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ABSTRACT
Background/Aims: The aim of this study was to both classify data of familial adenomatous polyposis patients with and without duode-
nal cancer and to identify important genes that may be related to duodenal cancer by XGboost model.
Materials and Methods: The current study was performed using expression profile data from a series of duodenal samples from familial 
adenomatous polyposis patients to explore variations in the familial adenomatous polyposis duodenal adenoma–carcinoma sequence. 
The expression profiles obtained from cancerous, adenomatous, and normal tissues of 12 familial adenomatous polyposis patients with 
duodenal cancer and the tissues of 12 familial adenomatous polyposis patients without duodenal cancer were compared. The ElasticNet 
approach was utilized for the feature selection. Using 5-fold cross-validation, one of the machine learning approaches, XGboost, was 
utilized to classify duodenal cancer. Accuracy, balanced accuracy, sensitivity, specificity, positive predictive value, negative predictive 
value, and F1 score performance metrics were assessed for model performance.
Results: According to the variable importance obtained from the modeling, ADH1C, DEFA5, CPS1, SPP1, DMBT1, VCAN-AS1, APOB genes 
(cancer vs. adenoma); LOC399753, APOA4, MIR548X, and ADH1C genes (adenoma vs. adenoma); SNORD123, CEACAM6, SNORD78, 
ANXA10, SPINK1, and CPS1 (normal vs. adenoma) genes can be used as predictive biomarkers.
Conclusions: The proposed model used in this study shows that the aforementioned genes can forecast the risk of duodenal cancer in 
patients with familial adenomatous polyposis. More comprehensive analyses should be performed in the future to assess the reliability 
of the genes determined.
Keywords: Familial adenomatous polyposis, duodenal cancer, gene mutations, genomics, machine learning, XGboost

INTRODUCTION
Familial adenomatous polyposis (FAP) is a precancer-
ous autosomal dominant condition induced by a muta-
tion in the adenomatous polyposis coli (APC) gene with a 
population prevalence of 1:10 000.1 The FAP is recognized 
with many adenomatous of the gastrointestinal mucosa 
and a definite set of extraintestinal lesions encompass-
ing several organs and tissues.2 The FAP is characterized 
by germline pathogenic variants in the APC gene known 
as one of the tumor suppressor genes located on the 
long arm, in the 5q21-q22 region of chromosome 5.3 The 
APC is involved in cell cycle modulation via regulating the 
beta-catenin location and cellular polarity. The APC also 
participates in the maintenance of T-cell populations 
in the lamina propria, which have an impact on chronic 
inflammation and tumor growth.4,5

The formation of hundreds to thousands of adenoma 
polyps in the rectum and colon is the most visible sign 
of FAP. The FAP often occurs in puberty and with nearly 

unavoidable progress to colorectal cancer (CRC) in the 
fourth decade of life. Approximately 70% to 80% of all 
tumors are found on the left side of the colon. The FAP 
is best known for the adenomatous polyps that bear its 
name; however, patients are more likely than the general 
population to develop other intestinal and extraintestinal 
manifestations, including fibromas, fibromatosis, gastric 
fundic gland polyps, duodenal polyps, nasal angiofibromas, 
thyroid carcinomas, congenital hypertrophy of the reti-
nal pigment epithelium, hepatoblastomas, brain tumors, 
and pancreatobiliary tumor.2 The major hallmark of FAP 
is colorectal adenomatous polyposis, which spreads all 
through the colorectum, beginning in childhood and 
teenage years. By the age of 15, roughly 50% of FAP 
patients have a colorectal adenoma, and this rate climbs 
to 95% by the age of 35. The lifetime risk of colorectal 
carcinoma is almost 100%. If these adenomatous polyps 
are not treated, it is virtually inevitable that they will turn 
into invasive carcinoma in patients aged 35-40 years on 
average.2 The duodenum is the second most prevalent 
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location of FAP-associated adenomatous polyps, and it 
occurs in 30% to 70% of FAP patients. Duodenal/periam-
pullary carcinoma is the second largest cause of mortality 
in FAP patients, after CRC, with a lifetime risk of develop-
ment similar to CRC of nearly 100%. Duodenal adenomas 
of FAP usually occur in the second and third (vertical and 
horizontal) portions of the duodenum.6,7

Genomic technology is a science that uses informa-
tion technology to process and store its outputs. It was 
established as a result of breakthroughs in automation 
and bioinformatics. Research in practically every depart-
ment of medicine (oncology, pharmacology, immunol-
ogy, biochemistry, microbiology, and so on) can be carried 
out with the proper configuration of genetic technol-
ogy.8 It allows for research into cancerization and prog-
nosis prediction, medication response prediction and 
tailored drug creation, immune response nature, and 
even transplantation outcome prediction through com-
parative studies. Next-generation sequencing (NGS) has 
enabled recent advancements in the analysis of genomic 
alterations in cancer research and therapeutic practice.9,10 
Simultaneous analysis of multiple differentially expressed 
genes (DEGs) is essential for life science researchers’ suc-
cess in the fields of molecular completeness, functional 
genomics, drug target discovery, and pharmacogenom-
ics. Comparing the expression levels of the investigated 
genes between normal and diseased tissue provides 
important clues for understanding the pathogenesis of 
the disease. Ultimately, identifying changes in disease-
related gene expression levels will enable the identifica-
tion of new treatments and diagnoses in the future.11

Epigenetics has emerged as a promising field for diagnos-
ing and treating common illnesses (e.g., FAP, cancer, etc.), 
with various epimarkers and epidrugs currently licensed 

and in clinical usage. As a result, it may become a chance 
to discover new disease mechanisms and treatment tar-
gets for rare diseases.12

Machine learning (ML) is an artificial intelligence (AI) 
subfield that employs data-driven learning to create 
forecasts about fresh data. The researchers’ goal is to 
enable computers to recognize complicated patterns 
and make data-driven decisions.13 Due to the acces-
sibility of big data and greater computer power, ML 
algorithms have attained high performance in a wide 
range of circumstances over the previous decade.14 In 
recent years, ML approaches have become one of the 
most commonly utilized technologies in disease diag-
nosis and clinical decision support systems, with several 
applications. When it comes to disease prediction cat-
egorization, ML approaches are commonly applied.15,16 
Machine learning is the cornerstone of implementations 
in genetic disorders diagnosis, early diagnosis of malig-
nant diseases, and pattern recognition in diagnostic 
imaging, all of which have a wide range of health-related 
applications.17 Extreme Gradient Boosting (XGBoost) is 
an ML approach that relies on the gradient augmented 
approach and decision trees that have grown in popular-
ity due to their outstanding classification performance 
in both data science and remote sensing sectors.18,19 The 
fundamental reason for this method’s success is the 
objective function it employs in the learning process. It 
is made up of the goal function, the loss function, and 
the regularization terms. The loss function computes the 
difference between the model’s predicted and actual 
class values.20,21

This study aimed to both classify data of FAP patients 
with and without duodenal cancer and to identify impor-
tant genes that may be related to duodenal cancer by 
XGboost model.

MATERIALS AND METHODS
Dataset
The XGboost was applied to open-access transcriptome 
data of FAP patients with and without duodenal cancer. 
Open-access dataset was obtained from https ://ww w.ncb 
i.nlm .nih. gov/g eo/qu ery/a cc.cg i?acc =GSE1 11156 . The 
dataset used consists of normal, adenomatous, and can-
cerous tissues attained from 12 FAP patients with duode-
nal cancer (FAP cases; n = 36 specimens), and adenoma 
tissue gained from 12 FAP patients without duodenal 
cancer (FAP control; n = 12 specimens). The expression 
profiles obtained from cancerous, adenomatous, and 

Main Points
• The proposed model can classify the data obtained from 

familial adenomatous polyposis patients with and without 
duodenal cancer and identify possible important genes 
associated with duodenal cancer.

• Accuracy, balanced accuracy, sensitivity, specificity, posi-
tive predictive value, negative predictive value, and F1 score 
metrics for the XGboost were extremely high in each of the 
cancer-adenoma, adenoma–adenoma, and normal-ade-
noma comparisons. It was observed that the discriminat-
ing power of the proposed model was quite successful.

• Genes determined with variable importance values based 
on the proposed model for each comparison can be used 
as potential biomarkers.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111156
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111156
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normal tissues of 12 FAP patients with duodenal can-
cer and the tissues of 12 FAP patients without duodenal 
cancer were compared (cancer vs. adenoma, adenoma vs. 
adenoma, normal vs. adenoma).22

Differential Gene Expression Analysis
Differential expression analysis can be applied to normal-
ized read count data by doing statistical analysis to detect 
quantitative variations in expression profile levels among 
experimental groups. For example, we employ statistical 
testing to evaluate whether or not an observed variation 
in reading counts for a specific gene is statistically sig-
nificant, whether or not it is bigger than what would be 
predicted simply by chance.23 As a result, derived from 
the term differential expression, differential expres-
sion analysis aims to validate which genes are expressed 
at separate levels in different conditions. These genes 
can provide biological information about the processes 
impacted by the condition(s) of interest. The determina-
tion of such changes may be necessary for the determi-
nation of biomarkers of diseases and cancers with some 
genetic background and, accordingly, in their treatment.

Feature Selection
In any predictive modeling effort, variable selection is 
critical. Choosing which data to include is one of the most 
crucial aspects of constructing a statistical model. Before 
dealing with very big datasets and models with high com-
puting costs, considerable efficiency can be attained by 
determining the most valuable aspects of a dataset. The 
process of detecting features in a data collection that 
influence the dependent variable is known as feature 
selection. The process of identifying features in a data 
collection that impacts the dependent variable is known 
as feature selection. In addition, models with many char-
acteristics are harder to understand. Important features 
should ideally be selected before statistical modeling.24 
Most ML and data mining techniques may be useless when 
confronted with high-dimensional data. Consequently, 
these methods generate more effective outcomes when 
the dimensionality is lowered.25 Gene expression data 
are quite massive. Modeling analysis requires a long time 
due to the high amount of gene expression datasets, and 
these data may lead to computing inefficiencies in the 
study.

A classification method may overfit the training instances 
and undergeneralize new samples in gene expression 
datasets with many genes. Many regularization methods 
such as least absolute contraction and selection operator 

(LASSO), ridge, and elastic-net have been propounded for 
model fitting and variable selection in poorly described 
multiple regressions. Ridge regularization makes predic-
tors go down, which makes parameter estimation more 
stable. Numerous regression coefficients approach 
exactly zero after LASSO regularization. This makes it 
easier for auto-variable selection, which means that only 
one predictor is chosen from those that are correlated. 
Elastic-net regularization employs both ridge penalties 
and LASSO penalties concurrently to get the most out 
of both. As a result, it offers shrinkage and auto-variable 
selection, and the ability to handle more effectively the 
extreme multicollinearity that is common in genome-
wide association study (GWAS) analysis.26-29

XGBoost Model
First introduced in 2001 as an effective ML algorithm, 
Gradient Boosting (GBoost) is a technique that uses 
boost methods and is an ensemble form of models that 
can perform regression and classification, often produc-
ing poor prediction results such as decision trees.30,31 
The basic structure of XGBoost, unlike GBoost, is based 
on the gradient boosting method in addition to decision 
tree techniques. The first prototype of the XGBoost was 
developed by Friedman in 2002.32 The method has gained 
a lot of attention in the ML industry after 2 University of 
Washington researchers, Tianqi Chen and Carlos Guestrin, 
presented the method at a conference in 2016.

The XGBoost is a well-known algorithm that is employed 
in the domains of health, energy, finance, and so on. When 
compared to other algorithms, it has a significant speed 
and performance advantage. It provides a huge speed 
and performance advantage over other algorithms. The 
XGBoost is also 10 times quicker than previous algo-
rithms, with many regularizations that enhance overall 
performance while reducing overfitting and over-learning. 
GBoost is an ensemble technique for merging multiple 
weak classifiers with boosting to create a strong classi-
fier. The strong learner is educated recursively, beginning 
with a basic learner. GBoost and XGBoost work on the 
same concepts. The main distinction between them is in 
the implementation specifics. XGBoost improves perfor-
mance by regulating the complexity of the trees through 
the use of various regularization algorithms.

Modeling
XGBoost was employed in the modeling. Analyses were 
conducted using the n-fold cross-validation technique. 
In the n-fold cross-validation approach, the data are 
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separated into n parts before the model is applied to 
each of the n parts. One of the n components is utilized 
for testing, while the remaining n-minus-one compo-
nents are used to train the model. In this work, 5-fold 
cross-validation was performed for the modeling proce-
dure. As performance assessment criteria, we employed 
accuracy (ACC), balanced accuracy (B-ACC), sensitiv-
ity, specificity, positive predictive value (PPV), negative 
predictive value (NPV), and F1 score. In addition, variable 
importance was determined, which offers information 
on how much the factors assign importance to the out-
come variable.

Statistical Analysis
Data were summarized as mean ± standard deviation 
based on the variable distribution. Shapiro–Wilk test of 
normality was employed to determine whether the vari-
ables had a normal distribution. Independent-sample 
t-test was employed for statistical analysis. P < .05 was 
deemed statistically significant. IBM Statistical Package 
for the Social Sciences Statistics 25.0 program (IBM 
Corp.; Armonk, NY, USA) was employed in the analysis.

RESULTS
The median age of the entire patients included in the 
dataset was 48.5 years (min-max = 34-70). There were 
no statistical differences between FAP cases and FAP 
control groups in terms of race, age, gender, sulindac/
celecoxib use, nor do they differ in terms of dysplasia, size, 
histology, or polyp number. This information was obtained 
from the index article.22

Subgroup Analysis Based on Genetic Alterations
Cancerous (Familial Adenomatous Polyposis Cases) Versus 
Adenomatous (Familial Adenomatous Polyposis Control) 
Tissues: Thirteen genes remained in the dataset created 
by using the Elastic Net technique from the dataset con-
sisting of 70 523 expressed sequence tags (ESTs). Table 1 
shows the definition of the dataset established with 
these selected ESTs as well as the identifiers of the 
inspected target variable. Table 2 shows the results of the 
performance metrics derived using the XGboost findings. 
The ACC, B-ACC, sensitivity, specificity, PPV, NPV, and F1 
score calculated from the XGboost were 95.8%, 95.8%, 
100%, 91.7%, 92.3%, 100%, and 96%, respectively. The 
values of performance criteria calculated from the 
XGboost are plotted in Figure 1. The variable importance 
in terms of explaining the output variable of the ESTs, 
which are the input variables, is given in Figure 2.

Adenomatous (Familial Adenomatous Polyposis Cases) 
Versus Adenomatous (Familial Adenomatous Polyposis 
Control) Tissues: Nine genes remained in the dataset cre-
ated by using the Elastic Net technique from the dataset 
consisting of 70 523 ESTs. Table 3 shows the definition of 
the dataset established with these selected ESTs as well 
as the identifiers of the inspected target variable. Table 4 
shows the results of the performance metrics derived 
using the XGboost findings. The ACC, B-ACC sensitivity, 
specificity, PPV, N, and F1 score calculated from the 
XGboost were 95.8%, 95.8%, 91.7%, 100%, 100%, 

Table 1. Comparison of Genetic Alterations in FAP Cases (with 
Cancer) and FAP Control (with Adenomatous Tissue) Groups Based 
on Tissue Analysis

Genes

Groups

P*

Duodenal Tissue 
with Cancer (FAP 

Cases)

Duodenal Tissue 
with Adenoma 
(FAP Control)

Mean ± SD Mean ± SD

DEFA5 6.209 ± 1.121 10.343 ± 1.286 <.001

ADH1C 5.497 ± 0.805 9.373 ± 0.656 <.001

DEFA6 3.871 ± 0.687 7.65 ± 1.772 <.001

CLCA1 5.509 ± 1.143 8.948 ± 1.032 <.001

CPS1 5.097 ± 0.64 8.317 ± 0.608 <.001

APOB 3.555 ± 0.457 6.421 ± 1.209 <.001

DMBT1 8.268 ± 1.395 10.808 ± 0.617 <.001

GIP 5.495 ± 0.458 7.969 ± 1.396 <.001

ANPEP 8.164 ± 1.559 10.591 ± 0.562 <.001

SPP1 7.614 ± 1.755 4.864 ± 0.472 <.001

AC078802.1 9.616 ± 0.71 7.488 ± 1.399 <.001

LINC01962 10.581 ± 0.62 8.346 ± 1.326 <.001

VCAN-AS1 6.008 ± 1.162 3.991 ± 0.265 <.001
*Independent sample t-test.

Table 2. The Result of the Performance Metrics Obtained Based on 
the XGboost Findings

Metric Value (%)

Accuracy 95.8 (87.8-100)

Balanced accuracy 95.8 (87.8-100)

Sensitivity 100 (73.5-100)

Specificity 91.7 (61.5-99.8)

Positive predictive value 92.3 (64-99.8)

Negative predictive value 100 (71.5-100)

F1 score 96 (88.2-100)
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92.3%, and 95.7%, respectively. The values of perfor-
mance criteria calculated from the XGboost are plotted in 
Figure 3. The variable importance in terms of explaining 
the output variable of the ESTs, which are the input vari-
ables, is given in Figure 4.

Normal (Familial Adenomatous Polyposis Cases) Versus Ade-
nomatous (Familial Adenomatous Polyposis Control) Tissues: 
Sixteen genes remained in the dataset created by using 
the Elastic Net technique from the dataset consisting of 

Figure 1. Graph for performance metrics obtained from XGboost 
models.

Figure 2. The graph of variable importance values.

Table 3. Comparison of Genetic Alterations in FAP Cases (with 
Adenoma) and FAP Control (with Adenomatous Tissue) Groups 
Based on Tissue Analysis

Genes

Groups

P*

Duodenal Tissue 
with Adenoma 

(FAP Cases)

Duodenal Tissue 
with Adenoma 
(FAP Control)

Mean ± SD Mean ± SD

APOA4 6.025 ± 1.257 7.68 ± 1.531 .008

ADH1C 7.754 ± 1.358 9.373 ± 0.656 .002

CPS1 6.75 ± 1.054 8.317 ± 0.608 <.001

CLCA1 7.398 ± 1.451 8.948 ± 1.032 .006

MIR548X 6.85 ± 1.111 8.229 ± 0.743 .002

SI 4.92 ± 0.925 6.192 ± 0.744 .001

ADH4 5.646 ± 1.026 6.894 ± 0.788 .003

LOC399753 6.41 ± 0.813 7.626 ± 0.536 <.001

DMBT1 9.596 ± 0.774 10.808 ± 0.617 <.001
*Independent sample t-test.

Table 4. The Result of the Performance Metrics Obtained Based on 
the XGboost Findings

Metric Value (%)

Accuracy 95.8 (87.8-100)

Balanced accuracy 95.8 (87.8-100)

Sensitivity 91.7 (61.5-99.8)

Specificity 100 (73.5-100)

Positive predictive value 100 (71.5-100)

Negative predictive value 92.3 (64-99.8)

F1 score 95.7 (87.5-100)

Figure 3. Graph for performance metrics obtained from XGboost 
models.

Figure 4. The graph of variable importance values.
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70 523 ESTs. Table 5 shows the definition of the dataset 
established with these selected ESTs as well as the identi-
fiers of the inspected target variable. Table 6 shows the 
results of the performance metrics derived using the 
XGboost findings. The ACC, B-ACC sensitivity, specificity, 
PPV, NPV, and F1 score calculated from the XGboost were 

91.7%, 91.7%, 100%, 83.3%, 85.7%, 100%, and 92.3% 
respectively. The values of performance criteria calculated 
from the XGboost are plotted in Figure 5. The variable 
importance in terms of explaining the output variable of 
the ESTs, which are the input variables, is given in Figure 6.

DISCUSSION
The FAP is an infrequent autosomal dominant genetic 
condition caused by many adenomatous polyps that 
inevitably proceed to colorectal carcinoma if not diag-
nosed and treated early.2 The incidence of FAP is almost 1 
in 7000 to 1 in 30 000 births. The FAP is with a high pen-
etrance that impacts both men and women equally and 
has varying expressivity. The majority of those affected 
have a family background of FAP symptoms; neverthe-
less, de novo mutations account for a large portion of 
cases (about 20%-30%). The severity of both intestinal 
and extraintestinal disease has been associated with the 
mutations in certain areas of the APC gene.2,33,34

Table 5. Comparison of Genetic Alterations in FAP Cases (with 
Normal Tissue) and FAP Control (with Adenomatous Tissue) Groups 
Based on Tissue Analysis

Genes

Groups

P*

Duodenal Tissue 
with Normal 
(FAP Cases)

Duodenal Tissue 
with Adenoma 
(FAP Control)

Mean ± SD Mean ± SD

CEACAM6 6.388 ± 0.63 8.596 ± 0.629 <.001

ANXA10 4.467 ± 0.704 6.439 ± 0.77 <.001

SLC12A2 6.35 ± 0.919 8.216 ± 0.623 <.001

OLFM4 8.513 ± 1.112 10.257 ± 0.704 <.001

SNORD78 7.094 ± 0.988 8.719 ± 0.377 <.001

LYZ 9.138 ± 1.339 10.722 ± 0.515 .002

XIST 4.729 ± 1.491 6.3 ± 2.071 .044

SNORD58A 7.802 ± 1.325 9.365 ± 0.385 .002

SNORA22 7.02 ± 1.036 8.512 ± 0.699 <.001

REG4 5.53 ± 0.527 7.009 ± 0.815 <.001

ADH1C 7.955 ± 0.957 9.373 ± 0.656 <.001

SPINK1 6.624 ± 0.505 8.002 ± 0.776 <.001

SNORD123 7.696 ± 0.631 9.063 ± 0.35 <.001

SNORD60 9.203 ± 1.198 10.544 ± 0.234 .003

CPS1 7.018 ± 0.749 8.317 ± 0.608 <.001

CEACAM5 6.204 ± 0.631 7.493 ± 0.573 <.001
*Independent sample t-test.

Table 6. The Result of the Performance Metrics Obtained Based on 
the XGboost Findings

Metric Value (%)

Accuracy 91.7 (80.6-100)

Balanced accuracy 91.7 (80.6-100)

Sensitivity 100 (73.5-100)

Specificity 83.3 (51.6-97.9)

Positive predictive value 85.7 (57.2-98.2)

Negative predictive value 100 (69.2-100)

F1 score 92.3 (81.6-100)

Figure 5. Graph for performance metrics obtained from XGboost 
models.

Figure 6. The graph of variable importance values.
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Patients with FAP frequently have numerous colorectal 
adenomas, and without total prophylactic proctocolec-
tomy, their overall risk of CRC can approach 100%.35 
Duodenal cancer has risen to become the second-larg-
est cause of mortality among FAP patients. The lifetime 
risk of developing duodenal cancer in patients with FAP 
is around 12%, and duodenal adenomas are seen in 65% 
of patients with FAP.36,37 The severity of duodenal adeno-
mas rose with age, according to a major multi-national 
study that followed 368 FAP patients for a median of 7 
years.38 The high prevalence and risk of cancer growth, 
according to the Spigelman staging technique, necessi-
tate continuing monitoring, and screening should begin 
around the age of 25-30 years. Family identification and 
following screening methods have greatly lowered mor-
bidity and mortality in duodenal cancer. However, deter-
mining the right time for surgery and which endoscopic 
results imply surgery remains a challenge. The Spigelman 
scoring method is employed to classify malignant tumors 
of FAP patients based on the size, morphology, quantity, 
and dysplasia of duodenal polyps during endoscopy, and 
mounting evidence shows that this system underesti-
mates the risk of duodenal cancer in FAP patients with 
duodenal polyposis. As a result, new methods for predict-
ing cancer risk in FAP patients are required. As FAP is a 
genetic disease, new gene mutations involved in FAP are 
constantly being identified as research on the disease 
advances, implying that patients with FAP have a genetic 
background difference. The etiology of FAP is complicated 
caused of the accumulation effects of factors such as the 
patient’s living space, diet, age, and gender, and there are 
many ambiguities in rehabilitation and treatment options. 
In light of this genetic background and differences in 
other factors, the characteristics of FAP should be ana-
lyzed, and genomic studies should increase. In addition, 
revealing biomarkers with therapeutic benefits that may 
be related to the condition will also be useful in shaping 
the treatment of the disease, and target-based therapies 
can be developed.36

In the dataset used in this study, gene expression analysis 
was performed in the samples taken from the duodenal 
samples of FAP patients diagnosed with duodenal can-
cer and FAP patients without a history of cancer. In the 
current study, comparisons of gene expression profiles 
obtained from tissue samples with cancer, adenoma, and 
normal from 12 FAP patients with duodenal cancer and 
adenoma tissue samples from 12 FAP patients without 
cancer were used. Gene expression data obtained con-
tained 70 523 ESTs.

Gene expression datasets are relatively huge, and model-
ing with larger data can result in lengthy analytical dura-
tions and computational inefficiencies.

For this reason, before modeling with the current data, 
the most relevant genes that can be connected with 
the target variable were selected with the Elastic Net 
method, which can deal more effectively with severe 
polylinearity, which is common in GWAS analysis. With 
this method, 13 out of 70 523 ESTs for cancer-adenoma 
comparison, 9 for adenoma–adenoma comparison, and 
16 for normal-adenoma comparison were selected as the 
genes most associated with the output variable. ACC, 
B-ACC, sensitivity, specificity, PPV, NPV and F1 score 
metrics obtained from the XGboost algorithm were found 
to be high in cancer-adenoma, adenoma-adenoma and 
normal-adenoma comparisons. According to the variable 
significance results obtained with XGBoost for cancer-
adenoma, adenoma–adenoma, and normal-adenoma 
comparisons in the current study, ADH1C, DEFA5, CPS1, 
SPP1, DMBT1, VCAN-AS1, and APOB genes can be used 
as biomarkers for duodenal cancer patients with FAP 
for cancer-adenoma comparison. Likewise, considering 
the variable importance values obtained, LOC399753, 
APOA4, MIR548X, and ADH1C genes can be used to dif-
ferentiate duodenal cancer patients with FAP from the 
adenoma tissues of non-cancer patients with only FAP for 
adenoma–adenoma comparison. And finally, SNORD123, 
CEACAM6, SNORD78, ANXA10, SPINK1, and CPS1 genes 
can be used as biomarkers for normal-adenoma com-
parison. New methodology (e.g., methods for sequencing 
single-cell epigenomes) and diagnostics are being devel-
oped to integrate epigenetic markers and their tracking 
in medical practice. Medical epigenetics is already widely 
used in oncology, with markers for diagnosis, prognosis, 
and therapy response ratified by the US Food and Drug 
Administration, as well as epigenetic-based medicines. 
In neurological, immunological, metabolic, and infectious 
illnesses, it is also becoming a growing specialty.12 From 
an epigenetic perspective, important and interesting 
clinical results were determined in the prediction of the 
related disease in this study. Individualized medicine is 
closely linked to the collection, processing, and synthesis 
of information from various “omics” techniques as well as 
data from patients and healthcare professionals. Machine 
learning, which is the branch of AI that provides tools 
“that may be employed to create and train algorithms to 
learn from and respond to data” can play a substantial role 
in aiding clinicians in incorporating, evaluating, and han-
dling.39 In this context, the clinical findings obtained from 
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this research can shed light on the use of AI in personal-
ized medicine applications.

There have been limited publications on FAP patients who 
developed duodenal adenocarcinoma. Studies are needed 
to examine the underlying pathophysiology of the dis-
ease in FAP patients who develop duodenal cancer. In one 
study, the median survival of 16 FAP patients with duode-
nal cancer was 11 months.40 A study classified the same 
dataset with the support vector machine model, which is 
one of the ML. According to the results obtained, the clas-
sification result correctly classified the FAP patients with 
and without duodenal cancer.36 In another study, genomic 
and transcriptome profiles of carcinoma in patients with 
FAP were carried out. Whole-exome, whole-genome, and 
single-cell RNA sequencing were implemented in the 
mentioned study on matched adjoining normal tissues, 
multiregional exemplified adenomas at various levels, and 
carcinomas from 6 FAP and 1 MUTYH-associated polypo-
sis patients.41 In a recent study carried out through whole-
exome sequencing, a point variant in the noncoding region 
in the APC gene was determined.42 Another recent study 
examined the findings of APC gene analyses. The com-
plete coding sequence of the APC gene was analyzed by 
the Sanger technique to uncover genetic anomalies. Of 
the 266 cases pooled, pathogenic/possibly pathogenic 
variants in the APC gene were determined in 73 patients, 
and variants of unknown importance were identified 
in 13 patients. Fourteen of these versions were brand 
new.43 In another study, 27 probands with more than 
10 colorectal polyps were used. After evaluation of their 
symptoms and familial backgrounds, the probands were 
examined for APC and MUTYH mutations using NGS. In 
the APC gene, 3 novel truncating variations (p.Leu360*, 
p.Leu1489Phefs*23, and p.Leu912*) were brought to 
light in 3 unrelated probands.44 One study made available 
15 novel APC mutations in the Indian FAP cohort and a 
novel Indian APC mutational hotspot at codon 935.45 In 
the study from which the dataset used in this study was 
obtained, DEGs in the duodenal adenoma–carcinoma 
pathway were detected in patients with FAP who devel-
oped duodenal cancer and in FAP patients without duode-
nal cancer.22 Identifying such changes may be important 
for understanding the treatment of duodenal polyposis 
and detecting cancer markers. With such studies, genes 
that may have prognostic and therapeutic importance 
can be identified.

In the study, in which the dataset used in the current 
study was obtained, DEFA5 and DEFA6 genes were 

downregulated, and SPP1 genes were upregulated for 
cancer-adenoma comparison.22 In this study, these genes 
were selected as genes that may be associated with can-
cer using the feature selection method, and DEFA5 and 
SPP1 were determined as the most important cancer-
related genes according to their variable importance. For 
the adenoma–adenoma comparison made in the refer-
ence article, the CLCA1 and ADH1C genes were down-
regulated. In this study, these 2 genes were selected in 
relation to adenoma by the method of feature selec-
tion, and at the same time, ADH1C was among the most 
important genes associated with adenoma according to 
their variable significance.

This study has a few limitations. First, it is essential to 
confirm the clinical findings extracted from this study 
with the results of other clinical studies on the same 
subject that will be conducted in the following stages. 
Second, more comprehensive clinical information can be 
achieved by analyzing the datasets obtained from mul-
ticenter medical studies to predict duodenal cancer risk 
with a higher probability in patients with FAP.

As a result, in the current study, genes that may be related 
to the development of duodenal cancer in FAP patients 
were identified, and genomic markers of the disease were 
divulged.

With more comprehensive analyses to be made in the 
future, the reliability of the genes obtained can be tested, 
treatment options relating these genes can be devel-
oped, and their applicability in medical practice can be 
clarified.
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