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Purpose: This study aimed to provide new biomarkers for predicting the disease course of COVID-19 by analyzing the dynamic 
changes of microRNA (miRNA) and its target gene expression in the serum of COVID-19 patients at different stages.
Methods: Serum samples were collected from all COVID-19 patients at three time points: the acute stage, the turn-negative stage, and 
the recovery stage. The expression level of miRNA and the target mRNA was measured by Quantitative Real-Time Polymerase Chain 
Reaction (RT-qPCR). The classification tree model was established to predict the disease course, and the prediction efficiency of 
independent variables in the model was analyzed using the receiver operating characteristic (ROC) curve.
Results: The expression of miR-125b-5p and miR-155-5p was significantly up-regulated in the acute stage and gradually decreased in 
the turn-negative and recovery stages. The expression of the target genes CDH5, STAT3, and TRIM32 gradually down-regulated in the 
acute, turn-negative, and recovery stages. MiR-125b-5p, miR-155-5p, STAT3, and TRIM32 constituted a classification tree model with 
100% accuracy of prediction and AUC >0.7 for identification and prediction in all stages.
Conclusion: MiR-125b-5p, miR-155-5p, STAT3, and TRIM32 could be useful biomarkers to predict the time nodes of the acute, 
turn-negative, and recovery stages of COVID-19.
Keywords: miRNA, mRNA, COVID-19, classification tree model, RT-qPCR

Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as 2019-nCoV, has been identified as the 
pathogen that causes coronavirus disease 2019 (COVID-19).1 As of February 1, 2022, the COVID-19 pandemic caused 
by SARS-CoV-2 infection has led to more than 370 million confirmed cases and 5.6 million deaths worldwide.2 Some 
patients with COVID-19 exhibit mild clinical manifestations, such as fever, dry cough, headache, and muscle soreness, 
while others experience serious complications, such as dyspnea, acute respiratory distress syndrome, and the cytokine 
storm, which may lead to death.3 COVID-19 patients have a different course of disease due to individual differences, and 
the disease trend cannot be evaluated. Accurate course prediction is helpful for clinicians to formulate reasonable 
treatment plans. Nucleic acid detection is the “gold standard” for the diagnosis of COVID-19, but this method is only 
a qualitative analysis and cannot dynamically show the progress of COVID-19 patients. At present, there is a lack of 
reasonable biomarkers to dynamically display and predict the disease development of COVID-19 patients. It is very 
necessary for clinical patients and doctors to find appropriate biomarkers.

MicroRNA (miRNA) is a type of non-coding RNA with a length of 17–25 nucleotides, which plays an important role 
in gene expression in organisms. miRNAs exist widely in biological body fluids, such as in serum, plasma, urine, saliva, 
and cerebrospinal fluid.4 miRNA directly affects the cellular stability of messenger RNA, thus forming complex 
networks that regulate transcriptional genes, cell proliferation, differentiation, apoptosis, homeostasis, and the stress 
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response.5 Some studies suggest that in COVID-19 disease, dysregulated miRNAs are related to virus replication, the 
proliferation of infected cells, immune response, and inflammation.6–8 Some studies have compared miRNA expression 
in patients with COVID-19 with miRNA expression in healthy people to provide potential diagnostic biomarkers;9,10 

Moreover, some studies have analyzed the expression of miRNAs in patients with COVID-19 of different severities, 
which is helpful for the diagnosis and prediction of COVID-19;11,12 However, few studies have analyzed the expression 
levels of miRNA and its target genes in different stages of COVID-19.

This study focused on the disease course staging of COVID-19 patients. We conducted an extensive reading of 
articles on miRNA assays in COVID-19 before the study was conducted and identified hundreds of miRNAs that are 
differentially expressed in COVID-19 patients. Considering that the sample size required for the method of this study 
could not be measured in its totality, 22 miRNAs that are stimulated earlier in the immune activation system or are 
associated with viral replication, T cell or B cell differentiation, development and maturation, targeting of macrophages, 
and regulation of cytokine and chemokine synthesis in the inflammatory process were selected for this study.13–24 Our 
study included COVID-19 patients and healthy people in the same period. The serum of all COVID-19 patients in the 
acute stage, the turn-negative stage, and the recovery stage were collected continuously. The dynamic changes of miRNA 
and its target mRNA expression at different stages of COVID-19 course were tracked. Based on this, we screened 
biomarkers that could distinguish the disease course and constructed a disease course prediction model based on the 
results, expecting to provide new biomarkers for the prediction of COVID-19 disease course.

Materials and Methods
Research Objects
The study population was drawn from 16 patients with COVID-19 admitted to Changchun Infectious Disease Hospital 
and Changchun Hospital of Traditional Chinese Medicine from January 2021 to March 2021 and 16 health check-ups at 
the First Hospital of Jilin University during the same period. According to the Protocol for the Treatment of COVID-19 
in the People’s Republic of China (Trial Version 9), all 16 COVID-19 patients were categorized as common type 
(Clinical manifestations such as fever or respiratory symptoms and pneumonia visible on imaging) and exclusion criteria: 
(a) malignant tumors and malignant hematological diseases (b) severe complications (c) autoimmune diseases (d) 
diabetes mellitus. Matching healthy checkers with COVID-19 patients according to age and sex, exclusion criteria: (a) 
chronic digestive system diseases (b) routine physical examination exceeds the upper or lower limit of the reference 
value (Blood count, urine count, coagulation count, liver and kidney function tests, chest computed tomography (CT) 
scan). The blood specimens were collected from healthy checkers and three stages of each COVID-19 patient: (a) the 
acute stage samples were collected from the peripheral blood of COVID-19 patients within 3 days after the diagnosis of 
SARS-CoV-2 infection by RT-PCR (1~3 days after the onset of symptoms); (b) the turn-negative stage samples were 
collected from the peripheral blood of COVID-19 patients within 3 days after the conversion to negative by RT-PCR 
(Return of body temperature to normal for more than 3 days, significant improvement in respiratory symptoms, and 
significant improvement in acute exudative lesions on lung imaging); (c) the recovery stage samples were collected from 
peripheral blood of COVID-19 patients 14–16 days after discharge from the hospital (three consecutive days of negative 
RT-PCR results to meet the discharge criteria) (normal body temperature, no significant respiratory symptoms, mild or no 
significant pulmonary imaging changes). The peripheral blood samples were centrifuged at 3000 g at 4°C for 10 min, and 
the unqualified samples such as fat blood and hemolysis were excluded, and the separated serum was stored at −80°C. 
Other laboratory data related to COVID-19 patients and healthy people were retrieved by Laboratory Information 
Management System.

Total RNA Extraction and Reverse Transcription
Total RNA was isolated and extracted from 200 μL of serum using the miRcute miRNA Isolation Kit (Tiangen 
Biochemical Technology Co. Ltd., Beijing, China). The concentration and purity of total RNA were measured by 
NanoDrop™ 2000C (Thermo, Waltham, USA). miRNA reverse transcription was performed using miRcute plus 
miRNA First-strand cDNA kit (Tiangen Biochemical Technology Co. Ltd.) with the total reaction system of 20µL 
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(10µL Buffer, 2µL Mix, 8µL Total RNA) and the reaction program of 60 min at 42°C and 3 min at 95°C. mRNA reverse 
transcription was performed using MonScriptTM RTlll All-in-one Mix with dsDNase (Monad Biochemical Technology 
Co. Ltd, Wuhan, China) with the total reaction system of 20µL (1 µL dsDNase, 4 µL Mix, 8 µL Total RNA, 7 µL 
Nuclease-Free Water) and the reaction procedure was 2 min at 37°C, 15 min at 55°C and 5 min at 85°C. The instrument 
was 100TM Thermal Cycler (BIO-RAD, Singapore). All reverse transcription cDNAs were placed at −20°C for use.

Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR) Detection of miRNA 
and Target mRNA
The miRcute Plus miRNA qPCR Kit (SYBR Green) (Tiangen Biochemical Technology Co. Ltd.) was used to detect the 
expression level of miRNA. The primers for U6 and miRNAs were purchased from Tiangen Biochemical Technology 
Co., Ltd and the primer sequences are shown in Supplementary Table 1. U6 was used as an endogenous control gene to 
normalize the expression levels of the studied miRNAs. The expression levels of U6 were not statistically different 
between all groups in this study (P=0.271) (Supplementary Table 2). The total reaction volume was 20 μL (10µL 
2×miRcute Plus miRNA Premix, 0.4µL Forward Primer, 0.4µL Reverse Primer, 0.4µL cDNA, 8.8µL Nuclease-Free 
Water) and the reaction procedure was 15 min at 95°C for 1 cycle, 20 sec at 94 °C and 34 sec at 60 °C for 40 cycles.

The MonAmpTM ChemoHS qPCR Mix (SYBR Green) (Monad Biochemical Technology Co. Ltd) was used to detect 
the expression level of mRNA. The primers of β- Actin and mRNAs were purchased from Sangon Bioengineering Co. 
Ltd (Shanghai, China) and the primer sequences are shown in Supplementary Table 1. Normalize the expression levels of 
the studied mRNAs. The total reaction volume was 20 μL (10µL qPCR mix, 0.4µL Forward Primer, 0.4µL Reverse 
Primer, 0.4µL cDNA, 0.2µL Low ROX Dye, 8.6µL Nuclease-Free Water) and the reaction procedure was 10 min at 95°C 
for 1 cycle, 10 sec at 95 °C and 30 sec at 60 °C for 40 cycles.

The RT-qPCR testing instrument was Agilent Mx3005p (Stratagene, California, America), which has undergone strict 
quality control tests before testing. The specificity of RT-qPCR was confirmed by melting curve analysis, undetectable 
data were assigned a default threshold cycle value (Ct) of 35. In the course of the experiment, three complex holes were 
set up in each sample. Relative expression of target gene = 2� ΔΔCt.25

Target Gene Prediction
This study used the miRWalk database (which is a comprehensive database that can cover all three databases, TargetScan, 
miRDB, and miRTarBase) to perform target gene prediction for miRNAs with statistically different differences in each 
disease course, and the target score for prediction was set at 1. Since the number of target genes detectable using RT- 
qPCR was limited in this study, inflammatory genes or target mRNAs associated with viral replication, regulation of 
inflammatory cell function, macrophage polarization, and apoptosis were selected in this study based on the 
literature.26–37

Statistical Analysis
GraphPad Prism 8.0 and MedCalc 20.0 were used for plotting, and SPSS 22.0 was used for data statistics and 
classification tree modeling. Four periods were used as dependent variables of the classification tree, and the 
expression levels of differentially expressed genes in each period were used as independent variables of the 
classification tree, and the growth method was CRT. 5-fold cross-validation was used for internal validation to 
evaluate the performance of the model. The process was repeated 5 times and the final performance of the internal 
validation was averaged over the 5 cross-validations. After preprocessing the RT-qPCR data, the Kolmogorov– 
Smirnov test and the Shapiro–Wilk test were used to test the normality. The independent-samples t-test or the 
Mann–Whitney U-test was used to compare the miRNA and mRNA expression between COVID-19 group and the 
healthy control group. In addition, the paired-samples t-test or Wilcoxon’s signed-rank test was used to compare 
miRNA and mRNA expression between the COVID-19 groups. The relationship between differentially expressed 
miRNAs, mRNA and clinical parameters was analyzed by Spearman correlation coefficient. The predictive 
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efficacy of miRNA and mRNA as biomarkers for predicting the course of COVID-19 was measured by receiver 
operating characteristic (ROC) curve.

Results
Inclusion Characteristics
A total of 16 COVID-19 patients and 16 healthy subjects were included in this study. There was no significant difference in 
gender and age between COVID-19 patients and healthy people (P>0.05). In the initial stage of COVID-19 patient’s infection, 
62.5% of patients will have symptoms of Fever, Headache, and Chills, 50% of patients will have symptoms of Cough, and 
a few people will have symptoms of Confusion, Chest pain, and Dyspnea, more information can be found in Table 1.

Dynamic Changes of miRNAs Expression in Different Stages of COVID-19 Disease
MiR-21-3p, miR-451a, and miR-486-5p had Ct ≥ 35 in more than 80% of samples from COVID-19 patients and healthy 
individuals and therefore were not analyzed further. There was no significant difference in the expression of miR-16-5p, 
miR-24-3p, miR-27a-3p, miR-27b-3p, miR-125a-5p, miR-142-5p, miR-146a-3p, miR-148a-3p, miR-148a-5p, miR-181a- 
5p, miR-221-3p, miR-222-3p, or miR-223-3p among four groups (P>0.05) (Figure 1). The expression of miR-29a-3p and 
miR-92a-3p in the acute stage of COVID-19 was significantly increased than those in healthy controls (P<0.05); the 
expression of miR-142-3p and miR-150-5p in the acute stage of COVID-19 was significantly decreased than those in 
healthy controls (P<0.05); the expression level of miR-125b-5p and miR-155-5p was the highest in the acute stage of 
COVID-19 and decreased gradually in the turn-negative stage and the recovery stage and the differences in expression 
levels between each stage were statistically significant (P<0.05) (Figure 2).

Prediction and Expression of Target Genes of miR-125b-5p and miR-155-5p
After detecting and analyzing the expression levels of 22 miRNAs selected in advance, only miR-125b-5p and miR-155- 
5 had statistically significant differences among each stage of COVID-19 (P < 0.05). Therefore, this study only predicted 
the target mRNA of those two miRNAs. The target genes finally determined for miR-125b-5p were BCL2, CDH5, 
DRAM2, ETS1, LIFR, STAT3, SUV39H1, TET2 and miR-155-5p were MSI2, TRIM32, TSPAN14, AAK1.

AAK1, MSI2, and SUV39H1 had Ct ≥ 35 in more than 80% of samples from COVID-19 patients and healthy 
individuals and therefore were not analyzed further. There was no significant difference in the expression of DRAM2, 
ETS1, and TSPAN14 among the four groups (P>0.05) (Figure 1). The expression of BCL2 and LIFR in the turn-negative 
stage and the recovery stage of COVID-19 was significantly decreased than those in healthy controls (P<0.05); the 

Table 1 Clinical and Demographical Characteristics of the Study 
Participants

Variable COVID-19 Patients Healthy Control P-value

Num. 16 16 >0.05

Age 49.3±16.6 48.0±17.8 >0.05
Male 52.9±14.8 52.3±15.7 >0.05

Female 45.8±18.6 43.8±19.8 >0.05

Gender 8(50%) 8(50%) >0.05
Fever 10(62.5%) - -

Cough 8(50.0%) - -

Confusion 3(18.8%) - -
Headache 10(62.5%) - -

Chills 10(62.5%) - -

Chest pain 2(12.5%) - -
Dyspnea 4(25.0%) - -

Notes: The mean ±sd is used in the measurement data, and n (%) is used in the 
counting data. The symbol “-” indicates none.
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expression of TET2 in the acute stage and the recovery stage of COVID-19 was significantly decreased than those in 
healthy controls (P<0.05); the expression level of CDH5, STAT3, and TRIM32 was decreased gradually in the acute 
stage, the turn-negative stage and the recovery stage, and the differences in expression levels between each stage were 
statistically significant (P<0.05) (Figure 3).

Correlation Analysis of miRNA, mRNA and Laboratory Parameters
In this study, the correlation between miR-125b-5p, miR-155-5p, CDH5, STAT3, and TRIM32 of COVID-19 patients in 
three periods and laboratory parameters in corresponding periods was analyzed. Firstly, there was a significant correlation 
between miR-125b-5p and target genes CDH5, STAT3, miR-155-5p and target genes TRIM32 (P < 0.01). MiR-125b-5p, 
miR-155-5p, CDH5, STAT3, and TRIM32 were positively correlated with ALP, WBC, NE, CREA, IBIL, and TBIL (P < 
0.05), and negatively correlated with PLT and LY (P < 0.05) (Figure 4).

Establishment of the Classification Tree Model
A classification tree model for predicting the course of COVID-19 was constructed with miR-125b-5p, miR-155-5p, 
CDH5, STAT3, and TRIM32 as independent variables, and three disease courses of COVID-19 and healthy individuals 
as dependent variables, with the growth method CAT. The final independent variables incorporated into the model were 
miR-125b-5p, miR-155-5p, STAT3, and TRIM32, and the accuracy of the model’s predictions was 100% (Table 2). The 
classification tree model includes 5 layers, 11 ordinary nodes, and 6 terminal nodes (Figure 5A). The AUC values of the 
models in the five validation sets were 0.873, 0.880, 0.878, 0.884, and 0.866, respectively, with a mean AUC of 0.876. 
The results indicated that the classification tree model was able to reliably distinguish the different disease courses.

Figure 1 miRNAs and mRNAs with no statistically significant differences in the expression levels in different groups. The horizontal line in the middle of the figure 
represents the median, and the horizontal lines at both ends are Q25 and Q75. (A–C) miRNAs with no statistically significant differences in the expression levels in different 
groups. (D) mRNAs with no statistically significant differences in the expression levels in different groups.
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ROC Curve Analysis
In order to evaluate the predictive efficacy of the expression levels of miR-125b-5p, mir-155-5p, STAT3, and TRIM32 as 
markers for predicting the course of COVID-19 in the model, ROC curve analysis was carried out in this study (Figure 5B–D). 
Our results showed that when used as a biomarker to predict the acute phase of COVID-19 disease, the AUCs of miR-125b-5p, 
miR-155-5p, STAT3, and TRIM32 were 1.000, 1.000, 0.824, and 0.707, respectively; when used to predict COVID-19 turn- 
negative, the AUC were 0.977, 0.816, 0.945, and 0.898, respectively; and when used to predict the end of recovery, the AUC is 
0.984, 0.816, 0.902, and 1.000, respectively. More information can be found in Table 3.

Discussion
In this study, the course of COVID-19 disease was divided into three stages. The serum miRNA expression levels of 16 
patients with COVID-19 in the acute stage, the turn-negative stage, and the recovery stage were dynamically tracked, and 
the target genes of differentially expressed miRNAs in each stage were predicted, and the expression levels of miRNA 
target genes were also analyzed. In this study, the expression of miR-29a-3p, miR-92a-3p, and miR-155-5p in serum 
from patients with COVID-19 was upregulated, while the expression of miR-142-3p was downregulated, which verified 
the results of previous COVID-19 studies,15,38,39 however, these studies did not track the changes in miRNA expression 

Figure 2 Comparison of miRNAs expression levels between patients with COVID-19 and healthy people at different stages. Three points on a line represent different 
periods of the same patient. *P < 0.05.
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during different stages of COVID-19. Our study found that the dysregulated miRNAs were differentially expressed in the 
acute stage of COVID-19, and then gradually tended to healthy people in the turn-negative stage and the recovery stage 
of COVID-19. This may be because the dysregulated miRNAs are involved in the regulation of inflammation and viral 

Figure 3 Comparison of mRNAs expression levels between patients with COVID-19 and healthy people at different stages. Three points on a line represent different 
periods of the same patient. *P < 0.05.

Figure 4 Correlations between differential expression miRNA-mRNA and laboratory parameters. *P < 0.05, **P < 0.01, -: Not analyzed. 
Abbreviations: UA, uric acid; CREA, creatinine; UREA, urea nitrogen; TBIL, total bilirubin; DBIL, direct bilirubin; IBIL, indirect bilirubin; GGT, gamma-glutamyltransferase; ALP, 
alkaline phosphatase; WBC, leukocyte count; RBC, red blood cell count; PLT, platelet count; HGB, hemoglobin; NE, neutrophil count; LY, lymphocyte count; MONO, monocyte count.
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response in patients. It was shown that miR-125b-5p targets STAT3 in Japanese encephalitis virus infection, thereby 
coordinating viral replication and host antiviral response and that when the miR-125b-5p expression was upregulated, the 
expression levels of target genes in persistently infected cells were both decreased,40 it is consistent with the expression 
of miR-125b-5p and STAT3 in this study. STAT3 regulates a variety of biological functions and plays a key role in many 
cellular processes including cell growth and apoptosis, STAT3 can be up- or down-regulated in viral infections, 
depending on the type of virus involved. For example, EBV, HIV-1, HBV, and HCV activate STAT3 phosphorylation, 
while IAV and hMPV inhibit STAT3 phosphorylation.41 miR-155 has been identified as a major regulator of inflammation 
and can be involved in regulating CD8+ T cell activity and affecting B cell-mediated antibody production.42,43 In HIV 
infection, miR-155 binds to the 3ʹUTR of TRIM32 thereby inhibiting TRIM32 translation,44 TRIM family has the ability 
to inhibit viral replication.45 The inhibition of TRIM32 expression in this study may be caused by enhanced expression of 
miR-155-5p, and therefore inhibition of miR-155 expression may be an effective way to alleviate COVID-19 disease.

We analyzed the reasons for the differential expression levels of miRNAs in this study compared with other studies, 
such as differential expression in other studies of COVID-19 with no change in expression in this study or the opposite 

Table 2 Accuracy Evaluation of Classification Tree Model

Observed Predict

0 1 2 3 Percent Correct

0 16 0 0 0 100.0%

1 0 16 0 0 100.0%
2 0 0 16 0 100.0%

3 0 0 0 16 100.0%

Overall Percentage 25.0% 25.0% 25.0% 25.0% 100.0%

Notes: 0: control, 1: recovery, 2: turn negative, 3: acute.

Figure 5 Classification tree model and ROC curve analysis of independent variables in the model. (A) 0: control, 1: recovery, 2: turn negative, 3: acute; (B–D) ROC curves 
of miR-125b-5p, miR-155-5p, STAT3 and TRIM32 in identify and predict different stages of COVID-19.
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expression profile to this study. The first reason may be the different disease severity and stage of disease in the COVID- 
19 patients included in the study, resulting in different levels of differential expression of immune-related miRNAs.46,47 

And in severe COVID-19 patients serious complications often occur in vivo, such as coagulation disorders and liver and 
kidney impairment. Studies have shown that these complications lead to changes in miRNA expression in vivo.48–50 

The second reason may be that the samples taken in our study were serum, whereas in other studies the samples were 
cells, and studies have shown that the expression patterns of extracellular miRNAs do not necessarily correlate with the 
expression patterns of intracellular miRNAs.51 The last reason may be caused by the individual differences of COVID-19 
patients, which are from different countries and regions, resulting from differences in ethnicity, dietary habits, and living 
environment.

In this study, miR-125b-5p was significantly correlated with CDH5 and STAT3, and miR-155-5p was significantly 
correlated with TRIM32 before, further confirming the regulatory relationship between miRNA-mRNA. MiR-125b-5p 
and miR-155-5p expression in this study were significantly up-regulated, significantly positively correlated with WBC 
and NE, and significantly negatively correlated with PLT and LY. A study showed that elevated miR-155 expression 
levels in COVID-19 patients were significantly correlated with clinicopathological features (eg, chest CT, CRP, ferritin, 
D-dimer, WBC count, and lymphocyte and neutrophil percentages) in COVID-19 patients, with a significant increase in 
WBC count and neutrophil count and a significant decrease in lymphocyte count in COVID-19 patients.52 It was found 
that knocking out the miR-155 gene in mice can reduce the pulmonary inflammatory response caused by influenza 
virus,53 and inhibition of the miR-155/NF-κB pathway was found to be effective in alleviating the inflammatory 
response,54 so the changes in the clinicopathological characteristics of COVID-19 patients may be controlled by the 
miR-155/NF-κB pathway. There was also a significant correlation between ALP, CREA, and DBIL and differentially 
expressed miRNAs, which may predict the involvement of these miRNAs in the regulation of liver and kidney function. 
It has been shown that COVID-19 is involved in liver and kidney injury,55,56 and it has been shown that miR-125b-5p 
expression is upregulated in samples from HBV-infected patients, and the degree of upregulation directly correlates with 
the severity of disease in HBV-infected patients.57 In a mouse model of kidney injury, renal miR-155 levels are 
significantly elevated, and inhibition of miR-155 is followed by inhibition of the JAK2/STAT3 pathway, which attenuates 
inflammation and apoptosis in kidney tissue, suggesting that elevated miR-155 expression affects kidney function.51

Logistic regression and decision tree models are commonly used to find risk factors associated with diseases and to 
predict the probability of occurrence of certain diseases. Logistic regression is a traditional prediction method that can 
present results graphically through a columnar line graph model. However, there is a correlation between the individual 
predictors in this study, so logistic regression does not apply to this study. The decision tree model is an easy-to-use 
nonparametric classifier that has the advantages of being computationally simple, easy to understand, and highly 
interpretable, with the categorical regression tree algorithm being the most widely used algorithm for this model. 

Table 3 ROC Curve Analysis of miR-125b-5p, miR-155-5p, STAT3 and TRIM32 in Predicting the Course of COVID-19

Groups miRNA/mRNA AUC SE 95% CI (AUC) P value Sensitivity Specificity

Control vs Acute miR-125b-5p 1.000 0.000 0.863~1.000 <0.001 100.0% 93.7%
miR-155-5p 1.000 0.000 0.784~1.000 <0.001 100.0% 93.7%

STAT3 0.824 0.078 0.670~0.978 0.002 100.0% 68.7%

TRIM32 0.707 0.094 0.520~0.891 0.045 100.0% 50.0%
Acute vs Turn negative miR-125b-5p 0.977 0.020 0.935~1.000 <0.001 93.7% 93.7%

miR-155-5p 0.816 0.078 0.665~0.967 <0.001 87.5% 75.0%

STAT3 0.945 0.040 0.867~1.000 <0.001 81.2% 100.0%
TRIM32 0.898 0.054 0.792~1.000 <0.001 75.0% 93.7%

Turn negative vs Recovery miR-125b-5p 1.000 0.000 1.000~1.000 <0.001 100.0% 100.0%
miR-155-5p 0.816 0.074 0.671~0.961 0.002 100.0% 50.0%

STAT3 0.902 0.056 0.792~1.000 <0.001 100.0% 68.7%

TRIM32 1.000 0.000 1.000~1.000 <0.001 100.0% 100.0%
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When the dependent variable is a categorical variable, the generated decision tree is a classification tree. The classifica-
tion tree model is a tool to represent the processing logic with a binary tree diagram In recent years, scholars have 
successfully applied the classification tree model to predict COVID-19 in the elderly population, in which the number of 
sample cases is 41, the same small sample prediction model as this study.58 In addition, the classification tree has been 
applied to predict hyperuricemia,59 predict the survival rate of lung cancer patients,60 analyze the cause of pediatric 
pneumonia61 and other medical and surgical diseases, and its application in medical-related fields has proven its 
effectiveness. In this study, miR-125b-5p together with miR-155-5p and target genes STAT3 and TRIM32 constituted 
a classification tree model. Firstly, the first level of classification by miR-155-5p can make the distinction between 
healthy individuals and COVID-19 patients, followed by the next level of classification by miR-125b-5p, which can infer 
that patients in the end stage of recovery of COVID-19 patients, and finally, the combination of STAT3 and TRIM32 can 
predict that COVID-19 patients are in the acute stage or in the turn-negative stage. The predicted sample stage in the 
model matches 100% with the sample stage given in advance, which has high accuracy. In the clinic, based on the 
expression levels of miR-125b-5p and miR-155-5p and the target genes STAT3 and TRIM32 in the classification tree, it 
is possible to determine that the patient is now in that period and also to predict the course of the patient’s disease.

Our study has certain strengths and limitations. The strengths of our study are that it is the first longitudinal study to 
assess the expression levels of miRNAs-mRNA in the serum of COVID-19 patients, and it is the first application to apply 
the classification tree model to the prediction of COVID-19 disease course, which provides a reliable biomarker for the 
prediction of COVID-19 disease course. However, there are some limitations to our study. First, the limited size of the 
cohort may result in poor stability of the classification tree model and the inability to validate the established model. In 
addition, the medication status of all included COVID-19 patients is unknown, but considering that the subjects included 
in this study all excluded patients with severe comorbidities and underlying diseases and that there was little difference in 
medication use between the same treatment sites, the effect of medication factors is considered to be quite low. Finally, 
the number of miRNAs and mRNAs included in the study is limited due to the characteristics of the methodology and the 
continuous emergence of new studies, but this research group will continue to improve in future work.

Conclusion
MiR-125b-5p, miR-155-5p, STAT3, and TRIM32 could be useful biomarkers to predict the time nodes of the acute, turn- 
negative, and recovery stages of COVID-19.
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