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� Construct reliable datasets of antifreeze proteins (AFPs).
� Develop a bioinformatics tool to predict AFPs from their sequences by using random forest.
� Achieved accuracies of 0.961 and 0.947 for non-redundant sequences with less than 90% and 30% identities.
� Using the ability of random forest, dentified the sequence features that contributed to the prediction.
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A B S T R A C T

Antifreeze proteins (AFPs) are proteins that protect cellular fluids and body fluids from freezing by inhibiting the
nucleation and growth of ice crystals and preventing ice recrystallization, thereby contributing to the maintenance
of life in living organisms. They exist in fish, insects, microorganisms, and fungi. However, the number of known
AFPs is currently limited, and it is essential to construct a reliable dataset of AFPs and develop a bioinformatics
tool to predict AFPs. In this work, we first collected AFPs sequences from UniProtKB considering the reliability of
annotations and, based on these datasets, developed a prediction system using random forest. We achieved ac-
curacies of 0.961 and 0.947 for non-redundant sequences with less than 90% and 30% identities and achieved the
accuracy of 0.953 for representative sequences for each species. Using the ability of random forest, we identified
the sequence features that contributed to the prediction. Some sequence features were common to AFPs from
different species. These features include the Cys content, Ala-Ala content, Trp-Gly content, and the amino acids’
distribution related to the disorder propensity. The computer program and the dataset developed in this work are
available from the GitHub site: https://github.com/ryomiya/Prediction-and-analysis-of-antifreeze-proteins.
1. Introduction

Antifreeze proteins (AFPs) are proteins that protect cellular fluids and
body fluids from freezing by inhibiting the nucleation and growth of ice
crystals and preventing ice recrystallization, thereby contributing to the
maintenance of life in living organisms. They exist in fish, insects, mi-
croorganisms, and fungi [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Because of their
functions, AFPs are expected to be utilized in food processing, cryo-
preservation of food, tissues, and organs, medicine, and the development
of anti-icing materials. Thus, it is imperative to research antifreeze pro-
teins, which are expected to be applied to a vast range of fields.

Previously known AFPs are antifreeze glycoproteins (AFGPs), Type-1
AFP, Type-2 AFP, Type-3 AFP, and Type-4 AFP, which were discovered
early in the history of AFP research. AFGPs are proteins with the
repeating sequence Ala-Ala-Thr, which is found in polar fishes, and the
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Thr is modified with β-d-galactosyl-(1,3)-α-n-acetyl-d-galactosamine
disaccharide, which is involved in ice crystal binding [11]. Some
low-molecular-weight AFGPs have been found to have alanine residues
replaced by proline and threonine residues replaced by arginine [12].
Type-1 AFP is an Ala-rich, helix-rich protein found in fish such as flatfish,
flounder, and sculpin and is the most widely documented of all AFP types
due to its historical background as the first protein structure to be
determined [13]. Type-2 AFP is a 14–24 kDa Ca2þ-dependent, a
cysteine-rich globular protein that has been found in fishes such as her-
ring (Clupea harengus), cucumber fish (Osmerus mordax), wagtail (Hypo-
mesus nipponensis), sculpin (Hemitripterus americanus), and whitefish
(Brachyopsis rostratus) [14, 15, 16]. Type-2 AFP is the largest globular
AFP to date homologous to the Ca2þ-dependent C-type lectin-like
domain. Type-3 AFP is a small globular protein with an average molec-
ular weight of about 6.5 kDa with a one-turn alpha-helix and beta-sheet
ber 2021
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and can be found in Antarctic eelgrass (Macrozoarces americanus), Ant-
arctic eelpout, andwolffish [17]. Type-4 AFP is a new AFP species found in
the horned sculpin's plasma, Myoxocephalus octodecemspinosus [18]. The
protein has been named LS-12 and registered under Uniprot ID:P80961.
This protein is approximately 12 kDa and 128 amino acids in length. The
N-terminal 20 residues comprise a signal peptide for extracellular pre-
sentation, and the amino acid sequence of the AFP active domain from
21-128 is Gln/Glu-rich (~17%).

In this way, four types have been described to date; however, many
antifreeze proteins that are not classified in the above types have been
discovered, and the above classifications are not sufficient to classify all
antifreeze proteins that have been discovered. A great variety of AFPs
have been found in insects, microorganisms, and fungi. Despite their
functional similarities, AFPs show great diversity in their structural and
sequence characteristics among species. Therefore, it is difficult to pre-
dict AFPs only by homology search.

Machine learning has been used to identify AFPs from amino acid
sequences. Kandaswamy et al. [19] developed an AFP prediction system
called AFP-Pred, which used random forest (RF) as a classifier. They
extracted AFP sequences using the Pfam database [20] and collected
their homologous sequences, eliminating redundant sequences with
more than 40% identity by CD-HIT [21]. As a result, 481 sequences were
obtained and were used as the positive dataset for prediction. Amino acid
frequency, dipeptide frequency, secondary structure information, and
physicochemical properties in the protein sequences were used as fea-
tures. The AFP prediction tools AFP_PSSM [22], AFP_pseAAC [23], Tar-
getFreeze [24] used support vector machine (SVM) as a classifier.
AFP_PSSM used the position-specific scoringmatrix (PSSM) as a sequence
feature; AFP_pseAAC improved prediction performance using pseudo
amino acid composition (pseAAC), and TargetFreeze further improved
prediction performance by using pseudo PSSM in addition to pseAAC.
Yang et al. [25] developed a tool called AFP-ensemble which used RF as a
classifier and used many sequence features, including amino acid
composition (AAC), dipeptide composition (DC), physicochemical
properties, PSSM, disorder information, and functional domain. They
compared performance between different features with RFs and SVM as
classifiers. One unique contribution of their work is that it incorporates
the features related to protein disorder. They considered that the disorder
regions may relate to ice-binding because the disorder regions are always
rich in binding sites and carry important roles in regulating protein
functions [25]. Their work showed that the disorder's contribution is the
smallest among their physicochemical properties, whereas our work
suggests that the disorder is one of the important features as described
later. Khan et al. developed another AFP prediction system called
RAFP-Pred by using RF [26]. RAFP-Pred divides a protein sequence into
two sub-sequences, calculates AAC and DC of each sub-sequence, and
combines the results to obtain features. AFP-LSE, developed by Usman
et al., uses an autoencoder and deep neural network with the feature
“composition of k-spaced amino acid pairs.” The performance results
when using AFP-LSE were as follows: balanced accuracy ¼ 0.903; You-
den's Index ¼ 0.81; and Matthews correlation coefficient (MCC) ¼ 0.52;
these results indicate that this method performs better than the existing
methods [27]. We discuss the performance of our method and that of
AFP-LSE in the Results section. Usman et al. also developed another
prediction method, AFP-SRC [28], which uses amino acid composition
and dipeptide composition as features and also applied principal
component analysis (PCA) to reduce the dimensions of features. dis-
cussed the effect of PCA comprehensively. Alim et al. developed
PoGB-pred [29]; this prediction model was gradient boosting and the
author applied PCA to reduce the dimensions of features, AAC, DC, and
pseudo AAC. Alim et al. also discussed the effect of dimension reduction
via a comparison with the performance of RAFP-Pred [26].

Recent studies also focus on the characterization of essential features
for identifying AFPs. Pratiwi et al. [30] developed an AFP prediction tool
called CryoProtect, which uses RF as a classifier and uses AAC and DC as
sequence features. They also analyzed the sequences of AFPs and showed
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that Cys, Ser, Trp, Gly, Asn, and Thr were characteristic residues of AFPs
while Leu, Val, Glu, Ile, and Met were characteristic of non-AFPs. These
results reflected the amino acid propensities of AFP and non-AFPs, and
the Gini index from the RF model for evaluating and ranking the feature
importance of amino acids was complementary to the above results.
Eslami et al. [31] developed an AFP prediction tool called afpCOOL,
which uses SVM as a classifier and uses four types of descriptors: hy-
dropathy, physicochemical properties, AAC, and evolutionary profile
(400 descriptors). They showed physicochemical descriptors are themost
informative features to discriminate between AFPs and non-AFPs. Sun
et al. [32] developed a tool for identifying antifreeze proteins which used
SVM as a classifier and evolutional information derived from PSSM as
sequence features. They showed interesting findings that Cys, Trp, and
Gly are conservative, and their replacements by Ala, Met, and Ala,
respectively, are rare in AFPs. In this work, we applied AAC, DC, the
composition of two amino acids with one arbitrary amino acid in be-
tween, and composition, transition, and distribution (CTD) based on
various amino acid properties as described in the “Materials and
Methods” section. Thus a wide range of features that are essential for the
identification of AFPs can be found.

As for the dataset of AFP used for the machine learning benchmark,
the above AFP prediction tools used the AFP-Pred dataset [19] as the
basis. However, this dataset is limited in number, and it contains some
sequences that we could not find any evidence or annotation related to
antifreeze function, such as many C-type lectins and MADS-box
domain-containing protein. UniProtKB contains a large number of se-
quences annotated as AFP and related keywords. The collection of AFPs
from UniProtKB should be reconsidered. For this reason, RAFP-Pred [26]
used 41 sequences from Protein Data Bank (PDB) and 369 sequences
from UniProtKB, and the sequences in the AFP-Pred dataset. Eslami et al.
also used 517 AFP sequences from UniProtKB and the same number of
non-AFP sequences using PDB structures. They showed the results of
performance analysis for the AFP-Pred dataset and the UniProtKB-based
dataset. In this work, we constructed datasets of AFPs considering Uni-
ProtKB's reliability and removed the redundancy based on sequence
identities and organic species. The current annotated sequences of Uni-
ProtKB are biased and we tried to identify common features that are
characteristic to AFPs regardless of sequence families and species.

The current study does not predict the ice-binding residues of AFP
directly, as in the study of Yu et al. [33] who used the PDB structures as a
positive dataset for the purpose of predicting ice-binding sites. Although
the dataset was limited and the accuracy of AFP identification was
evaluated using this limited dataset, the identification of ice-binding sites
was unique. In the present study, the amino acid motifs that ranked high
in terms of feature score (see the Results) can be regarded as candidates
for functional sites (not limited to ice-binding sites) of AFP.

Figure 1 illustrates the outline of this work. We first constructed
datasets of AFPs considering reliability, developed a binary classification
prediction system based on these datasets, and discussed the features of
AFPs that contributed to the prediction.

2. Materials and methods

2.1. Datasets

We first searched UniProtKB for AFP sequences using “antifreeze” and
the synonyms of “antifreeze proteins” registered in NCBI MeSH as key-
words. InterPro and PRINTS, linked to UniProtKB, were also specified as
search targets. The total number of AFP sequences collected was 4,194.
The details of the collection method (search keywords) are described in
Table S1. We call the dataset of these sequences the primary dataset.

Using the primary dataset, we constructed the non-redundant data-
sets: Dataset 30 and Dataset 90 created by clustering the primary dataset
with 30% and 90% sequence identity cutoffs, respectively, using PSI-CD-
HIT (version 4.5.3) [21]. In Dataset 30, sequences from a Pfam family
were grouped into a single and several clusters for some families. For



Figure 1. Outline of the present research. The numbers in parentheses represent the number of sequences in each dataset.
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example, 279 sequences with the SAF domain (PF08666) were divided
into six clusters; 69 sequences with the AFP domain (PF02420) were
grouped into one cluster; 32 sequences with the CfAFP domain
(PF05264) were divided into four clusters; 244 sequences with NeuB
domain (PF03102) were divided into six clusters. Dataset 30 and Dataset
90 consists of 1,609 and 3,276 sequences, respectively.

The sequences in the primary dataset were derived from 1,632 spe-
cies. Figure 2 shows the species with the ten largest number of sequences
along with their dataset. There is a certain amount of bias by species. To
eliminate the bias's possible influence, we also constructed another
dataset, Dataset S, by selecting a representative sequence from each
species. Dataset S consists of 1,632 sequences.

Among the 4,194 sequences in the primary dataset, there were 57
sequences with “reviewed” annotations of UniProtKB, which means that
the sequence is manually annotated and considered to be highly reliable.
Other sequences are “unreviewed,” which contains computationally
generated annotations and protein sequences from large-scale functional
analysis experiments. We performed the PSI-BLAST search (version
2.9.0þ) with E-value < 0.001 for the 57 sequence. The number of hit
sequences was 29,255. Out of 4,137 “unreviewed” sequences in the
primary dataset, 430 sequences were included in the hit sequences, and
they were added to the “reviewed” 57 sequences to construct Dataset R.
The number of sequences in the Dataset R is 487.
Figure 2. Top 10 species o
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Besides these datasets, we also prepared the dataset used in AFP-Pred.
This dataset was collected based on the Pfam database; 221 sequences
were collected from the Pfam database, and homologous sequences were
collected with a strict threshold (E-value 0.001) by PSI-BLAST search.
The final dataset contained only protein sequences with less than 40%
identity after redundancy elimination using CD-HIT. We call this dataset
Dataset AP. Dataset AP consists of 481 sequences.

Figure 3 (a) shows the comparison of Dataset AP and the primary
dataset. As shown in Figure 3 (a), 121 sequences are included in com-
mon. To compare the sequences between Dataset AP and the primary
dataset at the same redundancy level, we created Dataset 40 by removing
redundancy in the primary dataset with a 40% identity cutoff using PSI-
CD-HIT. The number of sequences in Dataset 40 is 1,782, and the number
of sequences commonwith Dataset AP is 47, as shown in Figure 3 (b). For
the other redundancy levels, Dataset 90 and Dataset 30 have 109 and 38
sequences common to Dataset AP, respectively. Figure 3 (c) compares
Dataset AP and Dataset R. The number of common sequences is 28. These
figures show that the Dataset AP includes a tiny part of AFP-annotated
sequences in UniProtKB.

The above datasets, Dataset 90, Dataset 30, Dataset S, and Dataset R,
were used as positive datasets of machine learning. We constructed a
non-AFP dataset (negative dataset) by randomly selecting the sequences
tagged as “reviewed” from UniProtKB, excluding those hit by the search
f the primary dataset.



Figure 3. Comparison between Dataset AP and other datasets.
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under the keywords “antifreeze” and “afp.” The resulting number of se-
quences in the negative dataset was 560,147; however, for training and
testing, the same number of sequences was selected from the negative
dataset as were selected from the positive dataset. Therefore, all training
was performed on balanced positive and negative datasets. Table 1
summarizes the number of sequences of each dataset.

2.2. Features

In this work, we used the following features for machine learning:

1. Amino acid (AA) composition (AAC).
2. Dipeptide composition (DC).
3. Composition of two amino acids with one arbitrary amino acid in

between (AA-x-AA composition).
4. CTD.

The AAC can be expressed as a 20-dimensional vector. The DC is a
composition of two consecutive amino acids, expressed as a vector of 20
� 20 ¼ 400 dimensions. The AA-x-AA composition is a composition of
the pattern AA-x-AA where x is an arbitrary amino acid and can also de
expressed as a vector of 20� 20¼ 400 dimensions. This feature was used
because some AFPs have this sequence pattern, especially in the ice-
binding regions [34, 35]. CTD is a feature that indicates the distribu-
tion of amino acid patterns along the primary sequence of a protein,
based on physicochemical and structural properties [36, 37]. C
(Composition) indicates the composition of amino acids of a particular
property; T (Transition) indicates the percent frequency with which
amino acids with a different property follow amino acids with a
Table 1. Number of sequences in the datasets.

Datasets Number of
sequences

Primary
dataset

Sequences annotated with AFP-related keywords 4,194

Dataset 90 Non-redundant sequences <90% sequence identity 3,276

Dataset 40 Non-redundant sequences <40% sequence identity 1,782

Dataset 30 Non-redundant sequences <30% sequence identity 1,609

Dataset S Dataset of the representative sequence for each
species

1,632

Dataset R Reviewed sequences plus their 90% similar
sequences

487

Dataset AP Dataset used in AFP-Pred 481

Negative
datasetþ

UniProtKB sequences excluding AFP-related
keywords.
For training, the same number of negative sequences
was selected from this dataset as were selected from
the positive datasets.

560,147

Dataset 40 is only used for comparison with Dataset AP (same redundancy level).
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particular property; D (Distribution) indicates the distribution of the
initial, 25%, 50%, 75%, and 100% positions of the amino acids with a
particular property.

In this work, eight properties: hydrophobicity, normalized van der
Waals volume, polarity, charge, secondary structure, solvent accessi-
bility, polarizability, and disorder propensity [38], were considered as
shown in Table S2. Each amino acid was classified into three classes
Group 1, 2, and 3 for each property. For each property, Composition has a
three-dimensional feature, Transition has a three-dimensional feature,
and Distribution has a 15-dimensional feature (three groups times five
positions). Therefore, the dimension of the CTD features of this work is
8 � ð3 þ 3 þ 15Þ ¼ 168. As an example, consider the sequence
“MAGGDLVYAGSIAEHRKL.” When we consider the polarizability of this
sequence, it can be encoded as “311112231112123332” according to the
grouping described in Table S2. Figure S1 shows the detailed calculation
of CTD for this example. The compositions of group 1, group 2, and group
3 are 8/18, 5/18, and 5/18, respectively. The compositions of transition
1/2, transition 1/3, and transition 2/3 are 4/17, 2/17, and 3/17,
respectively. Transition a/b represents transition a to b or transition b to
a. The distributions of the initial (first), 25% (second), 50% (fourth), 75%
(sixth), and 100% (eight) of group 1 were calculated as 2/18, 3/18, 5/18,
10/18, and 13/18, respectively.

2.3. Classification method

We used LightGBM [39] as a machine learning framework. LightGBM
is a type of Gradient Boosting Decision Tree (GBDT) and uses an
ensemble learning method that combines several weak learners (decision
trees) to build a single strong learner. LightGBM is particularly unique
among GBDTs in that it employs the Leaf-wise method, Gradient-based
One-Side Sampling (GOSS), and Exclusive Feature Bundling (EFB).
Figure S2 shows the flowchart of LigthtGBM.

The Leaf-wisemethod is used in the decision tree construction process
of the GBDT algorithm [40]. In LightGBM, Leaf-wise is used because it
has an advantage in short training time. GOSS is a learning method that
excludes data with small gradients and samples only data with large
gradients [41]. GOSS's advantage is that the computational cost can be
significantly reduced because the instance split point is determined using
the estimated value of variance gains. On the other hand, EFB is a method
to reduce the number of features by bundling mutually exclusive fea-
tures. This is based on an idea that the computational cost of searching
for branch points is so heavy that it is not necessary to search for the
entire features. Especially in large datasets, there are many sparse fea-
tures, and it is not uncommon for the features of non-zero elements to
have no overlap at all, such as one-hot encoding features.

2.4. Evaluation method

We performed five-fold cross-validation on each dataset. Five-fold
cross-validation divides the dataset into five blocks and treats one data



Table 2. Prediction performance.

Accuracy Precision Recall MCC AUC Youden's index

Dataset 90 0.961 0.978 0.944 0.923 0.994 0.919

Dataset 30 0.947 0.979 0.914 0.896 0.989 0.882

Dataset S 0.953 0.973 0.934 0.908 0.994 0.990

Dataset R 0.986 0.992 0.979 0.972 1 0.945
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block as the test data and the remaining data blocks as the training data.
By repeating this process five times, each divided data block is treated as
the test data.

2.5. Performance measure

The precision, specificity, recall, accuracy, and MCC were used to
evaluate the prediction performance in this work. These are expressed as
follows:

Precision¼ TP
TP þ FP

Specifity¼ TN
TN þ FP

Recall¼ TP
TP þ FN

Accuracy¼ TP þ TN
TP þ FP þ TN þ FN

MCC¼ TP・TN � FP・FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp
Figure 4. RO
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where TP, FP, TN, and FN are: true positive, false positive, true negative,
and false negative, respectively. Precision is the percentage of true pos-
itive sequences against the sequences that are predicted to be positive,
specificity is the percentage of true negative sequences against the truly
negative sequences, recall is the percentage of true positive sequences
against sequences that are truly positive, and accuracy is the percentage
of the correctly predicted sequences against the total sequences. MCC
takes account of the accuracy of prediction for both positive and negative
sequences.

The Receiver Operating Characteristic curve (ROC curve) was also
used to visualize the prediction performance. The ROC curve is a plot of
the false positive rate (¼ FP/(TN þ FP)) against the true positive rate (¼
reproducibility; recall).

3. Results and discussions

3.1. Prediction performance

The prediction performances for the four datasets are shown in
Table 2. The performance was evaluated based on the accuracy (ACC),
specificity (SPE), recall (REC), and MCC using five-fold cross-validation.
The average value of each performance measure in the five-fold cross-
validation is shown in Table 2. LightGBM created a classification pre-
dictor for each dataset. The LightGBM Tuner was used to find optimal
hyperparameter values of the model. Figure 4 (a)-(d) shows the ROC
curves for Dataset 90, Dataset 30, Dataset S, and Dataset R, respectively.

Dataset 90 has a larger number of sequences and facilitates learning
compared with Dataset 30. Many sequences of specific species (e.g.,
Eimeria) are included in the primary dataset (Dataset 90 and Dataset 30),
which may influence the precision of AFP of the specific species to some
extent. Accuracy, recall, andMCC of Dataset S are higher than Dataset 30.
Although Dataset S only contains one sequence for each species,
C curves.



Table 3. Prediction performances of independent tests.

Accuracy Precision Recall MCC AUC Youden's index

Dataset S 0.946 0.958 0.930 0.893 0.986 0.900

Dataset R 0.990 0.981 1 0.980 0.999 1

Table 6. Top 10 features contributing to classification prediction.

Feature Score

a) Dataset 90

1 Polarity Composition; Group 2 1.57 � 10�1

2 Cys 7.81 � 10�2

3 Ala-Ala 6.69 � 10�2

4 Ala-x-Ala 4.50 � 10�2

5 Disorder Propensity Distribution; Group 1 (50%) 3.27 � 10�2

6 Met-Gly 3.24 � 10�2

7 Trp-x-Asp 2.57 � 10�2

8 Normalized VDWV Composition; Group 1 2.42 � 10�2

9 Trp-Gly 1.89 � 10�2

10 Hydrophobicity Composition; Group 2 1.47 � 10�2

b) Dataset 30

1 Ala-x-Ala 2.73 � 10�1

2 Ala-Ala 2.65 � 10�1

3 Cys 4.33 � 10�2

4 Polarity Composition; Group 2 3.20 � 10�2

5 Ala 2.57 � 10�2

6 Polarity Composition; Group 1 1.56 � 10�2

7 Normalized VDWV Composition; Group 1 1.41 � 10�2

8 Leu 1.13 � 10�2

9 Polarizability Composition; Group 1 7.72 � 10�3

10 Hydrophobicity Composition; Group 2 6.68 � 10�3

c) Dataset S

1 Disorder Propensity Distribution; Group 2 (50%) 8.68 � 10�2

2 Disorder Propensity Distribution; Group 1 (50%) 5.24 � 10�2

3 Ala 4.39 � 10�2

4 Polarity Composition; Group 2 3.86 � 10�2

5 Cys 3.73 � 10�2

6 Trp-Gly 2.93 � 10�2

7 Normalized VDWV Composition; Group 1 2.90 � 10�2

8 Hydrophobicity Composition; Group 2 1.97 � 10�2

9 Ala-Ala 1.96 � 10�2

10 Arg 1.92 � 10�2

d) Dataset R

1 Disorder Propensity Distribution; Group 3 (50%) 6.18 � 10�2

2 Polarity Composition; Group 2 5.59 � 10�2

3 Trp-Gly 4.89 � 10�2

4 Normalized VDWV Composition; Group 1 4.57 � 10�2
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sequence redundancy was not removed. If some common sequence
properties exist in AFPs among species, the learning effect seems higher
than Dataset 30. Since Dataset R consists of 57 “reviewed” sequences and
their close homologs, there may be a possibility that learning and testing
were performed within a limited variety of sequences.

We performed independent tests on Dataset S and Dataset R. In both
datasets, 64% of the whole dataset was treated as the training set, 16% as
the validation set, and 20% as the test set. The prediction performances
are shown in Table 3. Good performance was also obtained via an in-
dependent test.

We also performed three cross-data tests by training the model on
Dataset 90, Dataset 30, and Dataset S (as well as each of the negative
datasets) and by testing it on Dataset R. Table 4 shows the performance of
these cross tests.

Results from cross-testing Dataset 90 and Dataset R showed high
performance. In this case, the features of AFPs seemed to be trained and
used for predicting AFPs. However, the performance from cross-testing
Dataset 30 and Dataset R was relatively low. This suggests that there
are some features of AFPs that failed to be trained by removing the
sequence redundancy. Cross-testing Dataset S and Dataset R also resulted
in a high performance, although the number of sequences in Dataset 30
and Dataset S are almost the same. Since Dataset S consists of represen-
tative sequences for each species, the features common to the AFPs of
each species were effectively trained. In other words, the features with
high scores in Dataset S are considered to be included in features com-
mon to the AFPs of each species.

For comparison with other methods, we evaluated the performance of
a recent method, AFP-LSE [27], relative to our method. Independence
tests on Dataset S and Dataset R were performed under the same condi-
tions: 64% of the whole dataset was treated as the training set, 16% as the
validation set, and 20% as the test set. The prediction performances are
shown in Table 5. Comparing the results from the two methods, our
method outperformed AFP-LSE for both Dataset S and Dataset R
(Table 3). Since AFP-LSE was based on the AFP-Pred dataset [19], it
could not train the features of our datasets that were collected from a
broader set of AFP sequences.
Table 4. Prediction performance of cross testing.

Accuracy Precision Recall MCC AUC Youden's
index

Training on
Dataset 90 and
Testing on Dataset
R

0.990 0.990 0.990 0.979 1 0.986

Training on
Dataset 30 and
Testing on Dataset
R

0.729 0.991 0.462 0.542 0.912 0.688

Training on
Dataset S and
Testing on Dataset
R

0.982 0.990 0.973 0.963 0.999 0.971

Table 5. Performance comparison of our method with AFP-LSE.

Accuracy Precision Recall MCC AUC Youden's index

Data set S 0.896 0.897 0.886 0.791 0.950 0.795

Data set R 0.841 0.929 0.760 0.698 0.950 0.812

5 Cys 3.82 � 10�2

6 Arg 3.19 � 10�2

7 Ala-Ala 2.24 � 10�2

8 Ala 2.15 � 10�2

9 Disorder Propensity Distribution; Group 1 (50%) 1.63 � 10�2

10 Leu-Leu 1.59 � 10�2

Score refers to a normalized decrease (Gini impurity) in the objective function
from the decision branch that uses the feature. Groups 1–3 are classifications of
AA properties shown in Table S1.
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3.2. Contributing features to the prediction

From the features that contributed to the classification prediction, it is
possible to investigate the antifreeze function's essential properties.
Table 6 (a)-(d) shows the top ten features with a considerable contribu-
tion to classification. In particular, the result of Dataset 90 (a) shows the
overall tendency of AFPs, the result of Dataset 30 (b) shows some
properties common to domains and families of AFPs, the result of Dataset
S (c) shows the properties common across different species in biological
taxonomy, and the result of Dataset R (d) shows the tendency of the
current, reliable AFP sequences.
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Many of the features that contributed to prediction in Dataset 30 are
similar for prediction in Dataset 90; this shows that these features are
shared among the various families and AFP domains. Focusing on the AA
characteristics, Cys content, Ala-Ala content, Ala-x-Ala content, Met-Gly
content, Trp-x-Asp content, and Trp-Gly content of AFP are much larger
than those of other proteins. The Cys content is higher in Type-2 AFP, and
the Ala-Ala and Ala-x-Ala contents are higher in Type-1 AFP. In partic-
ular, Ala-Ala and Ala-x-Ala are the most abundant peptides on the ice-
binding surface of Type-1 AFP [42]. Met-Gly, Trp-Xx-Asp, and Trp-Gly
are also considered essential peptides on the ice-binding surface of AFP
physicochemical properties; AFP contains more AA with moderate po-
larity, small van der Waals volume (VDWV), and moderate hydropho-
bicity than other proteins. As for the VDWV, it is thought that the AAwith
a large VDWV can sterically inhibit other AAs from binding to ice through
van der Waals interactions and hydrogen bonds.

As shown in Table 2 (c), the contribution of high (Group 1) and
moderate (Group 2) disorder propensities is high compared with the
above datasets. This shows disorder seems to have some relationship
with antifreeze function regardless of species, although such a relation-
ship has not yet been reported.

The features such as the Cys content, Ala-Ala content, Trp-Gly, po-
larity composition, small van der Waals, moderate hydrophobicity also
appear as common features. On the other hand, Met-Gly content and Trp-
x-Asp content, which contributed to Dataset 90 but did not contribute
significantly to the prediction for the other datasets, might be charac-
teristic of the specific group of sequences.

4. Conclusion

In this work, we created a new dataset of AFPs, made binary classi-
fication predictions for AFPs and non-AFPs, and discussed the properties
of AFPs based on the features that contributed to the classification
predictions.

As described in the “Datasets” section, the reliability of the sequences
in the dataset used in AFP-Pred (Dataset AP) is not high, and therefore, in
this work, we carefully collected the AFP sequences. The AFP sequences
in the primary dataset (selected from UniProtKB) contain many se-
quences from specific species, as shown in Table 1. Dataset S was con-
structed by eliminating the influence of any bias of the species.

The classification predictors developed in this work showed high
accuracy, precision, and recall. They can be used as tools for predicting
whether or not a given protein is an AFP in proteome-wide analyses. As
shown in the results for non-redundant datasets, AFP prediction by
sequence homology (similarity) seems to be difficult. However, machine
learning was a useful technique for learning the common features of
AFPs.

Regarding the features that contributed to the prediction of AFP and
non-AFP classification, several features contributed commonly. A typical
example is short AA sequence motifs, including Ala, Cys, Trp, and Gly.
Our results also suggest that the disorder propensity was related to the
function of AFPs. For further research, it is necessary to confirm the
antifreeze property by experimental methods.

A small number of reliable annotated AFP sequences (Dataset R) exist
in the current database. In the present study, we obtained a high AUC
value of 0.99 in the independent test of Dataset R. However, a lower AUC
value of 0.767 was obtained by training with Dataset R and performing a
cross test with Dataset S. This may be due to the small number of se-
quences in Dataset R and the characteristics of AFP not being fully
learned, despite the potential inclusion of sequences other than AFP in
Dataset S. To develop a predictor that is more reliable, it will be desirable
to achieve reliable annotations of AFP sequences.

As future research to extend the present study, it will be necessary to
confirm thermal hysteresis activity via experimental methods. For
example, by mutating amino acid residues with high disorder tendencies
using those with low disorder tendencies, and then by comparing the
thermal hysteresis activity, the relationship between the disorder
7

tendencies of amino acids and the function of AFP could be further
elucidated.
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