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Abstract

Background: Previous studies have suggested a causative role for agonists of the aromatic

hydrocarbon receptor (AhR) in the etiology of breast cancer 1, early-onset (BRCA-1)–silenced
breast tumors, for which prospects for treatment remain poor.

Objectives: We investigated the regulation of BRCA1 by the soy isoflavone genistein (GEN) in
human estrogen receptor a (ERa)–positive Michigan Cancer Foundation-7 (MCF-7) and ERa-

negative sporadic University of Arizona Cell Culture-3199 (UACC-3199) breast cancer cells,

respectively, with inducible and constitutively active AhR.

Methods: In MCF-7 cells, we analyzed the dose- and time-dependent effects of GEN

and (–)-epigallocatechin-3-gallate (EGCG) control, selected as prototype dietary DNA

methyltransferase (DNMT) inhibitors, on BRCA-1 expression after AhR activation with 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD) and in TCDD-washout experiments. We compared the

effects of GEN and EGCG on BRCA1 cytosine-phosphate-guanine (CpG) methylation and cell

proliferation. Controls for DNA methylation and proliferation were changes in expression of

DNMT-1, cyclin D1, and p53, respectively. In UACC-3199 cells, we compared the effects of GEN
and a-naphthoflavone (aNF; 7,8-benzoflavone), a synthetic flavone and AhR antagonist, on

BRCA1 expression and CpG methylation, cyclin D1, and cell growth. Finally, we examined the

effects of GEN and aNF on BRCA1, AhR-inducible cytochrome P450 (CYP)-1A1 (CYP1A1) and

CYP1B1, and AhR mRNA expression.

Results: In MCF-7 cells, GEN exerted dose- and time-dependent preventative effects against

TCDD-dependent downregulation of BRCA-1. After TCDD washout, GEN rescued BRCA-1

protein expression while reducing DNMT-1 and cyclin D1. GEN and EGCG reduced BRCA1 CpG

methylation and cell proliferation associated with increased p53. In UACC-3199 cells, GEN

reduced BRCA1 and estrogen receptor-1 (ESR1) CpG methylation, cyclin D1, and cell growth

while inducing BRCA-1 and CYP1A1.

Conclusions: Results suggest preventative effects for GEN and EGCG against BRCA1 CpG

methylation and downregulation in ERa-positive breast cancer cells with activated AhR. GEN

and flavone antagonists of AhR may be useful for reactivation of BRCA1 and ERa via CpG
demethylation in ERa-negative breast cancer cells harboring constitutively active AhR. Curr Dev

Nutr 2017;1:e000562.

Introduction

The breast cancer 1, early-onset (BRCA1) gene encodes a tumor suppressor protein involved
in DNA repair and cell cycle control (1). In women who carry a mutated BRCA1 copy
(BRCA1+/2), the silencing of the wild-type allele creates a BRCA-1–deficient phenotype,
which is associated with a high probability (;60–80%) of developing breast cancer (2, 3).
On the other hand, sporadic breast cancers, which represent the majority (;90%) of breast
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tumor cases, do not havemutations in BRCA1 (BRCA1+/+) but display
a “BRCAness” phenotype commonly observed in hereditary BRCA1
tumors. This phenotype includes absent or markedly reduced con-
centrations of BRCA-1 (4, 5), loss of estrogen receptor a (ERa),
and basal-like pathology subtype (6). Therefore, elucidating the
nonmutational mechanisms that contribute to silencing of BRCA1
has important implications for the prevention of both hereditary
and sporadic breast cancers.

Epigenetics refers to modifications in chromatin structure [i.e.,
histone posttranslational modifications and DNA cytosine-phosphate-
guanine (CpG) methylation] and noncoding RNAs (7). Sporadic
breast cancers that have hypermethylated BRCA1 share features
with hereditary BRCA1 mutation tumors [i.e., they tend to be
triple-negative with reduced or absent expression of ERa, proges-
terone receptor (PR), and human epidermal growth factor receptor
2] (8). CpG methylation of BRCA1 is associated with reduced
BRCA-1 expression in 50–60% of higher-histologic-grade sporadic
tumors (9, 10). A high degree of correlation (;75%) is generally
observed between hypermethylation of the BRCA1 and estrogen
receptor-1 [ESR1 (ERa)] promoters and reduced expression of
BRCA-1 and ERa protein (11, 12), which are invariably associated
with resistance to endocrine therapies based on antagonists of
the ERa (i.e., tamoxifen) (13). Therefore, main objectives in breast
cancer research are to identify the mechanisms linking silencing
of BRCA1 to the development of ERa-negative breast cancers,
and clarify whether or not opportunities exist for the prevention
of these tumors with dietary components.

Agonists of the aromatic hydrocarbon receptor (AhR) are ubiq-
uitous in the environment and include dietary compounds, meta-
bolites of FAs, industrial xenobiotics, and photoproducts generated
in the skin from UV radiation (14). Results from our laboratory
document that the BRCA1 gene is a target for epigenetic regulation
by AhR. In the absence of exogenous ligands, AhR forms a tran-
scription complex with ERa and various cofactors (p300, steroid
receptor coactivator-1) (15) contributing to the transcriptional ac-
tivation of BRCA1 by 17b-estradiol (E2) (16). Conversely, in the
presence of agonists, AhR binds to xenobiotic response elements
(XRE) with consensus 59-GCGTG-39 sequence and harbored in
the BRCA1 gene (17), and disrupts transcriptional activation by E2
(18). This repressive effect is coupled to the recruitment of DNA
methyltransferase (DNMT) 1 and methyl binding protein (MBD)
2, loss of acetylated histone (AcH) 4 and AcH3K9 (19), and gain
of trimethylated H3K9 (H3K9me3) and DNA CpG methylation
(20). Recently, we reported that in rodent mammary tissue (21)
and human breast tumors (22) with activatedAhR, hypermethylation
of BRCA1was associated with reduced BRCA-1 and ERa expression.
These cumulative data raised the question of whether or not dietary
compounds that possess DNMT and AhR inhibitory properties may
protect against CpG hypermethylation of BRCA1 and, ultimately,
prevent breast tumorigenesis.

Genistein (GEN), a common dietary isoflavone, exerts antago-
nistic properties toward DNMT enzymes (23, 24). Evidence that
it induces BRCA-1 expression in ERa-positive breast cancer cells
suggests potential relevance for this isoflavone in cancer preven-
tion (25). Rodent offspring exposed to GEN in utero, through
weaning (26), and prepuberty (27, 28) showed reduced mammary

tumorigenesis in adult life. Through the inhibition of DNMT activ-
ity, GEN was shown to reactivate the expression of various tumor
suppressor genes (i.e., ataxia telangiectasia mutated, adenomatous
polyposis coli, phosphatase and tensin homolog) in ERa-positive
Michigan Cancer Foundation-7 (MCF-7) and ERa-negative M.D.
Anderson Cancer Center-metastatic breast cancer-231 (MDA-
MB-231) breast cancer cells (29). Here, we investigated the impact
of GEN and (–)-epigallocatechin-3-gallate (EGCG) control on
BRCA-1 methylation and expression in a human ERa-positive breast
cancer cell line (MCF-7) with inducible AhR and hypomethylated
BRCA1. We extended the BRCA-1 expression and DNA methylation
studies with GEN and a-naphthoflavone (aNF; 7,8-benzoflavone), a
synthetic flavone and AhR antagonist, to a human ERa-negative cell
line model University of Arizona Cell Culture-3199 (UACC-3199) of
sporadic breast cancer harboring constitutively activated AhR and
hypermethylated BRCA1 (4).

Methods

Cell culture

Human MCF-7 and UACC-3199 breast cancer cells were obtained
from the American Type Culture Collection andmaintained, respec-
tively, in DMEM or Roswell Park Memorial Institute (RPMI) 1640
media (Mediatech) supplemented with 10% fetal calf serum
(Hyclone Laboratories). The 2,3,7,8-tetrachlorodibenzo-p-dioxin

FIGURE 1 GEN prevents repression of BRCA-1 in breast cancer
Michigan Cancer Foundation-7 cells with activated aromatic
hydrocarbon receptor. Cells were cultured for 72 h in control
medium containing E2 (10 nM) or TCDD (10 nM) (A) or E2 1 TCDD
and various concentrations of GEN (B) as described in Methods.
Bands show immunocomplexes for BRCA-1 and the internal
standard GAPDH. (C, D) Bars represent means 6 SEMs of
BRCA-1 expression (fold of control) from 4 (C) and 2 (D) separate
experiments performed in duplicate. Labeled means without a
common letter differ, P , 0.05. BRCA-1, breast cancer 1, early
onset; E2, 17b-estradiol; GEN, genistein; TCDD, 2,3,7,8-
tetrachlorodibenzo-p-dioxin.
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(TCDD) was supplied by the National Cancer Institute, Division
of Cancer Biology, Chemical and Physical Carcinogenesis
Branch (NIH), and distributed by Midwest Research Institute
(contracts 64 CFR 72090 and 64 CFR 28205). GEN, aNF,
EGCG, and E2 were obtained from Sigma-Aldrich and solubi-
lized in stock solutions with ethanol, which was added to
DMEM or RPMI as the vehicle control. Cells (passages 3–15)
were plated in 6-well plates at a density of 5 3 105 cells/well
in Phenol-Red free DMEM (MCF-7) or RPMI (UACC-3199)
supplemented with 10% charcoal-stripped fetal calf serum
(22). For Western blotting, cells were washed with ice-cold
PBS and scraped with cold lysis buffer containing protease
inhibitor. For proliferation measurements, cells were washed
with ice-cold PBS and counted by 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) colorimetric assay
(Promega), as described previously (30). This assay is based on
the conversion of the yellow tretrazolium dye MTT to purple
formazan crystals by metabolically active cells. Briefly, 2 3 104

cells were seeded in 96-well tissue culture plates and main-
tained overnight. Six replicates were assigned to each experi-
mental treatment. After treatment, 15 mL MTT dye solution
was added to each well, and the plate was incubated for 4 h
at 378C. Solubilization/stop solution (100 mL) was added for
1 h at room temperature, and the absorbance at 570/650 nm
was recorded by using a Synergy HT plate reader (Bio-Tek
Instruments).

Western blot analysis

Western blot analyses were performed as previously described (22).
Immunoblotting was carried out with antibodies against human
BRCA-1 (catalog no. 9010), DNMT-1 (catalog no. 5119), cyclin
D1 (catalog no. 92G2), phospho-p53-(Ser20) (catalog no. 9287),
and GAPDH (catalog no. 2118) obtained from Cell Signaling
Technology, and ERa (catalog no. sc-542) obtained from Santa
Cruz Biotechnology. Immunocomplexes were detected by using
enhanced chemiluminescence (GE Healthcare Life Sciences).
The GAPDH protein was used as an internal control for normal-
ization of protein expression.

FIGURE 2 Time-dependent effects of GEN and EGCG against
BRCA-1 downregulation in breast cancer Michigan Cancer
Foundation-7 cells with activated aromatic hydrocarbon receptor.
Cells were cultured for 24, 48, and 72 h in control medium
containing E2 (10 nM), E2 1 TCDD (10 nM), and E2 1 TCDD and
1 mM GEN (A) or EGCG (B). Bands show immunocomplexes
for BRCA-1 and the internal standard GAPDH. In panel C, bars
represent means 6 SEMs of BRCA-1 expression (fold of E2) from
2 separate experiments performed in duplicate. Labeled means
without a common letter differ, P , 0.05. BRCA-1, breast cancer 1,
early onset; EGCG, (–)-epigallocatechin-3-gallate; E2, 17b-estradiol;
GEN, genistein; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin.

FIGURE 3 GEN and EGCG antagonize E2-induced proliferation
of breast cancer Michigan Cancer Foundation-7 cells with activated
aromatic hydrocarbon receptor. (A) Cells were cultured for 72 h in
control medium or control plus E2 (10 nM), TCDD (10 nM), and
E2 1 TCDD in the absence or presence of 1 mM GEN or EGCG.
Bars represent means 6 SEMs of quantitation (fold of control) of
proliferation determined by MTT assay from 2 separate experiments
with 5 replicates. Panels B and C represent, respectively,
immunocomplexes and quantitation (means 6 SEMs) from 3
separate experiments performed in duplicate for cyclin D1 and
the internal standard GAPDH. Labeled means without a common
letter differ, P , 0.05. EGCG, (–)-epigallocatechin-3-gallate; E2,
17b-estradiol; GEN, genistein; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide; TCDD, 2,3,7,8-tetrachlorodibenzo-p-
dioxin.
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Promoter CpG methylation

qPCR analysis of human BRCA1 and ESR1 promoter CpG methyla-
tion was performed as described previously (20) with bisulfonated
genomic DNA with the use of the following unmethylated (U)- and
methylated (M)-specific primers (Sigma-Aldrich):
BRCA1: U-sense: 59-TTGGTTTTTGTGGTAATGGAAAAG-
TGT-39; and U-antisense: 59-CAAAAAATCTCAACAAACT-
CACACCA-39; M-sense: 59-TGGTAACGGAAAAGCG-39;
and M-antisense 59-ATCTCAACGAACTCACGC-39

ESR1: U-sense: 59-GGATATGGTTTGTATTTTGTTTGT-39;
and U-antisense: 59-ACAAACAATTCAAAAACTCCAACT-
39; M-sense: 59-GGTTTTTGAGTTTTTTGTTTTG-39;
and M-antisense: 59-AACTTACTACTATCCAAATACACCTC-39

The qPCR was carried out in a volume of 10 mL consisting of the
following master mix: 5 mL SYBER Green mix (Life Technologies),
1 mL each of forward and reverse primers, 2 mL nuclease-free
water, and 1 mL bisulfonated genomic DNA. Data from qPCR
of bisulfonated DNA were presented as ratios of CpG M:U.

mRNA analyses

Total RNAwas purified by using an RNeasyMini Kit as per theman-
ufacturer’s instructions (Qiagen) (22). Concentrations and quality of
RNA were verified by using the Nanodrop1000 Spectrophotometer
(Thermo Scientific). Equal amounts of total RNA (500 ng) were tran-
scribed into cDNA by using the ISCRIPT supermix kit (Bio-Rad

Laboratories). Next, cDNA aliquots were analyzed by qPCR with the
use of the SYBR Green PCR Reagents kit (Life Technologies). Briefly,
reactions were assayed at a final volume of 25 mL consisting of the fol-
lowingmastermix: 12.5mLSYBRGreenmix, 1mL each of forward and
reverse primers, 9.5 mL nuclease-free water, and 1 mL cDNA. Amplifi-
cation of GAPDH mRNA was used for normalization of transcript
levels. The primer (Sigma-Aldrich) sequences were as follows—
BRCA1: sense, 59-AGCTCGCTGAGACTTCCTGGA-39; antisense,
59-CAATTCAATGTAGACAGACGT-39; cytochrome P450 (CYP)-1A1
(CYP1A1): sense, 59-TAACATCGTCTTGGACCTCTTTG-39; anti-
sense, 59-GTCGATAGCACCATCAGGGGT-39; CYP1B1: sense,

FIGURE 4 GEN and EGCG induce p53 expression in breast cancer
Michigan Cancer Foundation-7 cells with activated aromatic
hydrocarbon receptor. Cells were cultured for 24, 48, and 72 h in
control medium containing E2 (10 nM), E2 1 TCDD (10 nM),
and E2 1 TCDD and 1 mM GEN or EGCG. (A) Bands show
immunocomplexes for p53 and the internal standard GAPDH.
(B) Bars represent means 6 SEMs of p53 expression (fold of E2)
from 2 separate experiments performed in duplicate. Labeled
means without a common letter differ, P , 0.05. EGCG,
(–)-epigallocatechin-3-gallate; E2, 17b-estradiol; GEN, genistein;
TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin.

FIGURE 5 Short-term reversal effects of GEN and EGCG on
BRCA-1 expression in breast cancer Michigan Cancer
Foundation-7 cells with activated aromatic hydrocarbon
receptor. Cells were precultured for 48 h in control medium plus
E2 (10 nM) or E2 1 TCDD (10 nM). Then, media were washed out
and cells were cultured for an additional 24 and 48 h in the
presence of E2 alone or E2 1 1 mM GEN or EGCG. Panels A
and B show, respectively, bands and quantitation (fold of E2;
means 6 SEMs) of immunocomplexes for BRCA-1 from 3
independent experiments performed in duplicate. (C) Bands
show immunocomplexes for ERa and the internal standard
GAPDH. (D) Bars represent means 6 SEMs of cell proliferation
determined by MTT assay (fold of control) from 2 separate
experiments with 6 replicates. Labeled means without a common
letter differ, P , 0.05. BRCA-1, breast cancer 1, early onset; EGCG,
(–)-epigallocatechin-3-gallate; ERa, estrogen receptor a; E2,
17b-estradiol; GEN, genistein; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide; TCDD, 2,3,7,8-tetrachlorodibenzo-
p-dioxin.
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59-AACGTCATGAGTGCCGTGTGT-39; antisense, 59-GGCCGGTA-
CGTTCTCCAAATC-39; AhR: sense, 59-GAAGCCGGTGCAGAA-
AACAG-39; antisense: 59-GCCGCTTGGAAGGATTTGAC-39; and
control GAPDH: sense, 59-ACCCACTCCTCCACCTTT-39; antisense,
59-CTCTTGTGCTCTTGCTGGG-39.

Statistical analysis

Densitometry after Western blotting was performed by using
Kodak ID Image Analysis Software (Eastman Kodak Company).
Statistical analyses were performed by 1-factor ANOVA after as-
sessing data normality by using a Shapiro-Wilk test and variance
homogeneity by using Bartlett’s test. Post hoc multiple compar-
isons among all means were conducted by using Tukey’s test af-
ter main effects and interactions were found to be significant at
P# 0.05. Data are presented as means6 SEMs. When$3 means
were compared, significant differences are highlighted with dif-
ferent letters (a . b . c).

Results

GEN prevents AhR-dependent downregulation of BRCA-1

In control experiments, we first confirmed that at 24-h post-
treatment, E2 (10 nM) induced an increase of ;2.0-fold in BRCA-1

protein expression compared with the vehicle control (Figure 1A,
B). This dose of E2 was used throughout this study and was similar
to that used previously to investigate regulation of BRCA-1 in human
breast cancer cells (16) and detected in women around the human
menstrual phase and in patients receiving E2 replacement therapy
(31, 32). In contrast, as documented previously (19, 20), an equimolar
dose (10 nM) of TCDD did not change basal BRCA-1 concentrations
(Figure 1B), but it reduced (;50%) E2-induced BRCA-1 expression
(Figure 1C, D). This dose of TCDD was used throughout this study
and approached the concentration found in blood (33, 34) and lipid
tissue (35) of women exposed to environmental AhR agonists. Com-
pared with E2 plus TCDD, doses of 0.5 and 1.0 mM GEN counter-
acted the repressive effects of TCDD on BRCA-1 expression (Figure
1C, D), whereas 2.0 mMGEN had no protective effects. Conversely,
GEN at 5, 10, and 20mMsynergizedwith TCDD to lower BRCA-1 ex-
pression to control levels.

In follow-up experiments, we examined the time-dependent
effects of GEN at the 1-mM concentration, which approaches the
serum concentration of GEN measured in persons with habitual
soy intake and is known to induce BRCA-1 expression in breast
cancer cells (25). The cotreatment with GEN protected against

FIGURE 6 Long-term reversal effects of GEN and EGCG on
BRCA-1 expression in breast cancer Michigan Cancer Foundation-7
cells with activated aromatic hydrocarbon receptor. Cells were
precultured for 48 h in control medium plus E2 (10 nM) or
E2 1 TCDD (10 nM). Then, media were washed out and cells
were cultured for an additional 7, 8, and 9 d in the presence of
E2 alone or E2 1 1 mM GEN (A) or EGCG (B). Bands show
immunocomplexes for BRCA-1 and the internal standard GAPDH.
(C) Bars represent means 6 SEMs of BRCA-1 expression (fold of E2)
from 3 separate experiments with 3 replicates. Labeled means
without a common letter differ, P , 0.05. BRCA-1, breast cancer 1,
early onset; EGCG, (–)-epigallocatechin-3-gallate; E2, 17b-estradiol;
GEN, genistein; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin.

FIGURE 7 GEN antagonizes DNMT-1 expression and BRCA1 CpG
methylation in Michigan Cancer Foundation-7 cells with activated
aromatic hydrocarbon receptor. Cells were cultured in control
medium for 48 h and after washout of TCDD (10 nM) in the presence
of E2 (10 nM) alone or E2 1 GEN (1 mM) for 24 and 48 h. (A) Bands
show representative immunocomplexes for DNMT-1 and the
internal standard GAPDH. (B) Bars represent means 6 SEMs of
quantitation (fold of control) from 3 independent experiments
performed in duplicate of DNMT-1 expression. (C) Location of CpG
island flanking exon 1A of the BRCA1 gene and position (arrows) of
oligonucleotides for methylation-specific PCR. (D) BRCA1 CpG
methylation after pretreatment for 12 h with TCDD (10 nM) and
post-treatment for 72 h with E2 (10 nM) 1 TCDD in the presence or
absence of 1 mMGEN or EGCG. Bars represent means6 SEMs (fold
of E2) from 3 independent experiments performed in quadruplicate.
Labeled means without a common letter differ, P , 0.05. BRCA1,
breast cancer 1, early onset; CpG, cytosine-phosphate guanine;
DNMT-1, DNA methyltransferase 1; EGCG, (–)-epigallocatechin-3-
gallate; E2, 17b-estradiol; GEN, genistein; M:U, methylated/
unmethylated; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin.
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TCDD-mediated repression of BRCA-1 at 24 h, an effect that per-
sisted at 48 and 72 h (Figure 2A, C). As a positive control for GEN,
we used EGCG, which in previous studies was shown to reactivate
methylation-silenced genes in cancer cells (36). At equimolar con-
centrations (1 mM), EGCG counteracted the repressive effects of
TCDD and restored BRCA-1 expression to E2 levels by 48 and
72 h (Figure 2B, C).

Growth of MCF-7 cells was induced (;2.0 fold) by E2 within
72 h. The treatment with TCDD had no effects on cell prolifera-
tion, whereas the combination of TCDD plus E2 reduced cell
growth by ;30% (Figure 3A) compared with E2 alone. The co-
treatment with GEN plus E2 repressed E2-induced cell growth
by;50%, irrespective of the presence or absence of TCDD. Inhib-
itory effects (;50%) on E2-induced cell growth were also seen for
EGCG, whereas the combination of GEN plus EGCG reduced cell
growth by ;80% compared with E2 treatment. As a control for
cell proliferation, we examined byWestern blotting changes in cy-
clin D1, whose expression in MCF-7 cotreated with E2 plus TCDD
was reduced (;30%) by GEN (Figure 3B, C). In contrast, GEN
and EGCG increased the expression of the tumor suppressor
p53 (Figure 4).

GEN reverses AhR-mediated BRCA-1 downregulation

We next asked whether or not GEN could exert reversal effects on
BRCA-1 after the removal of AhR agonist. MCF-7 cells were cul-
tured in the presence of E2 or E2 plus TCDD for 24 h. Then, cells
were cultured for an additional 24 and 48 h in fresh control medium
containing E2 alone or E2 plus GEN or EGCG. The post-treatment
with EGCG at 48 h, but not E2 alone or E2 plus EGCG at 24 h, re-
stored BRCA-1 expression to E2 levels (Figure 5A, B). Similarly, the

post-treatment with GEN for 24 and 48 h induced (;0.5–0.7 fold)
BRCA-1 expression compared with the E2 control. As previously
shown (19), the expression of ERa was not influenced by cotreat-
ment with TCDD plus E2 or GEN plus E2 after washout of TCDD
(Figure 5C). Compared with control, the treatment with E2 did
not induce cell growth (Figure 5D). We did, however, observe a sig-
nificant reduction (;60%) in cell proliferation with GEN (1 mM), ir-
respective of the presence or absence of E2. We extended the
washout studies to longer time periods and found that the post-
treatment for 7, 8, and 9 dwith E2 plus GEN rescued BRCA-1 expres-
sion above E2 alone (Figure 6A, C). Reversal effects on BRCA-1 were
also seen for EGCG at days 8 and 9 compared with the E2 control
(Figure 6B, C). Overall, these results suggested that post-treatment
with GEN and EGCG reversed AhR-dependent downregulation of
BRCA-1, albeit with different efficacy (GEN . EGCG).

GEN counteracts AhR-inducible BRCA1 CpG methylation

DNMT-1 is a maintenance DNAmethylation enzyme (7). Therefore,
we tested whether or not the BRCA-1 responses to AhR activation
and GEN were linked to changes in DNMT-1 expression. We found
that after washout of TCDD, the post-treatments of MCF-7 cells
with E2 for 24 and 48 h were associated with a 1.8- and 2.8-fold ac-
cumulation of DNMT-1, respectively (Figure 7A, B). In contrast, the
post-treatment with E2 plus GEN reduced DNMT-1 to control
levels. These DNMT-1 changes correlated with induction (1.3-fold)
in methylation of a CpG island flanking the BRCA1 transcription
start site of exon 1A (Figure 7C, D). Conversely, the post-treatment
with GEN lowered BRCA1 CpG methylation compared with E2 con-
trol (;50%) and E2 plus TCDD (;80%). Similarly, the post-treatment
with EGCG reduced BRCA1 methylation compared with the E2

FIGURE 8 Reversal effects of GEN and aNF on BRCA-1 silencing in UACC-3199 breast cancer cells with constitutively active
aromatic hydrocarbon receptor. (A) ERa-negative UACC-3199 cells were cultured for 72 h in control medium and in the presence of
E2 (10 nM) or various concentrations of GEN. Bands show representative immunocomplexes for BRCA-1 and the internal
standard GAPDH. (B) Bars represent means6 SEMs (fold of control) of BRCA-1 expression from 3 independent experiments (n = 3) performed in
duplicate. (C) Bands show immunocomplexes for BRCA-1, ERa, and GAPDH protein in UACC-3199 cells cultured for 72 h in control medium
and after treatment with E2, aNF (2 mM), or aNF 1 E2 and in MCF-7 cells cultured in control medium or in the presence of E2. (D) Bars
represent means 6 SEMs (fold of control) of BRCA-1 and ERa expression from 3 independent experiments performed in duplicate. Labeled
means without a common letter differ, P , 0.05. BRCA-1, breast cancer 1, early onset; ERa, estrogen receptor a; E2, 17b-estradiol; GEN,
genistein; MCF-7, Michigan Cancer Foundation-7; UACC, University of Arizona Cell Culture; aNF, a-naphthoflavone.
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control (;70%) and E2 plus TCDD (;90%). These DNA demethyla-
tion results were consistent with earlier reports documenting reacti-
vation of tumor suppressor genes by GEN (23, 37) and EGCG (36).

GEN reverses BRCA1 silencing associated with

constitutively active AhR

ERa-negative UACC-3199 cells harbor constitutive hypermethylated
BRCA1 (4) and active AhR (22). Compared with control, E2 (10 mM)
and GEN at 1 and 5 mMdid not influence BRCA-1 expression, which,
however, was induced;0.4-fold by 10 and 20 mMGEN (Figure 8A,
B). As a positive control for AhR inhibition, we used the synthetic
flavone aNF (2 mM) (14), which in UACC-3199 cells induced
BRCA-1 and ERa expression irrespective of the presence or ab-
sence of E2 (Figure 8C, D). Western blots of cell lysates from
MCF-7 cells (Figure 8C) provided a positive control for the detec-
tion of BRCA-1 and ERa immunocomplexes.

The treatment of UACC-3199 cells for 72 h with E2 and GEN
(1 and 10 mM) or aNF (2 mM) (Figure 9A) reduced cell prolifera-
tion by ;50% and 20%, respectively. The antiproliferative effects
of GEN (10 mM) and aNF (2 mM) increased to;70% and 50%, re-
spectively, in combination with E2. The expression of cyclin D1
(Figure 9B, C) was reduced by aNF (;40%) and to a larger degree
by 10 mM GEN (;70%), regardless of the absence or presence of
E2. Interestingly, although E2 alone reduced growth of UCAA-
3199 cells (Figure 9A), it did not elicit measurable changes in cy-
clin D1 expression compared with the control (Figure 9C).

The upregulation of BRCA-1 protein by GEN in UACC-3199
cells was paralleled by demethylation of BRCA1 and ESR1
(ERa), as determined by qPCR amplification of bisulfonated
DNA (Figure 10A). The treatment with aNF reduced by ;60%
BRCA1 CpG methylation, thus providing a positive control for
methylation changes related to AhR. GEN and aNF stimulated
BRCA1 mRNA by ;1.0- and 6.0-fold, respectively, compared
with E2 treatment (Figure 10B).

GEN and aNF preferentially induce CYP1A1 in breast

cancer cells with constitutively active AhR

CYP1A1 and CYP1B1 genes are transcriptional targets for AhR,
which is constitutively active in subsets of preclinical and human
breast tumors (38, 39). The treatment with GEN alone or in combi-
nation with E2 induced (1.2-fold) CYP1A1 mRNA (Figure 11A) but
did not affect the expression of CYP1B1 (Figure 11B) or AhR (Figure
10C). As previously shown (22), we found that aNF induced a large
increase (;40-fold) in CYP1A1 (Figure 10A) and a smaller accumu-
lation (1.0- to 1.7-fold) in CYP1B1 (Figure 11B) while lowering
(;50%) AhR (Figure 11C) mRNA. Overall, these cumulative data in-
dicated that in ERa-negative breast epithelial cells with constitu-
tively active AhR, both GEN and aNF stimulated BRCA-1 via CpG
demethylation, an effect that was associated with reactivation of
ESR1 and preferential activation of CYP1A1 over CYP1B1.

Discussion

Historically, AhR has been investigated for its role in the transcrip-
tional regulation of genes encoding phase I enzymes (e.g., CYP1A1,
CYP1B1). However, studies also proposed a causative role for AhR
in the etiology of breast tumorigenesis (39). Our published findings
obtained from human breast cell lines (17–20) and rodent mammary
tissue (21) indicated that the activation of AhR induced a pattern of
BRCA1 methylation around exon 1a that overlapped with that ob-
served in human sporadic breast tumors with reduced BRCA-1 ex-
pression (10) and overexpressing AhR (22). Therefore, the first
objective of this study was to examine in ERa-positive breast cancer
cells with wild-type BRCA1 (4) and a functional AhR pathway (40)
the regulation by GEN of BRCA1 expression and CpG methylation.
To activate AhR, we used the agonist TCDD because of its long
half-life (;8 y) (33). Therefore, changes in BRCA-1 expression could
be analyzed without the confounding effects due to reactive metab-
olites. We focused on GEN as a cancer preventative because it is the
major isoflavone in soy, and its consumption during early life has
been linked to reduced breast cancer risk in Asian (41) and North

FIGURE 9 GEN and aNF inhibit cell proliferation in UACC-3199
cells with constitutively active aromatic hydrocarbon receptor. (A)
UACC-3199 cells were cultured for 72 h in control medium and in
the presence of E2 (10 nM), GEN (1 and 10 mM), and E2 1 GEN or
aNF (2 mM) and E2 1 aNF. Bars represent means 6 SEMs of
quantitation (fold of control) of proliferation determined by MTT
assay from 2 separate experiments with 5 replicates. (B) Bands show
representative immunocomplexes for cyclin D1 and the internal
standard GAPDH in UACC-3199 cells cultured for 72 h in control
medium and after treatment with E2, aNF, E2 1 aNF, or E2 1 GEN.
(C) Bars represent means 6 SEMs of cyclin D1 quantitation (fold of
control) from 2 independent experiments performed in duplicate.
Labeled means without a common letter differ, P , 0.05. E2, 17b-
estradiol; GEN, genistein; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide; UACC, University of Arizona Cell
Culture; aNF, a-naphthoflavone.
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American (42) women. We found that GEN exerted bimodal ef-
fects on MCF-7 cells with activated AhR. Doses ranging from 5
to 20 mM amplified the repressive effects of TCDD on BRCA-1 ex-
pression. The latter results were supportive of the tumor-promoting
effects previously observed for GEN in ERa-dependent (43) and
AhR-dependent (44) mammary tumor models. In contrast, the
treatment of MCF-7 cells with lower doses of GEN (0.5
and 1.0 mM) counteracted the effects of TCDD and restored
BRCA-1 expression to E2 levels. In previous studies, similar con-
centrations (0.5–1.0 mM) of GEN were shown to stimulate
BRCA-1 expression in breast cancer cells (25). We also found
that 1.0 mM GEN antagonized cell proliferation, an effect asso-
ciated with downregulation of cyclin D1 and upregulation of
p53. These results were in accord with earlier reports that high-
lighted the requirement for cyclin D1 in cell proliferation (45)
and with other studies that showed that GEN induced G1 arrest
in ERa-positive breast cancer cells (46) and protected against
AhR-induced mammary tumorigenesis (27, 28).

The presence of putative binding elements for AhR and ERa in
the DNMT1 gene (47, 48) may explain, at least in part, the in-
creased DNMT-1 expression observed in MCF-7 cells treated
with TCDD andE2. Conversely, GEN reducedDNMT-1 expression
and BRCA1 CpG methylation. Repression of DNMT-1 by GEN has
been described previously in human breast cancer cells (MCF-7,
MDA-MB-231) (29). EGCG provided a positive control for BRCA1
methylation experiments with GEN in MCF-7 cells. It has been
shown to reactivate the expression of methylated-silenced tumor
suppressor genes (36).

The second objective of this study was to test if GEN could re-
activate BRCA1 under conditions of constitutive expression and
activation of AhR. For this purpose, we turned to the ERa-negative

FIGURE 10 Reversal effects of GEN and aNF on BRCA1 CpG
methylation in UACC-3199 cells with constitutively active aromatic
hydrocarbon receptor. (A) Bars represent means 6 SEMs of
quantitation from 2 independent experiments performed in
triplicate of BRCA1 and ESR1 promoter CpG methylation (fold of
control) in UACC-3199 cells after treatment for 72 h with E2 (10 nM),
GEN (1, 5, and 10 mM), or aNF (2 mM). (B) Bars represent means 6
SEMs of quantitation of BRCA1 mRNA (fold of E2) by qPCR from 2
independent experiments performed in quadruplicate with GEN (1
mM) and aNF (2 mM) and corrected for GAPDH mRNA as the
internal standard. Labeled means without a common letter differ,
P , 0.05. BRCA1, breast cancer 1, early onset; CpG, cytosine-
phosphate-guanine; ESR1, estrogen receptor-1; E2, 17b-estradiol;
GEN, genistein; M:U, methylated/unmethylated; UACC, University
of Arizona Cell Culture; aNF, a-naphthoflavone.

FIGURE 11 GEN and aNF differentially regulate expression of
CYPs and AhR in UACC-3199 cells with constitutively active AhR.
UACC-3199 cells were cultured for 72 h in control medium or in the
presence of E2 (10 nM) 1 GEN or aNF. Bars represent means 6
SEMs of quantitation (fold of control) of CYP1A1 (A), CYP1B1 (B),
and AhR (C) mRNA from 2 independent experiments performed in
quadruplicate and corrected for GAPDH mRNA as the internal
standard. Labeled means without a common letter differ, P , 0.05.
AhR, aromatic hydrocarbon receptor; CYP, cytochrome P450;
CYP1A1, cytochrome P450-1A1; CYP1B1, cytochrome P450-1B1;
E2, 17b-estradiol; GEN, genistein; UACC, University of Arizona Cell
Culture; aNF, a-naphthoflavone.
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UACC-3199 cell line, which was derived from a sporadic human
breast tumor harboring wild-type, but hypermethylated, BRCA1
(4), and constitutively high levels of AhR (22). GEN doses of 10
and 20 mM induced BRCA-1 expression, whereas lower concentra-
tions (1 and 5 mM) had no effects. These data suggest that higher
amounts of GEN may be needed to trigger a BRCA-1 response in
ERa-negative breast tumors overexpressing AhR. The CpG de-
methylation of BRCA1 and ESR1 observed in UACC-3199 cells
with 10 mM GEN may be clinically relevant because comparable
serum concentrations have been measured in animals (49, 50)
and humans (51, 52) for GEN (;4.5 mM) and for total isoflavones
(;3.0–7.0 mM). Previous studies of isoflavones and catechins
showed weak affinity for AhR with half maximal inhibitory concen-
tration (IC50).50–200 mM (53). Therefore, it is unlikely that GEN
and EGCG induced demethylation of BRCA1 through physical in-
terference with AhR. Possibly, the CpG demethylating effects of
GEN and EGCG could be due to reduced DNMT-1 expression
(29) and activity on BRCA1 (20) and ESR1, as recently reported in
ERa-negative breast cancer cells (54).

Previous studies documented the antiproliferative effects of
E2 and GEN in ERa-negative breast cancer cells (55). GEN was
shown to have greater affinity for ERb than for ERa, whereas
the binding affinities of E2 for ERa and ERb were equivalent (56).
Therefore, E2 and GEN may inhibit the growth of ERa-negative
cells by targeting ERb (57). In support of this idea, agonism and
overexpression of ERb have been shown to attenuate the prolif-
eration of triple-negative breast cancers through cell cycle arrest
in the G1 phase (58) and to reduce tumor formation by causing
G2 phase arrest (59). Furthermore, CpG demethylation of
BRCA1 and ESR1 (ERa) by GEN and aNF in UACC-3199 cells
suggested that regimens based on dietary flavonoids may have
clinical relevance for therapy of tumors with BRCAness. In sup-
port of this inference, we noted that GEN and aNF hampered the
expression of cyclin D1 and the growth of UACC-3199 cells. aNF
is an AhR antagonist at the BRCA1 gene (60), with IC50 ap-
proaching ;0.4 mM (53), and a potent aromatase inhibitor (61).
It shares structural similarity with GEN and the flavonol galangin
(3,5,7-trihydroxyflavone; IC50 ;0.2 mM) (53), which was found to
block the proliferation of ERa-negative breast cancer cells over-
expressing AhR (62).

Finally, we reported that treatment of UACC-3199 cells with
GEN and aNF activated preferentially CYP1A1 with only modest
(aNF) or no (GEN) effects on CYP1B1. This selective activation
of CYP1A1 may have therapeutic relevance because increased
CYP1A1 expression associates with reduced basal AhR activity
(63) and increased apoptosis (64). In addition, a reduction in
4-hydroxylation of E2 by aNF, a reaction catalyzed by CYP1B1,
was shown to reduce the production of the highly carcinogenic
metabolite 4-hydroxy-E2 and mammary tumorigenesis (65). In
summary, the results of this study suggest preventative effects
for GEN and EGCG against proliferation and AhR-mediated BRCA1
CpG methylation in ERa-positive breast cancer cells. We also pre-
sented evidence that GEN and aNF, selected respectively, as a proto-
type flavone andAhR antagonist, may hold promise for reactivation of
BRCA1 in ERa-negative sporadic breast tumors with constitutively
activate AhR.
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