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Abstract

Background: Computational prediction of a phenotypic response upon the chemical perturbation on a biological
system plays an important role in drug discovery, and many other applications. Chemical fingerprints are a widely
used feature to build machine learning models. However, the fingerprints that are derived from chemical structures
ignore the biological context, thus, they suffer from several problems such as the activity cliff and curse of
dimensionality. Fundamentally, the chemical modulation of biological activities is a multi-scale process. It is the
genome-wide chemical-target interactions that modulate chemical phenotypic responses. Thus, the genome-scale
chemical-target interaction profile will more directly correlate with in vitro and in vivo activities than the chemical
structure. Nevertheless, the scope of direct application of the chemical-target interaction profile is limited due to
the severe incompleteness, biasness, and noisiness of bioassay data.

Results: To address the aforementioned problems, we developed a novel chemical representation method: Latent
Target Interaction Profile (LTIP). LTIP embeds chemicals into a low dimensional continuous latent space that
represents genome-scale chemical-target interactions. Subsequently LTIP can be used as a feature to build machine
learning models. Using the drug sensitivity of cancer cell lines as a benchmark, we have shown that the LTIP
robustly outperforms chemical fingerprints regardless of machine learning algorithms. Moreover, the LTIP is
complementary with the chemical fingerprints. It is possible for us to combine LTIP with other fingerprints to
further improve the performance of bioactivity prediction.

Conclusions: Our results demonstrate the potential of LTIP in particular and multi-scale modeling in general in
predictive modeling of chemical modulation of biological activities.
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Background
The tremendous advances in computational techniques
have reflected extensively on drug discovery, toxicology,
environmental science, and other scientific fields. Ma-
chine learning has reduced the time and cost of testing
chemical compounds in vitro and in vivo by identifying
chemical structures that will possibly modulate desired
or unwanted biological activities. It is critical to select
relevant molecular features of chemicals for training a
machine learning model of bioactivities. Chemical

fingerprints have provided an easy and quick method to
represent the molecules as a vector of binary bits that
denote the existence or absence of internal substructures
or functional groups [1]. However, there is a fundamen-
tal gap between the chemical fingerprint and the bio-
activity: the chemical space has activity cliffs where a
small change in structure may lead to substantially dif-
ferent bioactivities [2], since the bioactivity depends on
both the structure of molecule and its biological targets
in a cellular context.
The chemical modulation of biological activity is a

complex process [3]. It starts from the interaction of
chemicals with genome-wide macromolecular targets in
the cell. A chemical not only binds to its primary target
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(on-target) but also often interacts with unexpected off-
targets [3]. Both on-targets and off-targets collectively
mediate phenotypic responses through biological net-
works. Thus, the introduction of genome-wide target
binding profile, in principle, will fill in the gap between
the chemical structure and biological activity and poten-
tially increase the power of predictive modeling of the
bioactivity modulated by the chemical.
Many methods have developed which link drugs to their

phenotypes [4–13]. In spite of their successes, all of these
methods share several common limitations. First, only ob-
served data, which are highly biased and incomplete, are
considered in the modeling. Second, these methods can
only be applied to existing drugs which have observed
biological or clinical activities. Thus, these methods are
incapable of predicting bioactivity of novel chemicals.
Intuitively, a chemical can be represented by its known

target binding profile in the form of affinity fingerprints
[14], which can be then used as a feature for machine
learning. However, observed chemical-target interactions
are highly noisy, sparse, and biased. Only a small portion
of chemicals have the full spectrum of binding affinity to
the same set of biological targets in the chemical geno-
mics databases [15, 16]. It is infeasible to carry out
multiple experimental bioassays for tens of millions of
chemicals in the same condition in order to obtain the
affinity fingerprint. Furthermore, many unknown off-
targets that have never been tested experimentally can
exist for a chemical, and they may play important roles

in modulating the biological activity [3]. Thus, it is not
trivial to handle a large number of missing values in the
observed bioassay data. A large number of computa-
tional methods have been developed to predict genome-
scale chemical-target binding profiles [17–24]. However,
an issue in directly applying the observed or predicted
target binding profile as the feature to machine learning
is its high-dimensionality. It may have an adversarial im-
pact on the performance of machine learning, especially
when the number of samples is small.
To address aforementioned challenges in the machine

learning of the bioactivity modulated by novel chemicals,
we propose to use a latent target interaction profile
(LTIP) to represent the chemical, as shown in Fig. 1.
The idea of LTIP is that the observed chemical activity
profile can be embedded in a low-dimensional vector of
hidden (latent) variables that can be considered as unob-
served causal factors [25]. Previously we have developed
novel methods REMAP [26] and its variations [27–29]
that are based on a weighted imputed neighborhood-
regularized One Class Collaborative Filtering (winOCCF)
algorithm to predict geneome-wide drug-target inter-
actions and to embed chemicals and target spaces into
low-rank models. In the benchmark studies, REMAP can
accurately reconstruct genome-scale chemical-target in-
teractions. The top prediction from REMAP has been
experimentally validated [29]. In this paper, we will use
the low-rank model of chemicals derived from similar
winOCCF algorithm as the representation of chemicals,

Fig. 1 Schema of chemical fingerprint and proposed LTIP for Quantitative Structure-Activity Relationship (QSAR) modeling of bioactivity. Blue
arrow represents observed chemical-protein interactions and protein-bioactivity associations. “1” and “?” denote observed and unknown
interactions (i.e. missing data) in the interaction matrix, respectively
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i.e. LTIP. We compare LTIP with several conventional
molecular fingerprints. Using cancer cell drug sensitivity
as a benchmark, our results clearly shows that LTIP out-
performs molecular fingerprints in many cases. Thus,
LTIP provides a new tool for Quantitative Structure-
Activity Relationship (QSAR) Modeling.

Method
Overview of the methodology
The fundamental idea of LTIP method is to represent
chemicals in their biological context, in this case, as the
low-dimensional representation (i.e. latent factor) of
their global target binding profile. When representing
the chemical-protein interactions as a bipartite graph
where chemicals and proteins are nodes, and their
interactions are edges, the LTIP is the chemical node
embedding of the graph. There are basically three steps,
as shown in Fig. 1.

Step 1
Given a set of chemicals of interest, the set is incorpo-
rated into a high-confident chemical-protein interaction
matrix derived from ChEMBL [16], and Drugbank [30],
which includes 199,338 chemicals and 6277 proteins.

Step 2
Given the known protein-chemical interaction matrix
from the step 1, a weighted imputed neighborhood-
regularized One Class Collaborative Filtering (winOCCF)
algorithm is applied to derive the LTIPs of chemicals of
interest.

Step 3
The LTIPs derived in Step 2 is used as features to train
Quantitative Structure-Activity Relationship (QSAR)
models from various machine learning algorithm.

LTIP representation using winOCCF algorithm
The LTIP is constructed using a winOCCF algorithm
[26]. The details of winOCCF have been published in
ref. [26]. For the sake of completeness, a brief summary
of winOCCF algorithm is given here.
Given n chemicals and m proteins, the inputs of

winOCCF are the three matrices, R, T and C, which rep-
resent observed chemical-protein interactions, proteins-
protein similarities, and chemical-chemical similarities,
respectively. R(i, j) = 1 if the ith chemical is associated
with the jth protein and R(i, j) = 0 otherwise. The C, n × n
square matrix, will hold the similarity scores between
chemicals such that 0 <C(i, j) < 1 will represent the
Tanimoto coefficient-based similarity score between the
ith chemical and the jth chemical. The protein matrix
Tm ×m will be in the same format where 0 < T(i, j) < 1
represent the protein sequence similarity.

The winOCCF optimizes the loss function in Eq. (1) to
learn low-dimensional representations (i.e. low-rank fea-
tures) of chemicals and proteins, U and V, respectively.

min
X

ði; jÞ
Ptwði; jÞðRði; jÞ þ Pimpði; jÞ−U ði;�Þ�VT ð j;�ÞÞ2

þPregð‖U‖2 þ ‖V ‖2ÞþPchemtrðUT ðDc−CÞUÞ
þPprottrðVT ðDT−TÞV Þ

ð1Þ

Where Pwt(i, j) is the penalty of the loss. Pwt(i, j) = 1.0
whenever Ri, j = 1 and otherwise Pwt(i, j) ∈ [0, 1]. Pimp(i, j)
is the imputation of the unobserved association between
chemical i and protein j. Pimp(i, j) = 0 whenever Ri, j = 1
and otherwise Pimp(i, j) ∈ [0, 1]. preg is the regularization par-

ameter to control the regularization term ðkUk2U þ kVk2V Þ
which is used to prevent overfitting. Dc and DT is the
degree matrix of C and T, respectively. The last two terms
will force similar chemicals and proteins to have similar
low-rank features. The detailed procedure of drug-target
interaction network was presented elsewhere [26]. Briefly,
the drug-target associations were obtained by integrating
publicly available databases ChEMBL [16] (v23.1) and
DrugBank [31] (v5.5.10). From ChEMBL, inhibition assays
having IC50 ≤ 10 μM was regarded as active associations.
Those with suboptimal confidence scores (i.e. confi-
dence < 9) were excluded. From DrugBank, drug-target,
drug-enzyme, drug-carrier, and drug-transporter associa-
tions were collected. MadFast software developed by
ChemAxon (https://chemaxon.com/) was used to calcu-
late chemical-chemical similarity matrix, and BLAST was
used to calculate protein-protein similarity matrix. The
integrated drug-target association network contains a total
of 199,338 unique chemicals and 6277 unique proteins
with 233,378 unique chemical-protein active pairs.
Given the low-rank factor of chemicals U that is opti-

mized from the winOCCF, it can be used the features
for various downstream predictive modeling tasks, e.g.
Y← f(U), where Y is the target variables, and f() is a
mapping function. In our previously developed REMAP
algorithm [26], the target variable is the genome-wide
drug-target binding profile, and the mapping function is
U × V. Different from original REMAP algorithm, the
target variable is cancer cell line drug sensitivity, and the
mapping function is a machine learning algorithm such
as Random Forest. Because U can be considered as hid-
den variables that determine both observed and unob-
served chemical binding profiles across all proteins, we
term it as Ligand Target Interaction Profile (LTIP). In
this study, the rank of U is set as 600. This rank is opti-
mized for the drug-target interactions by REMAP [26].
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Performance evaluation
The main goal here is to evaluate whether or not LTIP
has a better predictive power than standard chemical fin-
gerprints. We did not compare LTIP with the experimen-
tally determined affinity fingerprint, because they are not
available for the chemicals in the most of cases, especially
for novel chemicals, including our benchmark. In other
words, affinity fingerprints are often not applicable in
practice. Notably, we assume that all chemicals in our
benchmark data set are novel, i.e. we do not know their
molecular targets. We compared LTIP with standard fin-
gerprints including Atom Pairs 2D (AP2D), Atom Pairs
2D count (AP2DC), Extended, Estate (ESFP), Klekota-Roth
(KRFP), Klekota-Roth Count (KRC), MACCS, Pubchem
(PCFP), and Substructure (SSFP).
In this study, cancer cell line drug sensitivity was used as a

benchmark [32]. Seven cell lines that are across different tis-
sue types including leukemia, prostate, lymphoma, glioma,
endometrium, breast, and large intestine, and share the max-
imum number of chemicals assayed were selected. There are
total 144 chemicals tested by all of 7 cell lines. Six state-of-
the-art algorithms were used to build the machine learning
models to assess the predictive power for standard finger-
prints and LTIP. Particularly, we used support vector ma-
chines (SVR), XGboost (XGB), k-nearest neighbors regressor
(KNR), Random Forests (RF), and Extra trees regressor (RF_
EXTR). A necessary normalization procedure was applied to
training and testing folds whenever it was needed. Although
deep neural network has become the most popular method
in machine learning, it may not be suitable for our data set
since the number of features is usually more than 1000, but
the total number of samples is only 144. The target variable
is the area under of drug dose response curve (AUC) for

each chemical against each cancer cell line, and is numerical.
Thus a regression model was built using the fingerprint or
LTIP of each chemical as the feature. It notes that the gen-
omics features of the cell line were not used in model train-
ing, so we could directly compare the performance among
different chemical representations. The data was randomly
split into training/development and testing sets. The train-
ing/development set included 124 chemicals and was used
for determining optimal hyperparameters using leave-one-
out cross-validation (Additional file 1: Table S1-S5). After
the hyperparameters were determined, an independent hold-
out test set that included 20 chemicals was used to evaluate
the performance of the trained model. The performance
metric is Pearson’s correlation coefficient between actual and
predicted AUC of anti-cancer drugs.

Results
LTIP is more accurate and robust than molecular
fingerprints in predicting chemical anti-cancer activities
We have evaluated the performance of five of the state-
of-the-art algorithms (RF, RF_EXTR, SVR, KNR, and
XGB) with all possible combinations between seven can-
cer cell lines and fingerprints representations of the
chemical compounds. The seven cancer cell lines are the
large intestine, breast, endometrium, glioma, lymphoma,
prostate, and leukemia. The chemical fingerprints that
are compared with LTIP include Atom Pairs 2D (AP2D),
Atom Pairs 2D count (AP2DC), Extended, Estate (ESFP),
Klekota-Roth (KRFP), Klekota-Roth Count (KRC),
MACCS, Pubchem (PCFP), and Substructure (SSFP).
As shown in Figs. 2 and 3, the LTIP representation

clearly outperformed all other fingerprints on an average
regardless of the algorithm used. The best performance

Fig. 2 The average rank of Pearson’s correlation coefficients for each fingerprint and each algorithm across all 7 cell lines, respectively
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is achieved by LTIP trained with RF_EXRT with a Pear-
son’s Correlation Coefficient (PCC) of 0.58. It is about
75% higher than the second-best performance by the
AP2D fingerprint (PCC = 0.33). Furthermore, the stand-
ard deviations of PCC of the LTIP is small across cell
lines, compared with that of other fingerprints. Thus,
performance of LTIP is robust. The robustness is a de-
sirable property for a computational method in real-
world applications. When the performance of different
fingerprints is compared by the average ranking of PCC
across cell lines, LTIP has the best rank when the QSAR
model is built using SVR, KNN, and RF_EXRT.

LTIP is complementary with other fingerprints
Although the performance of LTIP is more accurate and
robust in general than the molecular fingerprint, the best
performing fingerprint varies significantly for different
cancer cell lines and algorithms, as shown in Fig. 4a–e.
The results are summarized as follows.

Leukemia cell line
When applied to the Leukemia cell line, LTIP outper-
forms all other fingerprints across all algorithms except
the RF_EXTR and RF algorithms. KRFP and KRC
performs slightly better than the LTIP when using
RF_EXTR and RF, respectively.

Prostate cancer cell line
The Prostate cancer cell line showed different results
where LTIP significantly outperforms all other finger-
prints using all algorithms except the KNR algorithm.
When using the KNR algorithm, AP2D, AP2DC, and

KRC outperform LTIP. Especially the AP2D followed by
KRC outperforms the LTIP with a noticeable margin.

Lymphoma cell line
LTIP significantly outperforms other fingerprints when
applied to the Lymphoma cancer line in all algorithms.
The PCC of LTIP shows noticeable margins when
compared with those of other fingerprints.

Glioma cell line
Although the SSFP, MACCS, KRC and AP2D finger-
prints outperform LTIP when using the XGB algorithm,
LTIP has shown comparable PCC. LTIP outperforms all
fingerprints using the rest of the algorithms.

Endometrium cancer cell line
When applied to the Endometrium cancer cell line, the
best performing fingerprints are AP2DC, KRFP, KRFP,
LTIP, and LTIP for SVR, XGB, RF, RF_EXTR, and KNR,
respectively.

Breast cancer cell line
LTIP fails to outperform all other fingerprints in all
algorithms. The best performing fingerprints are AP2DC,
AP2D, AP2D, KRC, and AP2D for SVR, XGB, RF,
RF_EXTR, and KNR, respectively. It appears that atom
pair-based fingerprints including AP2D and AP2DC is the
winner.

Large intestine cancer cell line
LTIP fails to outperform all other fingerprints in all al-
gorithms. However, not a single fingerprint dominates

Fig. 3 The average of the Pearson’s correlation coefficients for each fingerprint and each algorithm across all 7 cell lines
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the best performer. The best performing fingerprints are
AP2DC, MACCS, KRFP, KRFP, and ESFP for SVR,
XGB, RF, RF_EXTR, and KNR, respectively.
The correlations between the predictions using the

LTIP feature and those using conventional fingerprints
are weak, as shown in Fig. 5. The low R-squared values

and high P-values (all > 0.05) suggest that LTIP is
complement with chemical fingerprints.
Overall, LTIP is the best performed chemical represention

for leukemia, prostate, lymphoma, glioma, and endometrium
cell lines. AP2D and MCCS outperforms other fingerprints
for breast and large intestine cell lines, respectively.

Fig. 4 a-e Pearson’s correlation coeficients for each fingerprint, each algorithm, and each cell line

Fig. 5 The Pearson’s correlation coefficients (top) and corresponding p-values (bottom) between the predicted AUCs obtained from the LTIP and
those from KRFP
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Performance improvement by combining LTIP with
molecular fingerprints
Since LTIP complements other fingerprints, it implies that
combining LTIP with other fingerprints may improve the
overall performance over individual ones. Therefore, we
tested the performance of machine learning models by con-
catenating the LTIP feature with other fingerprint features.
Specifically, we used the feature sets for AP2D, MACCS
and KRFP fingerprints. New training sets are specified as
AP2D+ LTIP, MACCS+LTIP, and KRFP+LTIP. The same
concatenation process was applied to the testing sets. The
results varied across different kinds of concatenation. The
results of comparing the concatenated (AP2D+ LTIP,
MACCS+LTIP, and KRFP+LTIP), non-concatenated
fingerprints (MACCS, AP2D, KRFP) and LTIP are
shown in Fig. 6a and b. Because of the high dimen-
sion of the concatenated feature vector, only RF and
RF_EXTR were tested, and their results are summa-
rized as follows.

Large intestine cancer cell line
When the RF_EXTR was used, AP2D + LTIP, and
MACCS+LTIP outperformed LTIP with a noticeable
margin. KRFP+LTIP showed comparable results to
LTIP. All concatenated fingerprints outperformed the
non- concatenated counterparts. The results with RF
were a little different. All concatenated fingerprints out-
performed the individual counterparts except MACCS

that outperformed its concatenated counterpart
(MACCS+LTIP).

Breast cancer cell line
Using the RF_EXTR algorithm, AP2D + LTIP outper-
formed all concatenated and individual fingerprints. All
of the concatenated ones outperformed the individual
fingerprints with a noticeable margin especially when
KRFP+LTIP was used. When the RF algorithm was used,
all concatenated fingerprints outperformed the non-
concatenated counterparts except AP2D which outper-
formed its concatenated counterpart (AP2D + LTIP).

Endometrium cancer cell line
Using the RF_EXTR algorithm, MACCS+LTIP outper-
formed all concatenated and individual fingerprints with
a noticeable margin. All of the concatenated ones out-
performed the non-concatenated fingerprints with a
noticeable margin especially KRFP+LTIP and AP2D +
LTIP. Using the RF algorithm, MACCS+LTIP and
AP2D + LTIP outperformed LTIP while KRFP+LTIP
showed comparable results. MACCS clearly outper-
formed all concatenated and individual fingerprints with
a noticeable margin.

Glioma cell line
Using RF_EXTR algorithm, all concatenated ones out-
performed its individual counterparts and the LTIP.

Fig. 6 a-b The performance comparison of the concatenated features (AP2D + LTIP, MACCS+LTIP, and KRFP+LTIP) and individual fingerprints
(MACCS, AP2D, KRFP, and LTIP) using a RF and b RF_EXTR algorithm, respectively
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Using the RF algorithm, while MACCS+LTIP and
AP2D + LTIP showed comparable results to each other,
they outperformed all concatenated and individual fin-
gerprints with a noticeable margin. All concatenated
fingerprints outperformed the individual molecular
fingerprints and the LTIP.

Lymphoma cell line
Using the RF_EXTR & RF algorithm, all concatenated
fingerprints outperformed the individual molecular
fingerprints and the LTIP.

Prostate cancer cell line
Using the RF_EXTR algorithm, AP2D + LTIP outper-
formed its counter individual fingerprint (AP2D) with a
noticeable margin. Although KRFP+LTIP outperformed
KRFP but it showed a low Pearson’s correlation coeffi-
cient. Using the RF algorithm, MACCS+LTIP has clearly
outperformed all concatenated and individual molecular
fingerprints as well as the LTIP with a noticeable margin.

Leukemia cell line
Using the RF_EXTR algorithm, MACCS+LTIP and
AP2D + LTIP slightly performed better than their
individual counterparts. Using the RF algorithm, all of
the individual fingerprints has outperformed their
concatenated counter parts.
In summary, the concatenation of LTIP with molecu-

lar fingerprints has improved its predictive performance
in the most of cases when the RF_EXTR algorithm is
used for the model training. It may be because that
RF_EXTR performs better in handling extremely high-
dimensional data than the RF.

Discussion
In this proof-of-the-concept study, we have shown that
LTIP is more accurate and robust in general than conven-
tional chemical fingerprints in the predictive modeling of
bioactivities regardless of the algorithm being used or the
target being tested. There are several advantages of LTIP
compared with the chemical fingerprints. First, LTIP em-
beds the genome-scale target binding profile, and thus,
fills in one of the missing links between chemical structure
and bioactivity. Second, the number of features in LTIP is
low compared to most of the chemical fingerprints, thus,
more robust machine learning models can be built. Third,
the complementarity of LTIP suggests that LTIP com-
bined with other fingerprints may improve the predictive
performance for certain targets which is clearly seen for
many of the cancer cell lines. Fourth, the high predictive
power of LTIP suggests that it will present a better simi-
larity measure between chemicals, which suffers from ac-
tivity cliffs when the Tanimoto coefficient of chemical
fingerprints is used.

Since the generalization power of machine learning
algorithm is often sensitive to the nature of data, the op-
timal performance of fingerprints depends on the choice
of machine learning method. Although LTIP shows
promising results in most cases, it does not perform well
in the combination with conventional fingerprints in one
case, i.e. breast cancer cell line. The concatenation of
two complementary fingerprints certainly encodes more
information, but significantly increases the dimensional-
ity of feature vector. In addition, due to the small sample
size used in this study, the data in some cell lines may
be not well distributed. These factors will impose diffi-
culties in the learning. The performance of LTIP can be
improved along several directions. Technically, the ac-
curacy of LTIP depends on both the quality of chemical
genomics data used and the underlying algorithms for
learning latent factors. With the advance in high-
throughput techniques, we expect a rapid increase in the
coverage of chemical and genomic spaces. On the other
hand, the winOCCF method used in the paper has limi-
tations in representation learning, since it can only pro-
vide a linear mapping between the original feature space
and the latent space. In this regard, deep learning could
be a promising approach to the LTIP coupled with the
increasingly availability of chemical genomics data. Fun-
damentally, even if LTIP can accurately encode the
information of genome-wide target interaction profile, it
may not completely fill in the gaps between chemical
structure and bioactivity. The chemical-target inter-
action in vivo depends on the pharmacogenetics of indi-
viduals. For example, a single nucleotide polymorphism
may significantly alter the chemical-target interaction or
drug metabolism. Thus, the incorporation of genomics
information could be critical for the embedding of che-
micals in the context of precision medicine. Further-
more, the molecular targets (e.g. proteins) do not work
alone but interact with each other. A gene interacting
network view for the chemical representation may provide
stronger correlations between the chemical structure and
the bioactivity than LTIP. It will be interesting to use the
same strategy for LTIP: to embed the biological pathway
activity perturbed by chemicals into their latent space.
From the point of view of model building, the comple-
mentary nature of LTIP with the chemical fingerprints
suggests that other types of ensemble models in addition
to the feature concatenation could improve the predictive
modeling. The significant performance diversity from dif-
ferent learning algorithms and fingerprints implies that
case-based reasoning could be an effective strategy to
build the ensemble model [33].

Conclusion
Although the chemical fingerprint has a long history in
QSAR modeling and virtual screening, it has
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fundamental flaws in linking chemical structure with
bioactivity, due to the hierarchy and modular nature of
biological system. The direct use of molecule target
binding profiles of chemicals may fill in the gap between
the chemical structure and the bioactivity but faces
problems of a large number of missing values and high
dimensionality. In this proof-of-the-concept study, we
demonstrate that the latent feature embedded from the
sparse, noisy, and biased target binding profile could be
a more accurate and robust molecular representation
than the conventional fingerprints for the predictive
modeling of bioactivity. In principle, the same concept
can be extended to represent higher level perturbations
by the chemical than the target binding, thus provide a
general framework for the multi-scale modeling of
chemical modulation of phenotypes. With the exponen-
tial increase of chemical genomics data and rapid
advances in machine learning, we expect that the multi-
scale chemical embedding of bioactivity could be a
powerful tool in the predictive modeling of chemical
modulation of bioactivity.
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