
different differentiation stages is called the interaction differ-
ence network (IDN) in the differentiation process of hESCs
into DA neurons and can be expressed as the following inter-
action difference matrix:
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(6)

where 𝑑
𝑝𝑞

is the difference in the interaction activity of
protein 𝑝 and protein 𝑞 in the IDN between two different dif-
ferentiation stages. For essential proteins in the directed dif-
ferentiation process, two issues are taken into consideration.
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First, the magnitude of the interaction activity represents the
influence of one protein on the other proteins in the realistic
PPI network. Second, if a protein plays a critical role in the
transition from differentiation stage 1 to differentiation stage
2, the difference in the interaction activities will be larger.
Based on these considerations, the relevance score (RS) of a
protein in the directed differentiation process can be defined
as follows:
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where degree of protein 𝑝 is the number of nonzero elements
in the 𝑝th row of the interaction difference matrix 𝐷. Simi-
larly the relevance score of the functional module 𝑓, a set of
proteins with a specific function, in the directed differentia-
tion process can also be defined:
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Classification of a group of proteins in the IDNs into
functional modules or pathways can easily be achieved by
ontological analyses, and relevance scores of the functional
modules can be calculated accordingly. Similarly, the rele-
vance score of the functional module can quantify the impor-
tance of a functional module in the directed differentiation.

3. Results and Discussion

3.1. Dynamic Networks and Interaction Variations of Well-
Known Proteins at Three Differentiation Stages. In [5], Kriks
et al. indicated that the failure of past strategies to induce
the derivation of DA neurons is due to incomplete speci-
fication. These authors presented a novel strategy to com-
plete the specification of DA neurons: a scalable source
for neural transplantation. Three induction conditions (LSB,
LSB/S/F8, and LSB/S/F8/CHIR) were used to clarify the
required elements for DA neuron specification. The LSB
induction condition yielded dorsal forebrain neuron iden-
tity; LSB/S/F8 yielded ventral/hypothalamic neuron identity;
and LSB/S/F8/CHIR yielded midbrain DA neuron identity.
We therefore defined the three differentiation stages of
pluripotent stem cells (PSCs) into dopamine (DA) neu-
rons corresponding to the three induction conditions. From
this a natural and basic question concerning the parts of
the induced PSCs (which can be viewed as dynamic and
PPI networks) follows that are varied concurrent with the
evolution of the three stages, as these varied parts may
play crucial roles in influencing the differentiation direc-
tion. Dynamic network modeling techniques were there-
fore used to construct dynamic PPI networks to quan-
titatively describe the highly dynamic and complex PPIs
of the three differentiation stages. The resultant dynamic
PPI networks are summarized in Figure 1(c). To investi-
gate the variations in the transition between two differen-
tiation stages, the interaction difference matrices between
stages (𝐷LSB/S/F8-LSB and 𝐷LSB/S/F8/CHIR-LSB/S/F8) were calcu-
lated following (6), allowing the visualization of the IDNs

(see File S1 in Supplementary Material available online at
http://dx.doi.org/10.1155/2015/792843 for all IDNs). Further-
more, a relevance score proposed to quantify the variation of
interaction activity of proteins between stages was calculated
from the interaction difference matrices. Prior to further
analysis of the IDNs in the directed differentiation process,
we assessed the plausibility of relevance scores by examining
the scores of well-known key proteins [5] (OTX2, FOXA2,
and LMX1A) for DA neuron differentiation from hESCs and
their first neighbors in the IDNs (see Figure 2).

OTX2, the first transcription factor proven to have a role
in mesencephalic-diencephalic dopaminergic (mdDA) neu-
rogenesis [29], controls the development of several neuronal
populations in themidbrain by regulating progenitor identity
and neurogenesis [30]. After adding SHH and FGF8, the
positive interaction betweenOTX2 andAPP and the negative
interaction between OTX2 and FOXA2 emerged, and the
negative interaction between OTX2 and TLE4 diminished
(Figure 2(a)). Because TLE4 negatively regulates the transac-
tivating ability of OTX2 [31], reducing the negative effect of
TLE4 on OTX2 may enhance the ability of OTX2 to deter-
mine cell fate during directed differentiation. After adding
CHIR, the positive interaction between OTX2 and APP and
the negative interaction between OTX2 and FOXA2 dimin-
ished, and the positive interaction between OTX2 and LHX1
and the negative interaction between LHX1 and FOXA2
emerged (Figure 2(b)). The emerging positive interaction
between OTX2 and APP and its following disappearance
reflect the fact that overexpression of the APP gene causes
glial differentiation of stem cells and that reduction in APP
levels would be useful in promoting neurogenesis [32]. This
indicates the necessity of CHIR addition to promote adequate
neural differentiation. The connection between OTX2 and
FOXA2 is more intricate. After adding SHH and FGF8, a
negative interaction emerged; the addition of CHIR then
turned the direct negative interaction into indirect interac-
tions through LHX1, which may promote DA differentiation
[33].

FOXA2, a transcriptional activator, regulates DA neu-
ronal generation and differentiation [34] and is only signif-
icantly differentially expressed after adding SHH and FGF8
(Figure 2(c)). The negative interaction between FOXA2 and
HES6 emerged after adding SHH and FGF8, and FOXA2
exerted indirect positive interactions on HES6 through
HIF1A and TLE1. Later, the negative interaction was attenu-
ated by adding CHIR and the indirect positive interactions
were diminished (Figure 2(d)). HES6, a candidate gene for
mood disorder susceptibility and antidepressant response,
promotes neuronal differentiation [35]. Thus, the interac-
tions between FOXA2 and HES6 may provide a mechanism
to control the differentiation directly and indirectly. The
positive interaction between FOXA2 and SMARCC2 (also
known as BAF170) emerged after adding CHIR. SMARCC2
has been proven to play a role in neurogenesis [36]. The
negative interaction between FOXA2 and PPARGC1B (also
known as PGC1B), which controlsmitochondrialmetabolism
[37], emerged after adding CHIR. The positive interaction
between FOXA2 and NCOA1 (also known as SRC1) emerged
after adding CHIR. SRC-1 null mice show moderate motor
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Figure 2: The interaction activity variations of well-known proteins OTX2, FOXA2, and LMX1A in the IDNs at two differentiation stage
transitions. (a) Interaction activity variation of OTX2 from LSB to LSB/S/F8; (b) of OTX2 from LSB/S/F8 to LSB/S/F8/CHIR; (c) of FOXA2
from LSB to LSB/S/F8; (d) of FOXA2 from LSB/S/F8 to LSB/S/F8/CHIR; (e) of LMX1A from LSB to LSB/S/F8; (f) of LMX1A from LSB/S/F8
to LSB/S/F8/CHIR. (Nodes: red indicates disappearance at the previous stage and appearance at the later stage. Blue indicates appearance at
the previous stage and disappearance at the later stage. Purple indicates appearance under both conditions. Edges: red indicates an enhancing
interaction (i.e., + → ++, −− → −, 0 → +, and − → 0). Blue indicates an attenuating interaction (++ → +, − → −−, + → 0, and 0
→ −). A solid edge represents appearance under both conditions. A dashed edge represents disappearance under the previous condition and
appearance under the later condition. A dotted edge represents appearance under the previous condition and disappearance under the later
condition. The width of the edge represents the magnitude of the interaction activity variations.)

dysfunction and delayed development of cerebellar Purkinje
cells [38].

LMX1A, a roof plate marker, indicates the establishment
of midbrain DA neuron precursor fate [5] and was dimin-
ished after SHH and FGF addition but emerged again after
CHIR addition (Figures 2(e) and 2(f)). The interactions
between LMX1A and SIRT1 declined throughout the differ-
entiation process. SIRT1 mediates MPP+-induced apoptosis
in dopaminergic cells [39]. This may imply that control of
apoptosis is exerted at the beginning of the differentiation
process and is progressively attenuated.

The interaction variations between these three key pro-
teins and their first neighbors provide insights into the
mechanisms of how these proteins determine the direction
of differentiation.The phosphorylation events are indeed key
events of information transmission in the signaling pathways.
The results of signaling pathways are related to the activation
or inhibition of gene expressions, which are in turn used
to estimate interaction strengths in the network. We may
therefore state that the effects of phosphorylation are implicit
in the interaction strengths of the constructed networks.

Although their neighbors have been studied to some extent
in literature, here the IDNs of the differentiation stage
transitions linked them and are related to the three key
proteins. In addition to the qualitative descriptions of the
interaction variations, we also calculated the relevance scores
for each protein in the IDNs. The width of the links of the
three key proteins delineated their high relevance scores.
Thus, we use the relevance scores in the following sections
to evaluate the importance of proteins with higher scores and
investigate their roles in directed differentiation.

3.2. Proteins with the Top Ten Relevance Scores in the Interac-
tion Difference Networks. Following the analysis of the three
key proteins of the directed differentiation, we here provide
quantitative measurements of the interaction activity varia-
tions of the proteins in the transitions of the differentiation
stages according to the IDNs. The data record three different
differentiation processes from the same hESCs into three
different cell types based on three different protocols. Only
one protocol has the potential to develop engraftable DA
neurons for furthermedical treatments of Parkinson’s disease.
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Figure 3: Interaction activity variations of the ten proteinswith the highest relevance scores in the IDNs at twodifferentiation stage transitions.
(a) Interaction activity variations of the ten proteins highest in relevance score from LSB to LSB/S/F8. (b) Interaction activity variations of
the ten proteins highest in relevance score from LSB/S/F8 to LSB/S/F8/CHIR. Node and edge colors and edge line styles have the same
interpretation as in Figure 2. A yellow node represents a protein with a relatively high relevance score (Table 1).

Table 1: The ten proteins with the highest relevance scores.

Rank LSB → LSB/S/F8 LSB/S/F8 → LSB/S/F8/CHIR
Relevance score Protein Relevance score Protein

1 33.71857 METTL14 33.71857 METTL14
2 15.33615 METTL3 16.94178 METTL3
3 14.93786 NR2F2 9.465864 GLRX
4 4.348328 POLR2I 3.366032 POLR2I
5 2.916923 CLDN3 2.441295 EFEMP2
6 2.682951 MRPS34 2.041421 MRPS34
7 2.682884 NCOR2 2.001651 GTF2F2
8 2.457388 EFEMP2 1.884138 FAM124B
9 2.227754 CLDN1 1.859985 STYXL1
10 2.141034 STYXL1 1.42109 SEPT10

The other two protocols resulted in some unexpected or
unwanted cell types, which may cause improper cell growth.
Our primary goal was to determine why the protocol can
result in the development of DA neurons. Interactions that
differ from those described in the “LSB/S/F8/CHIR” protocol
are therefore considered as potential causes for unexpected
or unwanted results. A similar evaluation based on IDNs
has provided insight into the pathways and mechanisms of
lung carcinogenesis and potential therapeutic targets for lung
cancer [40]. Utilizing the identified interaction matrices (5)

frommicroarray data and the definition of the relevance score
of a protein in (7), the importance of a protein at different
stages of the directed differentiation process of hESCs to
DA neurons can be evaluated. The proteins with the top ten
relevance scores are shown in Table 1 and the subnetwork
comprising these proteins extracted from the whole IDN is
shown in Figure 3.

TheMETTL3-METTL14 complex showed a negative inter-
action after adding SHH and FGF8. This complex, a methyl-
transferase, mediates mammalian nuclear RNA N6-adenosine
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methylation [41], which is essential for neural stem cell
differentiation [42]. In both of the IDNs (𝐷LSB/S/F8-LSB and
𝐷LSB/S/F8/CHIR-LSB/S/F8), this complex had a strong interaction
with POLR2I, a transcription factor related to Huntington’s
disease. Although the role of POLR2I in the directed dif-
ferentiation of hESCs into DA neurons remains unclear, the
strong interaction may imply the importance of methylation
and POLR2I in the differentiation process. Furthermore,
the mitochondrial ribosomal protein MRPS34 interacted
with a human homolog of the Drosophila discs-large tumor
suppressor protein (hDLG), which may function in the
regulation of development and cell death [43].Thedifferential
expression of MRPS34 was also reported in several stem cell
lines. EFEMP2 and STYXL1 are related to EGF and the cell
cycle, respectively, and their roles in directed differentiation
are still not fully explored. The above proteins are common
in both IDNs, indicating that methylation, mitochondrial
ribosomes, EGF signaling, and cell cycle-related functions are
all involved in differentiation stage transitions.

In the IDN between LSB/S/F8 and LSB conditions
(𝐷LSB/S/F8-LSB; Figure 3(a)), the ligand-activated transcription
factor NR2F2 is involved with OCT4 in mammalian ESC
pluripotency [44] and FOXA1 transcription factor networks
[45]. Its interaction activity with NCOR2, a nuclear recep-
tor co-repressor controlling transcriptional silencing, was
reduced after adding SHH and FGF8. By attenuating this
interaction, a group of genes can be upregulated (e.g.,
HDAC1). In addition, NCOR2 is involved in the Notch sig-
naling pathway, which plays an important role in cell dif-
ferentiation. Another group emerging in the network was
claudin, including CLDN1 and CLDN3. Claudin is related to
tight junctions and cell-to-cell adhesion [46]. Cell adhesion
controls interactions of stem cells with their niche and sig-
naling environment [47]. One member of the claudin group,
CLDN6, was found to participate in the immunological elim-
ination of hESCs and the prevention of cell outgrowth [48].
Hence, CLDN1 and CLDN3 may be involved in controlling
the extension of hESCs and is worthy of further exploration.

In the IDN between LSB/S/F8/CHIR and LSB/S/F8 con-
ditions (𝐷LSB/S/F8/CHIR-LSB/S/F8; Figure 3(b)), there were four
specific proteins with high relevance scores: GLRX, GTF2F2,
FAM124B, and SEPT10. GLRX is differentially expressed in
neuronal differentiation of human retinal pigment epithelial
cells and in salamander spinal cord regeneration [49] and
is involved in the estrogen pathway [50]. GTF2F2 encodes
the general transcription factor IIF and is involved in NRF-
1 regulated neurite growth [51] and the estrogen pathway
[52]. FAM124B is a component of the CHD7- and CHD8-
containing complex that is related to neurodevelopmental
disorders [53]. Septin10 (SEPT10), an evolutionarily con-
served group of GTP-binding and filament-forming proteins,
interacts with components of cytoskeletons. Investigation of
SEPT2, also a septin, has revealed a relationship between
septin and neuronal development.

It was observed that some of these proteins (GLRX,
GTF2F2, FAM124B, and SEPT10) showed more neuron-
specific related functions after the addition of CHIR, while
for some (NR2F2, NCOR2, CLDN1, and CLDN3), this was

the case after adding SHH and FGF8. The latter group seems
to be involved with more general processes of stem cell dif-
ferentiation. The IDNs also provide a basis for further study.
For example, the relations shown as thick edges in the IDNs
(Figure 2) imply a greater amount of variation occurring
during stage transitions, which may indicate essential roles.
The interaction between METTL3 and METTL14 is one of
the most varied, and its role in the directed differentiation of
hESCs to DA neurons may be worth further investigation.

3.3. Relevance Scores of the Integrin, FGF, and WNT Func-
tional Modules. The relevance scores of proteins in the pre-
vious section indicate the importance of essential candidates
in the directed differentiation of hESCs to DA neurons.
Complex biological phenomena are, however, the outcomes
of intricate interactions among functional modules compris-
ing several proteins with a specific function. Some of the
significantly enriched GO terms are angiogenesis, the TGF-
𝛽 signaling pathway, the PI3 kinase pathway, and the WNT
signaling pathway, which is consistent with other enrichment
analyses. For a clearer understanding of the mechanisms
of the directed differentiation of hESCs to DA neurons, an
interpretation from a functional module-level perspective
is therefore indispensable. The relevance scores of proteins
can be generalized to those of functional modules as shown
in (8). The functional module-level interpretation of the
directed differentiation can then be inferred from the scores.
The prerequisite to calculating relevance scores of functional
modules is to classify proteins into functionalmodules, which
can be achieved through ontological or pathway analyses.
Ontological analysis on the IDNs yielded several significant
enriched functional modules, which are listed with their
relevance scores in Table 2. Based on the ranking of relevance
scores and 𝑃 values, we focused on the integrin, FGF, and
WNT functional modules in the following analysis.

The integrin functional module shows the highest rank
by relevance score (Tables 2(a) and 2(b)), corresponding to
both differentiation stage transitions from LSB to LSB/S/F8
and from LSB/S/F8 to LSB/S/F8/CHIR. In the differentiation
stage transition from LSB to LSB/S/F8, the integrin func-
tional module has a core subnetwork (the rounded square
in Figures 4(a) and 4(b)) consisting of integrins (ITGA2,
ITGA3, ITGA6, ITGAV, ITGB1, ITGB2, and ITGB5), col-
lagens (COL2A1, COL5A2, COL6A1, COL9A1, COL9A3,
COL11A1, and COL18A1), and laminins (LAMA1, LAMB1,
LAMB2, and LAMC2). This core subnetwork links to VCL
and FYN with enhancing interactions. VCL, a cytoskeletal
protein, links to RAS (HRAS) and TGF𝛽 (TGFB1I1). TGFB1I1
then links to PXN, which is related to functions of focal
adhesion, and LCK, a well-studied protein that can enhance
differentiation of lymphoid cell lines by suppressing glu-
cocorticoid sensitivity and apoptosis [54]. FYN, the other
protein linking to the core network, controls cell growth. In
addition, some actin-related proteins (ARPC2 and ARPC5L)
are included in the core subnetwork through PXN. It is
notable that many proteins in the integrin functional module
also appear in pathways related to cancers. This explains the
similarity between cancer cells and stem cells in their almost
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Table 2: (a)The ten functions highest in relevance score from the LSB to LSB/S/F8 condition. (b)The ten functions highest in relevance score
from the LSB/S/F8 to LSB/S/F8/CHIR condition.

(a)

Rank LSB → LSB/S/F8
Relevance score Function P value of ontology analysis

1 7.627697307 Huntington disease 5.55𝐸 − 03

2 5.389941296 Integrin signaling pathway 1.35𝐸 − 07

3 4.865942264 Gonadotropin releasing hormone receptor pathway 1.87𝐸 − 02

4 4.776453757 Angiogenesis 2.76𝐸 − 10

5 3.318549657 PDGF signaling pathway 1.10𝐸 − 02

6 3.13212684 Cytoskeletal regulation by Rho GTPase 2.68𝐸 − 04

7 3.120593534 FGF signaling pathway 1.69𝐸 − 03

8 3.016342937 EGF receptor signaling pathway 8.17𝐸 − 05

9 2.417680991 TGF-beta signaling pathway 9.86𝐸 − 03

10 2.36486466 Parkinson disease 2.78𝐸 − 02

(b)

Rank LSB/S/F8 → LSB/S/F8/CHIR
Relevance score Function P value of ontology analysis

1 7.085580216 Gonadotropin releasing hormone receptor pathway 2.84𝐸 − 04

2 6.595569241 Integrin signaling pathway 3.54𝐸 − 08

3 4.956190934 FGF signaling pathway 1.68𝐸 − 06

4 4.634381934 Angiogenesis 6.45𝐸 − 06

5 4.535296087 EGF receptor signaling pathway 2.35𝐸 − 06

6 3.702903524 Huntington disease 9.60𝐸 − 03

7 3.299706184 PDGF signaling pathway 2.75𝐸 − 02

8 2.664383051 Parkinson disease 8.74𝐸 − 05

9 2.640768983 TGF-beta signaling pathway 3.05𝐸 − 02

10 2.61175047 RAS pathway 1.18𝐸 − 03

indefinite proliferation, immortality, and uncontrollable dif-
ferentiation of induced stem cells. In the differentiation
stage transition from LSB/S/F8 to LSB/S/F8/CHIR, the scale
of the core network consisting of integrins, collagens, and
laminins increased with the inclusion of further instances
of these proteins (Figure 4(b)). The interactions from the
core network to VCL and FYN diminished, implying that
inhibition of apoptosis was not required. However, require-
ments for actin polymerization seemed to be increased. More
actin-related proteins emerged in this IDN (Figure 4(b)). In
addition, GRB2 emerged in the core network, acting as a sup-
pressant of proliferative signals and triggering programmed
cell death and being attenuated through interactions with
RIT2 and ITGA6. Interactions related to cell growth and
apoptosis inhibition in the previous stage transition (from
LSB to LSB/S/F8) became more negative or vanished in the
later stage transition (from LSB/S/F8 to LSB/S/F8/CHIR).
In addition, actin polymerization and focal adhesion, which
occur downstream of the integrin functional module, were
more active in the later stage. These interaction variations
indicate the necessity of regulation for cell survivability and
neurogenesis.

The FGF functional module also had a high relevance
score in the differentiation stage transitions (Tables 2(a) and

2(b)). As theWNT functional module has been implicated in
the development of the thalamus [55], these two functional
modules (FGF and WNT) were included in the following
analysis. In the transition from LSB to LSB/S/F8, the inter-
actions among cadherins (i.e., among CDH1, CDH2, CDH3,
CDH7, CDH6, CDH10, and CDH11) were attenuated after
adding SHH and FGF8. AES, a molecule in the WNT func-
tional module, is related to neurogenesis. Its connection to
FGF was attenuated and a negative interaction with HDAC3
emerged. CSNK2A1, which is related to axon guidance,
had negative and attenuated interactions with its neighbor
proteins (Figure 5(a)). In the transition from LSB/S/F8 to
LSB/S/F8/CHIR (Figure 5(b)), FGF8 lost most of its inter-
actions, and other FGFs and FGFRs connected to form a
larger core networkwhich included cadherins (e.g., CTNNB1,
CDH11, CTNNA1, CDH13, PCDH7, and CDH3) and axon
guidance molecules (CSNK2A1 and CSNK2A2). Some pre-
viously noted molecules (AES, CSNK2A1, and CSNK2A2)
related to neurogenesis and axon guidance were reconnected
to the network after adding CHIR. The reestablishment
of connections between AES, CSNK2A1, and HDAC3 is
required for the following differentiation process. Another
important interaction occurred betweenWNT2 andHDAC2.
Both of these proteins have been implicated in neuronal
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Figure 4: The interaction activity variations of the integrin functional module in the directed differentiation process at two differentiation
stage transitions. (a) Interaction activity variations from the LSB stage to the LSB/S/F8 stage. (b) Interaction activity variations from the
LSB/S/F8 stage to the LSB/S/F8/CHIR stage. Node and edge colors and edge line styles have the same interpretation as in Figure 2. The
rounded squares are the core subnetworks in the integrin functional module.

differentiation [56]. GRB2 also emerged in the core network
and exerted its influence on cell growth in cooperation with
the FGF and WNT functional modules.

The role of the FGF signaling pathway seemed to change
between the early and later differentiation stage. During the
first stage transition, the connections among the FGF, WNT,

and integrin functional modules are built up for a general
stem cell differentiation scheme. It may be an essential step to
recruit them for further neuron differentiation, as the WNT
and integrin functional modules are well-known for being
involved in the neural development process. In the later stage
transition, the FGF signaling pathway was involved in a more
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Figure 5: The interaction activity variations of the FGF and WNT functional modules in the directed differentiation process at two
differentiation stage transitions. (a) Interaction activity variations from the LSB stage to the LSB/S/F8 stage. (b) Interaction activity variations
from the LSB/S/F8 stage to the LSB/S/F8/CHIR stage. Node and edge colors and edge line styles have the same interpretation as in Figure 2.

complex interaction network with neural differentiation-
related proteins. The integrin signaling pathway also showed
a similar trend; that is, many proteins with higher relevance
scores in this pathway (e.g., LCK, FYN, andARP) are involved
in a general scheme of stem cell differentiation, while inter-
actions with neurogenesis-related proteins appear later on.
These proteins and their interactions may play essential roles
in directed differentiation and require further investigation.

Although the characteristics of the three discussed signaling
pathways are familiar in the field of differentiation, dynamic
PPI network-based relevance scores more explicitly indicate
their roles in directed differentiation. The relevance scores
indicate the diminishing demand for control of cell growth
and apoptosis.The proposed relevance scores could therefore
be a potential method to describe dynamic biological differ-
entiation processes.
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4. Conclusions

Identifying the keys in the directed differentiations of hESCs
provides a basis to control the differentiation directions.
The differentiation process can be treated as an evolution of
interactions among proteins and functional modules in three
differentiation stages. Hence, we built three PPI networks for
the three differentiation stages corresponding to three differ-
ent outcomes [5]. In general, a cell regulates itself through
changing the interactions between molecules, for example,
the inhibition and activation of proteins in PPIs, resulting
in different responses. To investigate the variations of PPIs,
we utilized IDNs to illustrate the interaction variations
(enhanced or attenuated interaction) and the existence of
proteins at two differentiation stages (diminished, emerged,
or coexisting). Timely appearance and disappearance of
molecules, interactions among molecules, and functional
modules can promote the progress of the directed differen-
tiation of hESCs into DA neurons. In this study, we used a
computational method to investigate PPI network changes to
dissect the directed differentiation process of hESCs into DA
neurons and gain insight into the underlying mechanisms of
directed differentiation.

Interaction activities between proteins have been identi-
fied by temporal gene expression profiles and then assembled
into dynamic PPI networks for the three differentiation stages
based on dynamic network modeling [9, 10, 22, 40]. Three
dynamic PPI networks corresponding to three stages of hESC
differentiation into DA neurons were constructed. A com-
parison of PPI networks at two differentiation stages revealed
an interaction difference matrix depicted as an IDN (Figures
2–5) in which the interaction activity variations correspond-
ing to the differentiation stage transition can be observed.
Several known key proteins (OTX2, FOXA2, and LMX1A)
in the directed differentiation of hESCs to DA neurons were
inspected to justify the reliability of the resultant IDNs in the
directed differentiation process. The variations of their inter-
actions indicate the cellular functions promoting the progress
of the directed differentiation. The relationships between
these interaction variations and the cellular functions in the
directed differentiation were verified by literature. To locate
the essential proteins and functional modules in the directed
differentiation, we furthermore quantified the importance of
proteins and functionalmodules using relevance scores based
on the dynamic PPI networks. According to the interaction
activities identified by the dynamic network modeling, the
variations in the interaction activity of a protein in the IDN
can be calculated and defined as a relevance score. As a
biological function consists of a series of protein-protein
interactions, a larger variation of PPIs caused more profound
effects on the differentiation outcomes. The relevance score
is hence a representation of the significance of the protein in
the differentiation stage transitions. Generalizing the concept
from a protein to a cellular function, the significance of
a functional module in the differentiation stage transitions
can be also evaluated through relevance scores of functional
modules.

As the differentiation stage transitions, the IDNs reflected
the evolution of interaction variations. The high relevance

scores in the proteins (e.g., MRPS34, EFEMP2, and STYXL1)
and functional modules (e.g., LCK and FYN in the integrin
signaling and subsiding interactions among cadherins in the
FGF signaling) indicate that the evasion of apoptosis and
enhanced survivability of differentiated stem cells may serve
as generalmechanisms of directed differentiation at the initial
stage. In the transition fromLSB/S/F8 to LSB/S/F8/CHIR, the
proteins and functional modules with high relevance scores
in the IDN are specific to neurogenesis and the functions
of DA neurons (e.g., gonadotropin-releasing hormone secre-
tion). The inhibition of apoptosis and the activation of cell
growth declined after adding CHIR, a GSK3B inhibitor that
also can activate WNT signaling. The activation of WNT
signaling, although it is not a significant parameter in the
enrichment analysis, was visible in the IDNs from LSB/S/F8
to LSB/S/F8/CHIR. In addition, cross-talk among the inte-
grins, WNT, and FGF functional modules increased in the
directed differentiation process (Figures 4 and 5) and was
involved in determining the boundary of brain regions [55].

Several essential proteins and functional modules were
described as underlying mechanisms of the directed differ-
entiation process of hESCs into DA neurons using compu-
tational and literature verification. Many of these require
further experiments to verify their ability to control the direc-
tion of differentiation. For now, a computational basis for
understanding the directed differentiation process has been
provided andmay serve as a starting point for understanding
the systematicmechanisms of directed differentiations as well
as increasing the efficiency of stem cell-based therapies.
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