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Evidence for model-based encoding of Pavlovian
contingencies in the human brain
Wolfgang M. Pauli 1,2,3, Giovanni Gentile1,2, Sven Collette1,2, Julian M. Tyszka 1 & John P. O’Doherty1,2

Prominent accounts of Pavlovian conditioning successfully approximate the frequency and

intensity of conditioned responses under the assumption that learning is exclusively model-

free; that animals do not develop a cognitive map of events. However, these model-free

approximations fall short of comprehensively capturing learning and behavior in Pavlovian

conditioning. We therefore performed multivoxel pattern analysis of high-resolution func-

tional MRI data in human participants to test for the encoding of stimulus-stimulus

associations that could support model-based computations during Pavlovian conditioning.

We found that dissociable sub-regions of the striatum encode predictions of stimulus-

stimulus associations and predictive value, in a manner that is directly related to learning

performance. Activity patterns in the orbitofrontal cortex were also found to be related to

stimulus-stimulus as well as value encoding. These results suggest that the brain encodes

model-based representations during Pavlovian conditioning, and that these representations

are utilized in the service of behavior.
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An accumulating literature suggests that instrumental
behavior is composed of two distinct computational
mechanisms1. Behavior can be model-free (MF), because

its execution has been consistently reinforced, resulting in the
development of stimulus-response (SR) associations, as described
by the law of effect2. Model-based behavior (MB) is thought
to involve a cognitive model of environmental contingencies,
and deliberation over potential actions based on anticipated
outcomes3.

In contrast to instrumental conditioning, computational
models of Pavlovian conditioning have tended to assume exclu-
sively MF mechanisms. Such models typically implement incre-
mental changes in predictions for conditioned stimuli (CS)
proportional to how surprised the agent is by unconditioned
stimuli (US)4. The most common implementation of this surprise
signal in neuroscience is the signed reward prediction error (RPE)
from the temporal difference (TD) algorithm5. TD learning
assigns a scalar value to the CS, corresponding to the amount of
reward available in the present state, plus discounted future
rewards. It does not learn where a reward will be delivered, nor
the sequence of events that led up to reward delivery. TD learning
has gained strong empirical support because RPEs correlate with
dopaminergic midbrain activity6,7, as well as BOLD responses
in the ventral striatum8, which receives strong dopaminergic
projections9.

However, MF algorithms fall short of comprehensively capturing
learning and behavior during Pavlovian conditioning10. For
instance, many Pavlovian conditioned responses are devaluation
sensitive, in that the strength of a conditioned response to the CS
is modulated by changes in the current value of the US, induced for
instance by outcome devaluation11. Yet, according to MF algo-
rithms, conditioned responses should be insensitive to immediate
changes in US value, and would instead manifest only incremental
changes as a function of re-learning. Other well-established con-
ditioning phenomena such as sensory preconditioning12, are also
not explicable by conventional MF learning.

Thus, behavioral evidence supports the likely recruitment
of MB mechanisms during Pavlovian conditioning. Accordingly,
Pavlovian conditioning might involve the encoding of
stimulus–stimulus relationships, independently of their value,
such that the presence of one stimulus can elicit a representation
of the identity of an associated stimulus. In Pavlovian conditioning
a cognitive map of sorts may be formed, whereby knowledge of
the relationship between stimuli is encoded, allowing flexible
computation of the associated value of those stimuli.

In spite of behavioral evidence for MB computations during
Pavlovian conditioning, evidence for such computations in the
brain remains sparse. Rodent studies reported evidence for MB
knowledge in both orbitofrontal cortex (OFC) value signals and
dopaminergic RPE signals13–15. Prévost et al.16 reported amyg-
dala activity associated with the encoding of knowledge of the
structure in a reversal-learning Pavlovian paradigm. Others have
found unconditioned stimulus identity representations in the
OFC17,18.

An open question remains: How does the brain encode the
cognitive map, or state-space transition model, needed for MB
value computations during Pavlovian conditioning? To address
this question, we optimized a sequential Pavlovian conditioning
paradigm19 for multivoxel pattern analyses (MVPA), and scan-
ned human volunteers with functional MRI (fMRI) while they
performed this task. On each trial, participants first encountered
one of two visual distal conditioned stimulus (CSd) fractals,
followed by one of two proximal conditioned stimulus (CSp)
fractals, followed by the delivery of either an affectively pleasant
or affectively neutral liquid (US) (Fig. 1). Each participant
experienced 4 learning sessions, with 30 trials each. Before the
first and after the last training session, participants rated the
subjective value of CS fractals, as well as how hungry or thirsty
they felt. Before concluding the study, participants reported their
explicit knowledge of the Pavlovian associations. Specific asso-
ciations between CSp fractals and the USs were reversed across
sessions, while we selected novel CSd fractals for each session,
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Fig. 1 Sequential Pavlovian conditioning paradigm. a Each trial was initiated by the onset of a central fixation cross. The distal and CSp fractals were
presented sequentially in two random locations on the screen. The presentation of the CSp co-terminated with US delivery. b Main trial types and stimulus
categories in the 4 learning sessions. Identical CSp fractals (CS-X and CS-Y) were used throughout sessions, with valence reversals between sessions.
Two unique CSd fractals were introduced in each session. ITI inter-trial interval
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so as to enable two independent MVPA classifiers to solve two
orthogonal classification tasks regarding the CS fractals.

One classifier was trained on the value of CSp fractals, to then
test its ability to predict the value of CSp fractals (in held-out
learning sessions) based on the fMRI blood oxygenation level
dependent (BOLD) response to the earlier CSd fractal. Critically,
the results of this decoding analysis are independent of the
visual features of CS fractals eliciting a BOLD response17. The
ability to successfully predict the value of CSp fractals would
be evidence either for anticipatory value representations of CSd
fractals, or for anticipatory identity or value representations of
the US. That is, successful predictions would be consistent with
both MB and MF learning during Pavlovian conditioning. We
trained a second classifier to decode the identity of CSp fractals,
to test its ability to predict the identity of CSp fractals, again based
on the BOLD response to the CSd fractal. Even though we
anticipate that the CSp fractals will acquire affective value
through learning, to correctly identify the identity of the CSp
fractal, affective information has to be ignored by the classifier,
because in half of the sessions of both training and test sets, the
affective value of a proximal CS fractal will be positive, while
it will be neutral in the remaining half. If Pavlovian conditioning
in humans does not invoke MB computations, such a classifier
would not be able to successfully decode the identity of the
proximal stimulus.

In support of MB value computations during Pavlovian con-
ditioning, we found evidence for encoding of stimulus–stimulus
associations in two regions of interest, in the OFC and the dorsal
striatum. These brain areas were found to contain information
suggesting predictive representations of the identity of a sub-
sequent stimulus with which that cue had been associated.

Results
Behavioral results. At the beginning of each block, participants
rated the subjective pleasantness of each of the liquid USs. We
found that participants rated the juice more favorably than
the neutral liquid. This was expected, given that participants were
able to select their favorite juice (from a panel of 2 juices) as the
reward to be used in the study. They rated the juice positively
at the beginning of the study (intercept for juice, tlme(74)= 6.46,
p= 1e− 10), but liked it less towards the end of the study

(main effect of session, tlme(74)=−3.73, p= 4e− 04). Never-
theless, they still rated the juice positively before the beginning
of the last block (intercept for juice ratings, tlme(25)= 3.11,
p= 0.005). Participants rated the water as affectively neutral at
the beginning of the study (intercept of water, tlme(74)= 1.15,
p= 0.26), and rated it less favorably towards the end of the study
(main effect of session, tlme(74)=−2.26, p= 0.03). Nevertheless,
they still rated it as affectively neutral at the beginning of the
last block (intercept for water, tlme(25)=−.13, p= .9).

Evaluative ratings of the CS fractals. As a measure of acquired
subjective value of the CSd fractals, participants provided a
liking rating for the CSd fractals at the end of the experiment,
and tested whether ratings of CSd fractals had changed from
the baseline rating at the beginning of the study. As dependent
measure, we counted for how many CS fractals the change in
subjective ratings was consistent with Pavlovian contingencies
(Fig. 2a and Supplementary Fig. 2). We found that on average
participants’ ratings changed in concordance with the Pavlovian
contingencies. That is, in comparison to baseline ratings of
CSd fractals, fractals associated with juice (CSd+) received
more favorable ratings, while fractals associated with water
(CSd−) received less favorable ratings (main effect of CS-type,
tlme(174)= 1.84, p= 0.034 (t-test, one-tailed), MCSd+= .39
(SE= .18), MCSd−=−.02(SE= .17)).

Explicit knowledge of Pavlovian contingencies. To test for
behavioral evidence for the encoding of explicit knowledge about
the Pavlovian contingencies, we tested participants’ explicit
knowledge of Pavlovian stimulus—outcome (CSp/d—US) and
stimulus—stimulus (CSd—CSp) associations at the end of the
experiment (Fig. 2b). Specifically, participants were asked to make
a binary choice regarding which US or CSp, respectively, they
would expect to follow each CS fractal. We found that partici-
pants performed above chance (50%) on the test (t(24)= 4.74,
p= 8.1e− 05, t-test). Participants performed above chance on
CSd—US associations (t(24)= 4.88, p= 5.6e− 05, t-test), as
well as CSd—CSp associations (t(24)= 2.20, p= 0.037, t-test).
Participants’ test scores of their explicit knowledge of Pavlovian
contingencies did not correlated significantly with their change
in subjective ratings of CSd fractals (r= 0.33, p= 0.11, Pearson).
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Fig. 2 Behavioral measures of learning. a Consistent with model-free Pavlovian learning, participants’ subjective value ratings of CS fractals changed
in concordance with Pavlovian contingencies, relative to their baseline ratings before Pavlovian conditioning. Plotted are the total number of CS fractal
rating changes (after—before) contingent with Pavlovian associations. b Consistent with model-based Pavlovian learning mechanisms cognitive maps
of Pavlovian contingencies, participants performed above chance on a test for explicit knowledge of Pavlovian associations. See Supplementary Fig. 1
for descriptive plots of ratings and test-score, grouped by stimulus type. Violin plots show mirrored density plot of behavioral results, boxplots show;
Tukey-style box and whisker plots show the median, two hinges and two whiskers of data; Dots show individual participant results
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Pupil responses to conditioned stimuli. As in our previous
Pavlovian conditioning study19, we also collected pupil responses
from all participants (see Supplementary Fig. 6). Unlike in this
previous study, we did not use these data to calculate an estimate
of how quickly participants acquired Pavlovian associations,
because this was outside the focus of the present study. Never-
theless, in support of participants successfully acquiring the
Pavlovian association of the distal CS fractal, we found that pupil
dilation was increased for CS+ fractals in comparison to the CS−
fractals (linear mixed-effects model with fixed factor stimulus
(CS+ vs. CS−) and random effect subject revealed a main effect
for the fixed factor (tlme(1904)=−3.07, p= 0.002).

fMRI results. In our analyses of fMRI data, we focused on two
brain regions, the striatum and the OFC, because of the estab-
lished contributions of these areas in Pavlovian conditioning and
reinforcement learning.

ROI analysis of the striatum. The striatum is of interest, because
of the established contribution of the ventral striatum to appeti-
tive Pavlovian learning20,21, where it has been found to encode
the value of Pavlovian conditioned stimuli22–24. The dorsal
striatum plays a well-characterized role in reinforcement-
learning25,26, with a double dissociation between medial and
lateral dorsal regions in both rodents27–29 and anterior medial
and posterior lateral regions in humans30 for goal-directed and
habitual behavior, respectively, or, somewhat synonymously,
with MB and MF reinforcement-learning31–33.

Whether a similar double dissociation within the human
striatum exists for MB and MF Pavlovian learning is an open
question. Given the established encoding of expected Pavlovian
value signals in the ventral striatum, we predicted we would find
such signals for Pavlovian CSs in our paradigm. Moreover,
we hypothesized that we would find within the striatum evidence
for the encoding of a cognitive map. One possibility is that
such a map for Pavlovian conditioning would be represented in
the ventral striatum alongside value signals encoded there.
Alternatively, the cognitive map could be encoded in the caudate
nucleus, on account of existing evidence supporting its involve-
ment in goal-directed processes and MB encoding during
instrumental conditioning34,35, as well as in human executive
functions more generally36,37.

We determined that the spherical searchlight procedure
commonly used for cortical analyses (including our analysis of
OFC fMRI results here) is not as appropriate for sub-cortical
structures such as the striatum, because a number of neurana-
tomically and functionally distinct regions (including ventricles)
are tightly packed together in the basal ganglia, and the shape of
these structures is highly irregular and non-spherical. Thus, if
using a standard spherical searchlight procedure in the striatum,
there is a substantial risk of the searchlight decoding from voxels
positioned across anatomical boundaries, for which the inter-
pretation would be difficult. That said, a searchlight is arguably
more appropriate for cortical regions, where the risk of decoding
across functional neuroanatomical boundaries is less severe
(albeit still possible). In our ROI analysis of the striatum, we
relied on an a-priori functional parcellation of the striatum into
five functional zones37 (see Fig. 3a).

Decoding value predictions from the striatum. We first tested
for encoding of predictive value signals in the striatum. We
trained a classifier to decode the value of the CSp based on
activity patterns present at the time of presentation of the CSp.
We then attempted to decode the value of the CSp based on the
activity patterns present at the time of presentation of the CSd.

This was done separately for each striatal ROI. We could not
significantly decode value signals from any of the 5 striatal ROIs
at p < 0.005, including the ventral striatum. Next, we tested for the
extent to which the decoding accuracy of stimulus value signals
across the striatal ROIs was correlated with the degree to which
participants showed evidence of evaluative Pavlovian condition-
ing as indexed by the degree of change in the liking ratings for the
distal CS cues from pre-learning to post-learning. We found that
participants’ change in fractal ratings was significantly correlated
with decoding accuracy of stimulus value in the ventral striatum
(Fig. 3b, r= 0.58, p= 0.003 (Pearson); Bonferroni corrected
across striatal ROIs at p= 0.013), but not in other striatal regions.
This suggests that the degree to which the ventral striatum reli-
ably encodes expected value depends on the extent to which
participants manifest behavioral evidence of value-learning.

Decoding identity predictions from the striatum. We then
tested for encoding of stimulus–stimulus expectancies in the
striatum. The analysis approach was identical to that used to test
for encoding of predictive value signals in the striatum, except
that the classifier was trained and tested on the identity of the
CS fractals, rather than their values. Across the five striatal ROIs,
we again did not find significant encoding of the identity of the
CSp at the time of presentation of the CSd at p < 0.005. Next,
we tested for correlations between the decoding accuracy of
the identity of the CSp and explicit knowledge of Pavlovian
contingencies across participants. We found a significant corre-
lation between explicit knowledge of the Pavlovian contingencies
and the accuracy of the stimulus identity classifier in the body of
the caudate (Fig. 3c, r= 0.64, p= 6e− 4 (Pearson); Bonferroni
corrected at p= 0.003), but not in the ventral striatum ROI
(r=−0.23, p= 0.263, Pearson). Post-hoc tests revealed that the
correlation between identity classifier accuracy in the body of
the caudate and test scores for both CSd-US (r= .55, p= 0.004,
Pearson) and CSp-US (r= .56, p= 0.003, Pearson) knowledge.
At the same time, we did not find a correlation between knowl-
edge of CSd-CSp assocations and identity classifier accuracy.

Ventral striatum selectively predicts stimulus value. We
explored whether the correlation between participants’ liking
ratings and decoding accuracy of the value classifier accuracy was
significantly greater in the ventral striatum compared to the body
of the caudate. To statistically test for such a selectivity, we used
a linear mixed-effects model, predicting classifier accuracy based
on the fixed effects striatal region (ventral striatum vs. body of
caudate) and participants’ liking ratings. In support of a selective
involvement for the ventral striatum in containing information
about expected value, this analysis yielded a significant interaction
effect of region by rating (tlme(23)=−2.45, p= 0.023).

Dorsal striatum selectively predicts stimulus identity. We
explored whether the correlation between participants’ explicit
knowledge of Pavlovian contingencies and the decoding accuracy
of the identity classifier accuracy was significantly stronger in the
body of the caudate than the ventral striatum. To statistically
test for such a selectivity, we used a linear mixed-effects model,
predicting classifier accuracy based on the fixed effects striatal
region (ventral striatum vs. body of caudate) and participants’
test scores. In support of a selective involvement for the body of
the caudate in containing predictions about subsequent stimulus
identity: The statistical test yielded a significant interaction effect
of region by test score (tlme(23)= 3.33, p= 0.003).

Spherical searchlight analysis in the OFC. The OFC has
also been implicated in appetitive Pavlovian conditioning in
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non-human animals38–40. Predictive reward signals have been
reported in human OFC during Pavlovian conditioning8,41.
Lending support to an involvement of MB mechanisms in Pav-
lovian learning, some of these signals have been found to be
devaluation sensitive41,42. Beyond value signals, there is evidence
for the encoding of other types of information not related to
reward in the central OFC, including the identity of a US, at
the time of presentation of an associated CS17,18 and the
categorical identity of potential goal objects43. These findings
support the possibility that the OFC may represent characteristics
of anticipated stimuli beyond their rewarding properties, such
as identity, which would allow it to play a role in encoding a
map of Pavlovian contingencies, consistent with a prominent
theoretical proposition implicating OFC in encoding a flexible
cognitive map44.

Yet, sensory features in those prior studies relate specifically to
associations formed with an affectively significant US. In order to
establish whether the OFC is involved in encoding a more general
and flexible cognitive map as opposed to exclusively mediating
the learning of associations between arbitrary stimuli and
affectively significant stimuli, it is necessary to demonstrate that
the OFC encodes relationships between arbitrary stimuli that are
not potent reinforcers in their own right. In the present study we

aimed to test whether OFC encodes the identity of stimuli which
have been arbitrarily associated with other stimuli without
preexisting affective significance, which would be consistent with
the encoding of a flexible cognitive map of stimulus–stimulus
associations.

Decoding identity predictions from the OFC. We also predicted
that we would find evidence for the involvement of the OFC in
containing information about the identity of subsequent stimuli
in the associative chain. Using a whole-brain searchlight proce-
dure but restricting our searchlight results to an anatomical
ROI of the bilateral OFC, we trained the classifier on patterns
of activity elicited by the presentation of the CSp fractal, to
then test its performance in decoding the identity of the CSp,
based on the BOLD response to the presentation of the CSd
fractal. As predicted, we found that the stimulus identity classifier
showed above-chance accuracy in central the OFC (cOFC; xyz=
(34.2,37.8, −16.2), t= 3.99(p= 2.7e−04, t− Test), pSVFDR< 0.05,
ptfce< 0.05), indicating that the cOFC contained information
about the expected identity of the CSp fractal at the time of
presentation of the CSd fractal, consistent with a role for this
region in representing stimulus–stimulus associations (Fig. 4a;
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classifier accuracies for each individual participant are shown in
Fig. 4c; a similar plot showing the accuracy of individual cross-
validation folds per subject is shown in Supplementary Fig. 7).
We further tested for a correlation across participants between
identity classifier accuracy in this cOFC cluster, and behavioral
measures of explicit knowledge of Pavlovian associations. No
significant decoding accuracy-behavior correlations were found
(r= 0.24, p= 0.238, Pearson), nor was decoding accuracy cor-
related with changes in subjective ratings of CSd fractals
(r=−0.13, p= 0.534, Pearson).

Decoding value predictions from the OFC. We predicted a role
for OFC in encoding the expected value of conditioned stimuli.
As above, we used a whole-brain searchlight, but restricted our
results to an anatomical ROI of bilateral OFC. We trained and
tested the classifier on patterns of activity elicited by presentation
of the CSd fractal, because it was the earliest predictor of reward
delivery, hence relating our results to previous studies with
canonical Pavlovian conditioning paradigms. As predicted, we
found that the stimulus value classifier showed above-chance
accuracy in OFC (xyz= (−34.2, 30.6, −23.4), t= 4.7(p= 4.5e−
05, t− Test), pSVFDR < 0.05, ptfce< 0.05), consistent with a role for
this region in representing value predictions (Fig. 4b). Classifier
accuracies are shown for each individual participant in Fig. 4c.
We further tested for a correlation across participants between
value classifier accuracy in the lOFC cluster, and behavioral
measures of subjective value ratings of Pavlovian CS fractals.
We found no significant correlation between decoding accuracy
with subjective ratings (r=−0.2, p= 0.327, Pearson), nor was
decoding accuracy correlated with participants’ explicit knowl-
edge of contingencies (r= 0.09, p= 0.673, Pearson).

Classifier performance outside OFC and striatum. For com-
pleteness, effects found outside these specific ROIs at uncorrected
thresholds are described in Supplementary Tables 1–6. These
tables also provide results for alternative training/testing sche-
dules of classifiers across proximal and distal CS fractals.

Discussion
The aim of the present study was to determine if the brain
encodes a cognitive map of stimulus–stimulus associations during
Pavlovian conditioning. For this we utilized a sequential con-
ditioning paradigm in combination with multivoxel pattern
analysis of fMRI data. We found evidence for encoding of
stimulus–stimulus associations in two regions of interest: the
striatum and the orbitofrontal cortex. These brain regions were
found to contain information suggesting predictive representa-
tions of the identity of a subsequent stimulus with which that
cue had been associated.

Utilizing a region of interest analysis, we found contrasting
roles for two distinct regions of the striatum: the body of the
caudate was implicated in encoding stimulus–stimulus associa-
tions, conditional on the degree to which a participant could
report explicit knowledge of Pavlovian associations. On the other
hand, value signals were detectable in the ventral striatum, con-
ditional on the degree to which participants manifested evidence
of evaluative conditioning to the conditioned stimuli. These
findings support a role for distinct regions of the striatum in
encoding different aspects of stimulus characteristics during
Pavlovian conditioning. It is important to note that our results
do not allow us to draw conclusions as to whether ventral striatal
value signals are the result of model-based or model-free learning,
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as either or both mechanism could be responsible for the
acquisition and expression of value signals in that region.

A post-hoc analysis further revealed that stimulus classifier
accuracy in the dorsal striatum was specifically correlated with
stimulus-outcome knowledge, suggesting that the quality of
model-based activity patterns in this region are associated with
the ability of participants to remember stimulus-outcome asso-
ciations explicitly after the end of the final session. This finding is
important because a model-based Pavlovian agent ultimately
needs to compute the value of different states of the world. To
accomplish this it would be necessary to integrate knowledge
of successive state-space transitions with knowledge about
where in the state-space a rewarding outcome will be delivered.
Here we found that the more discriminable representations of
stimulus–stimulus associations were in the caudate nucleus,
the better participants’ explicit knowledge of the identity of the
outcomes linked to those stimuli. This suggests that participants
can actively utilize stimulus–stimulus knowledge in the dorsal
striatum in order to determine states of the world ultimately
leading to valuable as opposed to less valuable outcomes.

Our results contrast with prominent theories4 and algorithmic
approximations5 of Pavlovian conditioning that utilize model-
free mechanisms (cf ref. 10). MF learning does not require
knowledge of stimulus–stimulus associations to implement con-
ditioning, but rather depends exclusively on the assignment of a
scalar value signal to the CS. Instead, our results suggest that the
cOFC and the body of the caudate nucleus contribute to repre-
senting a cognitive map of Pavlovian contingencies. By contrast,
the lOFC and nucleus accumbens contribute to encoding CS
value, which could depend on either MB or MF learning. Our
results suggest that the distinction between MB and MF RL might
usefully apply in Pavlovian conditioning above and beyond pre-
vious findings that have reported similar mechanisms in instru-
mental conditioning.

Our findings about distinct representations in the striatum are
of interest in relation to a previously posited division of labor
between ventral and dorsal striatum in instrumental conditioning:
the actor-critic architecture45. According to this hypothesis, the
ventral striatum acts as a critic that provides feedback (via a
prediction error signal) to a dorsal striatal actor about whether
chosen actions were appropriate46. Our results show that a
similar division of labor is also present during Pavlovian con-
ditioning, where, by definition, there is no actor. That is, this
suggest that the dorsal striatum is involved in predicting future
states, even without an opportunity to influence state transitions.

It is possible that our dorsal striatal finding resulted from
participants’ belief in agency, i.e., that they have an opportunity
to act in order to affect which outcome they will receive. This
would be consistent with the existing proposal of a division of
labor between a ventral critic and a dorsal actor46. However,
while there exists a possibility that participants operated under
the erroneous assumption that reward delivery was contingent
upon the production of instrumental responses (such as fixating
their gaze upon the CS fractal), our task instructions did not
promote this false belief. Furthermore, because reward delivery
was not contingent on instrumental behaviors, it is unlikely that
reward delivery would have systematically reinforced any specific
behavior.

Our interpretation of the striatal findings rests on the
assumption that it is meaningful to interpret below-chance clas-
sifier accuracies in our study. That is, in participants with
inconsistent changes in ratings of CS fractals or little knowledge
of Pavlovian contingencies, the accuracy of the stimulus value in
the nucleus accumbens and stimulus identity classifier in the
caudate nucleus, respectively, were reliably below chance. MVPA
is considered an information-based analysis technique47. Thus,

testing single-subject accuracy can theoretically never be below
chance level, because it measures the amount of information
present48,49. However, the finding of decoding accuracies at below
chance level in the striatum can be very plausibly explained in
relation to our present findings. Specifically, these results emerge
naturally from the combination of a cross-decoding procedure
with leave-two-sessions-out cross-validation48,50. In our ‘cross
decoding’ procedure we trained on one set of conditions (CSp in
one half of learning sessions), and tested on another set of con-
ditions (CSd in other half of learning sessions). Below chance
accuracy could occur as a result of this cross-training procedure
under the situation where the participants have incorrectly
learned the associations between cues and rewards and/or cues
and their explicit knowledge of the associations with subsequent
cues. If in a given session, a participant has learned incorrect
associations, and these are subsequently corrected on subsequent
sessions, then the classifier will incorrectly classify the learned
assignments from session to session. We tested this hypothesis by
running simulations (see section Simulations of Supplementary
Information and Supplementary Fig. 5), which confirmed that
below-chance accuracy would be expected, if participants form
the incorrect outcome anticipation in a majority of trials in some
of the learning sessions.

We also implicated the OFC in encoding predictive informa-
tion about stimulus identity. These findings build on previous
fMRI results about stimulus identity coding17,18,43, as well as
findings in rodents implicating the OFC in model-based infer-
ence51. Howard et al.17 reported unconditioned stimulus identity
is present in the OFC. Further evidence implicates identity-based
error signals in the midbrain in the formation of these identity
representations52. However, those prior results leave open the
extent to which the OFC encodes flexible non-reward associations
during Pavlovian conditioning. This is because an unconditioned
stimulus might have privileged access to the OFC, given its role in
signaling rewarding or punishing consequences. Here, we found
that associations involving even arbitrary stimuli with no prior
value, can be encoded in the OFC during sequential Pavlovian
conditioning. Our findings are, together with that of Howard
et al., consistent with the possibility that the OFC encodes a
flexible cognitive map of Pavlovian stimulus–stimulus con-
tingencies. These findings are consistent with a role for the OFC
in encoding a flexible cognitive map44.

The OFC also contained information about upcoming
reward. Specifically in a region of lateral OFC, we could decode
whether or not the distal cue was associated with the subsequent
delivery of juice vs. the neutral non-rewarding liquid. These
findings are consistent with an extensive literature in both
humans and other animals implicating the OFC in encoding
value predictions8,17,38–41.

While we found that the stimulus identity classifier perfor-
mance was above chance in the OFC, we did not find a corre-
lation between this classifier’s accuracy and participants’ explicit
knowledge of Pavlovian contingencies. This stands in contrast to
our finding that classifier accuracy in two striatal regions dis-
tinctly correlated with two behavioral measures of learning during
Pavlovian conditioning. While we did not predict an absence of
a correlation between classifier accuracy in OFC and behavioral
measures, it is nevertheless interesting to speculate how this
finding relates to previous findings53,54. One possible explanation
is that while the OFC is involved in encoding the relationship
between stimuli and expected reward, as well as in encoding
stimulus–stimulus associations, these representations are not
directly utilized to drive behavior in the OFC. Instead, perhaps
these signals are passed to other structures which parse the
information to drive behavior, the striatum being a prime can-
didate, given that striatal signals were found to be directly
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correlated with behavior. Along these lines, an important direc-
tion for future work would be to attempt to characterize the
relative contributions of these areas as a function of time, both
within trials and across trials as a function of Pavlovian learning.

An important caveat about our OFC results is that classifier
performance though statistically significant, was relatively low.
The high resolution protocol we utilized (1.8 mm voxels iso-
tropic) may have contributed to decreased classifier performance
as signal to noise is sacrificed to gain higher spatial resolution55.
Yet, low OFC decoding accuracy is not unique to the present
study, as it has been found more widely across prefrontal cortex
even in conventional scanning protocols56. Nevertheless, because
of this limitation, additional replications of these effects will be
needed to assess their robustness.

A possible confound in this study is that when the classifier was
trained on BOLD responses to the proximal stimulus and tested
on the distal stimulus, decoding success could be influenced by a
leaking prelonged BOLD response from the proximal stimulus
to the distal stimulus, rather than by a statistically independent
response to the distal stimulus. We attempted to rule out this
possibility by ensuring that the experimentally induced jitter
between the two stimulus events effectively decorrelated their
associated hemodynamic responses. Indeed we confirmed that the
correlation between modeled canonical hemodynamic responses
at these two time points was very low. However, we cannot
completely exclude the possibility that subtle temporal auto-
correlations could contribute to the results.

To conclude, stimulus–stimulus predictions were found during
Pavlovian conditioning in humans in both the striatum and
orbitofrontal cortex. We further found that while the ventral
striatum encoded anticipatory value representations, the dorsal
striatum encoded anticipatory identity representations. This
finding sheds new light on the division of labor between the two
striatal areas and further suggest that neural representations
during Pavlovian conditioning are much richer than hitherto
assumed. Rather than exclusively depending on model-free
computations, it appears the brain may also utilize a richer
encoding of a cognitive map of a state space, even during
Pavlovian learning.

Methods
Participants. Twenty-six (14 female) healthy volunteers participated in this fMRI
study. The sample size was chosen based on a previous study with a similar
paradigm19. Participants were free of neurological or psychiatric disorders and had
normal or corrected-to-normal vision. Written informed consent was obtained
from all subjects, according to a protocol approved by the Human Subjects
Protection committee of the California Institute of Technology (Pasadena, CA).
One participant had to be excluded from analysis because of a hardware failure
during data acquisition. In the remaining sample, mean age was 25.76 years
(minimum: 18, maximum: 33).

Behavioral task. Human volunteers participated in a sequential Pavlovian con-
ditioning paradigm19, in which they learned to associate two sequentially presented
conditioned stimuli (fractal images), with either a pleasant (juice) or an affectively
neutral (artificial saliva made of 25 mM KCl and 2.5 mM NaHCO3) flavor liquid
(referred to as water). Details of the trial structure are shown in Fig. 1, and in
ref. 19. The present study was inspired by the experimental design used in a
previous study19, but the experimental design used in the present study was
optimized for the aims of the present study: (1) the previous study included
aversive trial outcomes (unconditioned stimuli), which were not the focus of the
present study, (2) we reduced the number of incongruent trials compared to the
previous study (because we were interested in decoding neural representation of
conditioned stimuli, rather than finding reward prediction errors in incongruent
trials), and above all (3) the experimental contingencies were designed such that we
could train/test machine learning classifiers on two orthogonal classification tasks:
classification based on stimulus identity vs. based on stimulus value.

Each trial began with the presentation of a fixation cross on a dark gray screen.
Then, the first fractal (CSd) image was presented in one of 8 random locations,
followed by the presentation of another fractal image (CSp) in one of the remaining
7 locations, also chosen at random. The merits of varying cue locations has been
discussed previously19. The second fractal image presentation co-terminated with

the end of delivery of liquid. At the end of a trial, participants were asked to
swallow the delivered liquid. The fixation cross remained on the screen throughout
the trial, but disappeared during inter trial intervals. As in previous variations
of this paradigm19,57, the deterministic proximal cue (CSp) was sometimes not
delivered as predicted by the distal cue (CSd). Instead, oddball CS fractals were
presented (CS-S vs. CS-T), inducing a valence reversal, and therefore both positive
and negative prediction errors, capturing the core feature of the temporal difference
algorithm: learning via prediction errors induced by sequential predictors.
However, to optimize the existing paradigm for MVPA, the expectation evoked by
the distal cue would be reversed by the proximal cue in only 20% of trials (24 trials
total). Thus, in optimizing the present study for the purpose of MVPA analyses, the
number of unexpected CSp fractal presentations was reduced. While the relatively
smaller number of unexpected CSp fractals precluded the analysis of neural
correlates of reward prediction errors, this probabilistic sequential trial structure
was retained in oder to make the task more engaging for participants.

The experiment consisted of four sessions, lasting approximately 16 min each.
Each session was composed of 30 trials, yielding a total of 120 trials. In all four
sessions, the same two fractals were used as CSp fractals, referred to as CS-X and
CS-Y. In contrast, two unique CSd fractals were chosen for each session (see Fig. 1).
Critically, the valence of CSp fractals was reversed between consecutive sessions.
Thus, in half of the sessions CS-X was associated with juice delivery, while it was
associated with the delivery of neutral liquid in the other sessions. This
counterbalancing of CSp valence across sessions allowed for the cross-validated
training of two different classifiers. The first classifier was trained to classify based
on stimulus identity (i.e., CS-X vs. CS-Y). The second classifier was trained to
classify based on valence, irrespective of CSp identity (i.e., CS+ vs. CS−). Put
another way, by alternating the CSp to juice and water associations across blocks,
we ensure that areas identified as encoding CSp identity are doing so independently
of the specific outcome with which that CSp is associated on a given block.

Participant instructions. Before participants signed up for the experiment, they
were informed that participation was conditional on their commitment to not
consume any food for the last 4 h before the experiment. This was done to induce a
subtle state of food deprivation, in order to increase the value of the pleasant juice
liquid. At the same time, we aimed to avoid rendering participants thirsty, to
ensure that the artificial saliva was perceived as affectively neutral relative to the
juice. For this reason, participants were encouraged to drink water during the 4 h
deprivation period to ensure that they remained hydrated.

Before participants entered the scanner, they received the following verbal task
instructions: In each trial, an image will appear on the screen, followed by a second
image, which will be followed by the delivery of a liquid. Each image will help
you predict what kind of liquid will be delivered. There will be four sessions.

Apparatus. The pleasant and neutral tasting liquids were delivered by means of
two separate electronic syringe pumps. These pumps pushed 0.75 ml of liquid to
the participants’ mouth via clear PVC plastic tubes (http://www.freelin-wade.com;
outside diameter, 8 mm; inside diameter, 4.8 mm), the other ends of which were
held between the participants’ lips like a straw, while they lay head first supine
in the scanner.

Subjective ratings. Before the experiment, and in between experimental sessions,
participants were asked to indicate on a scale from −3 to +3 how they liked the
fractal images, the degree of hunger, thirst, and how much they liked the reward
(juice) and neutral outcome (results are shown in Supplementary Fig. 8).
Throughout the experiment all rating scales were presented in form a horizontal
bar on the screen, with equidistant tick marks in order to ensure the legitimacy
of assuming an interval scale for the rating data (see ref. 58, for a discussion).

Rating of unconditioned stimuli. At the beginning of the study, participants were
asked to choose one of two juices (cranberry apple or apple juice, Trader Joe’s,
Monrovia, CA) to be used as rewarding liquid throughout the experiment. This was
done by having participants rate each juice, as well as the neutral outcome (artificial
saliva, referred to as water) on a scale from −3 (strong dislike), to +3 (strong like).

Rating of fractals. At the beginning of the experiment, participants were asked to
rate all 22 fractals. This initial rating of fractals served two distinct purposes. First,
the ratings were used as a baseline, against which to compare ratings of the same
fractals after Pavlovian conditioning. Second, to ensure that only relatively neutral
fractals were used as CS fractals during Pavlovian conditioning, the 10 fractals with
the most neutral ratings were selected as CS fractals for Pavlovian conditioning.
In order to avoid any systematic bias of stimulus ratings of different CS fractals
(e.g., CS-X always the least favorite one in all participants), the 10 fractals were
permuted before assigning them to different CS fractals. After each of the 4 sessions
of Pavlovian conditioning, participants rated all of the 22 fractals again. We
included the unused 12 other fractal images in these ratings, to make it harder
for the participants to recall their initial baseline rating of each fractal.

In order to evaluate whether Pavlovian conditioning affected ratings of CS
fractals, we calculated the difference between the rating of a fractal at the end of the
experiment, minus the fractal’s baseline rating at the beginning of the experiment.
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To generate an overall measure of how Pavlovian conditioning affected fractal
ratings, we calculated for each participant the sum total of changes in CS fractal
ratings between the beginning and the end of the experiment. Rating changes of
CS fractals associated with a neutral outcome were negated, so that this sum would
represent a measure of contingency-dependent changes in CS fractal valence.
We focused our analyses on fractals that acted as CSd fractals, because ratings of
CSp fractals are difficult to interpret, due to their repeated valence reversal between
consecutive sessions (see Fig. 1). In order to test statistically whether there was
an overall effect of Pavlovian conditioning in the population, we applied a linear
mixed-effects model, with the fixed factor CS-type (CS+ vs. CS−), and participant
as a random factor.

Test of explicit knowledge of stimulus contingencies. After the conclusion of
the final learning session, we asked participants to engage in a test of their explicit
knowledge of stimulus contingencies. Participants were not made aware of this test
until they had completed all sessions of Pavlovian conditioning. The test presented
an opportunity for participants to gain up to an additional $5. In each test trial, a
probe CS fractal would first appear in the center of the bottom half of the screen,
followed by the presentation of two target images next to each other in the upper
half of the screen. In the case of a CSd fractal probe, the target images could either
be two CSp fractals (test of stimulus–stimulus knowledge), or one image depicting
a drop of juice, and the other a drop of water (stimulus-outcome knowledge). In
the case of a CSp fractal probe, one image would depict a drop of juice, and the
other a drop of water. That is, CSp fractals were not used as probes to test for
explicit knowledge of stimulus—stimulus associations. Participants were asked to
indicate which stimulus/outcome would follow the fractal image at the bottom of
the screen, by selecting either the left or the right image at the top of the screen.
After making a selection, participants were able to bet any amount between $0 and
$1 (in increments of 25 cents) on their answer. This was done to ensure that they
would answer earnestly. The test contained 12 questions regarding stimulus—
outcome associations (8 CSd, 2 CSp, and 2 oddball CS fractals), and 8 question
regarding stimulus—stimulus associations (8 CSd fractals). When tested on the
CSp fractals, participants were instructed to answer based on the final Pavlovian
conditioning session. The total test score was the sum of correct answers (i.e.,
excluding omissions and incorrect answers).

For statistical analysis of whether participants had explicit knowledge of either
stimulus—outcome or stimulus—stimulus associations, we performed a t-test of
whether the total test score of each participant was above 0.

fMRI data acquisition. Functional imaging was performed on a 3 Tesla MRI
system (Magnetom Tim Trio, Siemens Medical Solutions) located at the Caltech
Brain Imaging Center (Pasadena, CA) with a 32-channel head receive array for
all the MR scanning sessions. To reduce involuntary head motion, participants’
heads were securely positioned with foam pads.

Because the focus of our study was the orbitofrontal cortex (OFC) and striatum,
we acquired T2*-weighted echo planar images (EPI), with coverage limited to the
anatomical boundaries of the striatum and OFC while participants were
performing the task (see Supplementary Fig. 9). Slices were positioned in order to
cover both the ventral prefrontal cortex and the striatum. A total of 35 slices were
acquired with a multi-band acceleration factor of 5, and an isotropic resolution
of 1.8 mm. Other imaging parameters included: TR= 600 ms, TE= 30 ms, flip
angle= 50 degrees, field of view= 180 mm, matrix= 100 × 100. Whole-brain high-
resolution T1-weighted and T2-weighted structural scans (isotropic voxel size=
1.0 mm). Dual-echo gradient echo field maps were acquired to allow geometric
correction of the EPI data. We discarded the first 3 EPI volumes before data
processing and statistical analysis to allow for magnetization equilibration.

fMRI data pre-processing. Pre-processing of functional MRI data was imple-
mented in NiPype59, allowing the development of a pre-processing pipeline spe-
cifically tailored to the high-resolution fMRI data of subcortical structures.
Functional images were corrected for participant motion, fieldmap corrected for
geometric distortion, high-pass filtered (default FSL high-pass filter cutoff of 100 s),
rigid-body co-registered to the participants T2-weighted structural image, and
automatically denoised using independent components analysis and hierarchical
fusion of classifiers (ICA-FIX)60. In order to achieve higher accuracy, the ICA-FIX
classifier was trained on the present data set. Preprocessed functional images were
diffeomorphically co-registered61 to the California Institute of Technology CIT168
brain template in MNI space62, using nearest-neighbor interpolation, leaving
functional images in their native 1.8 mm isotropic resolution. No smoothing was
applied to the data.

Multivoxel pattern analysis. All multivoxel pattern analyses (MVPA) were per-
formed in PyMVPA (version 2.5.0)63. For MVPA, we first fit a GLM with a
separate regressor for each stimulus onset (three regressors per trials: (1) distal and
(2) proximal CS fractals and (3) US onsets). Thus, instead of performing classifi-
cation based on the volume closest to the presumed peak of the BOLD response, or
averaging across a time-window centered around this peak, analyses were per-
formed on the parameter estimates of the GLM64. We believe this approach is
preferred, given the very high temporal resolution of our dataset (TR= 600 ms),

and moderate amount of co-linearity achieved by the addition of temporal jitter
to stimulus onset asynchrony (Supplementary Fig. 10). Before GLM estimation,
we performed quadratic detrending of the fMRI time series65. GLM parameter
estimates were normalized (z-score) before further classification analysis66–68.
No orthogonalization was performed among the regressors.

The design of the experiment allowed two independent classifiers to be trained.
One classifier was trained to classify CS fractals, either CSd or CSp fractals,
according the identity of the CSp fractal in the current trial (CS-X vs. CS-Y). We
refer to this classifier as the stimulus identity classifier. The second classifier was
trained to classify CS fractals according to the valence of the CSp (CS+ vs. CS−),
independent of CS identity (see “Task Description” above). We refer to this
classifier as the stimulus value classifier. All classification analyses were performed
with a linear support vector machine (SVM) classifier.

Classifier training and testing was done in a fully cross-validated manner with
4 folds. In each fold, a classifier was trained on the CS fractals of two of the four
sessions, and its performance was tested on CS fractals from the remaining two
held-out sessions. We chose this cross-validation approach to ensure that auto-
correlations can be ruled as driving classifier performance. In fact, we had
conducted a separate analysis to validate this concern: We found that if we chose to
perform odd-even trial cross-validation, classifier performance was above chance,
even in a permutation test. This confirms our suspicion that due to the temporal
sequence of events in our experimental paradigm, cross-validation across learning
sessions was necessary to guard against the effects of autocorrelations in the BOLD
responses.

Searchlight analyses. Whole brain searchlight analyses were performed with a
spherical searchlight, with a radius of 3 voxels. The SVM cost/penalty parameter
C was set to 1.0 for all searchlight analyses. The classification accuracy of each
searchlight was assigned to the center voxel of the sphere. Before second-level
analyses, individual accuracy maps were smoothed with a Gaussian smoothing
kernel of 5.4 mm (FWHM; three times the voxel size). To test the global null
hypothesis that there is no information in any subject in the test population69,
a one-sample t-test was used to test whether classifier performance was above
50%, i.e., chance level48. We performed small volume FDR correction (SVFDR
p < 0.05) of searchlight results. The OFC was defined according to the
Harvard–Oxford anatomical atlas70,71. In order to avoid the potential limitations of
cluster-based thresholding72, we also determined familywise error correction for
results reported in the main Result section, by using small volume threshold-free
cluster enhancement (tfce) and indicate whether an effect exceeded this threshold
(ptfce < 0.05).

ROI analyses. In order to investigate the topography of anticipatory stimulus
identity and reward representations in the human striatum, we performed a region
of interest analysis. For this analysis within the striatum, we utilized an existing
parcellation of the striatum into 5 non-overlapping functional zones37, based on
differences in co-activation between striatal and non-striatal voxels across a wide
range of psychological tasks and states73. For this analysis, we created a meta-
classifier, implementing a pipeline consisting of a PCA-based feature dimension-
ality reduction, followed by classification by a support-vector machine (SVM).

We followed an unbiased algorithmic approach to the selection of the
regularization parameter C in the SVM and the number of retained components
after PCA-based dimensionality reduction. In doing so we went beyond the current
practice in the fMRI literature to either not report these hyperparameters at all,
or to select them according to one of several possible heuristics. Here, we selected
80% (n= 20) of participants for optimization of these hyperparameters, to then
apply these hyperparameters during the analysis of the remaining 20% (n= 5)
of participants. To ensure that performance of a classifier for a given participant
was not affected by which subset of participants was included in this parameter
optimization, we repeated this procedure for 1000 iterations. We found that this
approach resulted in a modal value of 16 for the number of retained PCA
components, and a modal value of 1 for the regularization parameter C in the
SVM. While the main findings were stable from the first iteration, the non-
significant correlations appear less stable until a higher number of iterations
(Supplementary Figs. 11 and 12). We speculate that if an area does not represent
information of use for a classifier, our optimization approach would result in a
noisy hyperparameter selection, resulting in noisy estimates of classifier
performance when these parameters are applied in the analysis of the remaining
participants, and will eventually result in non-significant findings as well. Overall,
had we not followed this iterative process, and instead had used e.g., standard
k-fold cross-validation or had made heuristic choices for these hyperparameters,
we may have erroneously reported false positive findings.

Brain behavior correlations. Next, we tested whether classifier accuracy in any of
the striatal ROIs correlated with either participants’ (1) change in ratings of CSd
fractals (2) and test score for explicit knowledge of experimental contingencies. For
this purpose we calculated the Pearson correlation between either behavioral
measure and accuracies of either classifier. A correlation was deemed significant if
it survived Bonferroni correction (p-value divided by the number of ROIs (five)).
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We also tested whether there was a correlation between classifier accuracy
in cortical areas and behavioral measures of Pavlovian conditioning. We limited
this analysis to clusters that survived correction for multiple comparison (TFCE,
see above). For this purpose, we defined clusters as all contiguous voxels that
survived an uncorrected threshold of p < 005, and calculated the median classifier
decoding accuracy in these voxels. As above, we then calculated the Pearson
correlation coefficient between this median classifier accuracy within a cluster with
either behavior measures.

Code availability. Computer code used for preprocessing the data and analyzing
the data is available in a publicly hosted software repository [https://github.com/
wmpauli/mb_pavlovian_mvpa].

Data availability
Raw, de-identified MRI data are available at the Open Science Framework [https://doi.
org/10.17605/OSF.IO/CHFNW].
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