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Abstract: Acute kidney injury (AKI) was previously thought to be a merely transient event; how-
ever, recent epidemiological evidence supports the existence of a causal relationship between AKI
episodes and subsequent progression to chronic kidney disease (CKD). Although the pathophysi-
ology of this AKI-to-CKD transition is not fully understood, it is mediated by the interplay among
multiple components of the kidney including tubular epithelial cells, endothelial cells, pericytes,
inflammatory cells, and myofibroblasts. Epigenetic alterations including histone modification, DNA
methylation, non-coding RNAs, and chromatin conformational changes, are also expected to be
largely involved in the pathophysiology as a “memory” of the initial injury that can persist and
predispose to chronic progression of fibrosis. Each epigenetic modification has a great potential as a
therapeutic target of AKI-to-CKD transition; timely and target-specific epigenetic interventions to the
various temporal stages of AKI-to-CKD transition will be the key to future therapeutic applications
in clinical practice. This review elaborates on the latest knowledge of each mechanism and the cur-
rently available therapeutic agents that target epigenetic modification in the context of AKI-to-CKD
transition. Further studies will elucidate more detailed mechanisms and novel therapeutic targets of
AKI-to-CKD transition.

Keywords: AKI-to-CKD; acute kidney injury; chronic kidney disease; histone; hypoxic memory;
histone acetylation; histone methylation; DNA methylation; chromatin conformational changes

1. Introduction

Chronic kidney disease (CKD) is defined as persistent abnormalities of the kidney
structure or renal function [1]. It is a very common condition caused by various kidney
diseases with a reported prevalence of more than 10% worldwide [2]. CKD is a significant
health problem as an independent risk factor for cardiovascular disease and death [1].
An increasing number of patients have progressed to end-stage renal disease (ESRD)
requiring renal replacement therapy. Limited accessibility to treatment is also an issue in
many countries of the world [1]. The initial injury may affect various parts of the kidney
including the glomerulus, tubules, and interstitium, depending on the underlying cause of
CKD. The final pathophysiology of progressive CKD results in tubulointerstitial fibrosis,
which is regarded as the final common pathway in the progression to ESRD [3,4]. As with
other organs [5], there have been no effective practical therapies for renal fibrosis; therefore,
the progression of CKD is still characterized by irreversible pathological processes [6].

In contrast to CKD, acute kidney injury (AKI) is defined as a sudden loss of renal
function, which is also a very common condition with high morbidity and mortality during
the acute phase [7,8]. Decreased renal function is often associated with a lack of renal blood
flow and local or systemic inflammation [9]. The most common causes of AKI include
ischemia/reperfusion (I/R) injury, sepsis, and exposure to nephrotoxic agents, such as
cisplatin [10,11].

AKI was previously recognized as a transient event, which resolved spontaneously,
resulting in no consequences [12]. However, emerging evidence from epidemiological
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studies and meta-analyses suggests the existence of a causal relationship between AKI
episodes and subsequent progression to CKD [12–15]. Moreover, animal studies indicate
that maladaptive repair following recovery from AKI results in decreased kidney function
and the development of renal fibrosis, which supports the existence of AKI-to-CKD transi-
tion [12,16]. Today, the mechanism that drives the transition from AKI to CKD is considered
to be mediated by an interplay among multiple factors including tubular epithelial injury,
endothelial dysfunction, interstitial inflammation, and fibrosis; however, it is still being
debated [16,17]. Recently, evidence suggests that epigenetic mechanisms, regulating gene
expression and the downstream cellular response, are largely involved in AKI-to-CKD
transition [18]. Because of its reversibility, epigenetic modifications have the potential to
be a source of novel therapeutic targets for AKI-to-CKD transition [18] and have attracted
many researchers to this rapidly developing field.

In this review, we will first summarize the current concepts and pathophysiology of
AKI-to CKD transition. Then, the latest evidence for epigenetic modifications contributing
to the pathogenesis of AKI-to-CKD transition and their potential role as novel therapeutic
targets are discussed in detail.

2. Current Overview of the Mechanisms Involved in AKI-to-CKD Transition
2.1. The Pathophysiology of AKI-to-CKD Transition

Recent epidemiological studies and meta-analyses strongly support the existence of
a causal relationship between AKI and the subsequent transition to CKD; however, the
pathophysiological mechanism has not been fully revealed [16,17]. Evidence gathered thus
far derives from animal studies of kidney injury [9].

The kidneys consist of various types of differentiated cells with specific functions that
contribute to the maintenance of internal homeostasis. Various alterations in kidney struc-
ture following AKI, including nephron loss, incomplete tubular repair, vascular rarefaction,
interstitial inflammation, and shifts in interstitial cellular composition, interact with one
another to contribute to the progression of CKD [9] (Figure 1).

Tubular epithelial cells (TECs) are the most abundant cell type in the kidney. They are
considered to be the primary target of AKI because of their susceptibility to various types
of stress, such as ischemia-induced hypoxia and nephrotoxic substances [19,20]. Hypoxia
is an important factor in the pathogenesis of various kidney diseases, because the kidney is
physiologically in a hypoxic state that is maintained by its diffusional oxygen shunt between
the arterial and venous vessels [6,12]. This enables the kidney to extract no more than
10% of available oxygen and thereby render it intrinsically susceptible to further hypoxic
stress [6,12]. Consequently, injured TECs change their phenotype to produce various
bioactive substances that drive interstitial inflammation and fibrosis, which contributes to
the progression of CKD [21]. Endothelial cells are also important players in the response to
AKI. Rarefaction of the peritubular capillaries occurs following AKI insult and results in
renal hypoxia, which and has an important role in the subsequent progression to CKD [12].
Although the molecular mechanism responsible for capillary rarefaction has not been
elucidated [21], decreased expression of vascular endothelial growth factor (VEGF), an
endogenic angiogenic factor produced by TECs, and detachment of pericytes, which are
located close to endothelial cells and play a role in maintaining vascular stability, occur
after AKI and may contribute to this mechanism [13,17]. Subsequent tissue hypoxia
induces sterile inflammation and fibrosis. Tubulointerstitial fibrosis aggravates hypoxia
because of the further loss of capillaries and increased physical distance between resident
TECs and capillaries, which is a vicious cycle that results in the further progression of
CKD [12,13]. Inflammatory cells, including resident and infiltrating immune cells, such as
macrophages and neutrophils, contribute to disease progression through cross-talk with
other cell types [17,22]. Myofibroblasts are activated forms of fibroblasts and the principal
cell type that produces extracellular matrix (ECM) to form a fibrotic lesion [5,23]. They
are predominantly derived from resident fibroblasts and pericytes [2]. Although pericyte
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detachment and capillary rarefaction may be caused by AKI, pericyte loss can also trigger
endothelial damage and capillary rarefaction, resulting in TEC injury and fibrosis [17,24].
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Figure 1. Conceptual diagram of the pathogenesis of AKI-to-CKD transition. AKI-to-CKD transition
is mediated by the interplay among multiple components of the kidney including tubular epithelial
cells, endothelial cells, pericytes, inflammatory cells, and myofibroblasts. Four main pathologies
including tubular injury, microvascular injury, inflammation, and fibrosis, commonly associated with
renal hypoxia, contribute to disease progression.

The features described above represent only a portion of the emerging evidence that
demonstrate a contribution of various factors in AKI-to-CKD transition. Further details of
the underlying mechanisms will provide prospective targets for therapeutic intervention.

2.2. TECs Are a Primary Target of AKI and a Driver of Inflammation and Fibrosis

As mentioned above, TECs, which occupy most of the renal cortex, have a large
influence on the pathophysiology of AKI-to-CKD transition. Here, we focus on their
physiological response to ischemic AKI insult.

When TECs are exposed to mild ischemia of reversible hypoperfusion, the subsequent
reduction in renal function is not accompanied by parenchymal injury [7]. However, once
the ischemic time exceeds a certain threshold, ischemic tubules undergo acute tubular
necrosis (ATN) [25]. In the acute phase, necrotic tubular cells release signals that activate
pattern recognition receptors on resident immune cells in the interstitium. This results in
a local inflammatory response that aggravates tubular necrosis through an influx of neu-
trophils and macrophages. An auto-amplification loop forms known as necroinflammation,
which is resolved by various counter-regulators [7,26,27].

Once TECs become necrosis, they are irreversibly lost during acute necroinflammation.
Currently, there are two proposed physiological responses to injured tubules: limited
regeneration by renal progenitors and polyploidization of remnant TECs [28]. Renal
progenitors are undifferentiated cells that are scattered among the differentiated TECs,
primarily in the S3 segment (the most vulnerable to ischemic insult) during a healthy state.
They are relatively resistant to death and can regenerate fully differentiated TECs following
necrotic injury [29,30]. These renal progenitors, rather than the majority of remnant TECs,
are considered a source of TEC regeneration following AKI. This is supported by the result
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of lineage tracing studies [31]. On the other hand, the majority of remnant tubular cells are
thought to enter the cell cycle and undergo endoreplication-mediated hypertrophy, known
as polyploidization, which is observed in other tissues and organs [17]. This increase in the
gene copy number without cell division quickly meets the increased functional demand
for a large metabolic output [17,32]. The complete loss of renal progenitors by severe
injury results in irreversible nephron loss and the total number is a key determinant of the
long-term prognosis following AKI [31]. Although polyploidization of TECs can augment
the functional capacity to compensate for nephron loss to some extent, it cannot regenerate
parenchymal loss. Therefore, undergoing polyploidization results in a predisposition to
subsequent CKD [17].

Although this dynamic physiological repair mechanism following tubular injury ex-
plains the background pathology of AKI-to-CKD transition in part particularly for moderate
to severe AKI, this mechanism does not encompass all of the factors associated with TECs
contributing to pathogenesis. Phenotypic changes of injured TECs are also considered an
important factor that contributes to AKI-to-CKD progression. Injured TECs have been
shown to exhibit an inflammatory phenotype that mediates the immune response directly
by producing inflammatory cytokines or indirectly through infiltrating leukocytes [33].
Moreover, after severe or recurrent injury, TECs undergo phenotypic changes that promote
gene expression and the production of profibrotic factors [33]. Cell cycle arrest of TECs,
which may be related to maladaptive repair, may be related to the inflammatory pheno-
type, ECM deposition, and subsequent TECs acquisition of a pro-fibrotic and senescent
phenotype [17,34].

2.3. Molecular Mechanisms of AKI-to-CKD Transition: Insights from Omics Approaches

Recent studies examined the time-course of comprehensive gene expression associated
with AKI-to-CKD transition, including single-cell analyses [35–39]. Liu et al. conducted a
comprehensive gene expression analysis at multiple time points by bulk RNA-sequencing
(RNA-seq) of whole kidney using a murine bilateral ischemia/reperfusion injury (IRI)
model. This is a widely used experimental animal model in which renal arteries are
clamped for a certain period of time to mimic ischemic AKI [35]. They showed that there
were several temporal-specific patterns of gene expression related to function including
tubular injury and repair, fibrosis, and the inflammatory response [35]. Understanding the
mechanisms underlying the regulation of gene expression including epigenetic aspects
may lead to the development of target-specific novel therapies with timely interventions.
Cippa et al. performed time-course transcriptional profiling of human kidney injury
progression using biopsy samples of kidney allografts at multiple timepoints, in which
ischemia/reperfusion injury occurred during kidney transplantation contributed to chronic
allograft dysfunction [37]. The results showed a strong concordance with previous mouse
IRI results, suggesting conservation of most injury-induced gene regulatory responses
across species and the validity of using mouse models to further understand human dis-
ease [37]. There have also been joint profiling studies of chromatin accessibility and gene
expression of healthy kidneys in mice [40] and humans (specimens after mass nephrec-
tomy) [41]. These combined the results of single-nucleus RNA-seq and single-nucleus
ATAC-seq (assay for transposase-accessible chromatin with high-throughput sequencing),
a technique that captures open chromatin sites [40,41]. With the recent advances in se-
quence technology, the details of the epigenetic regulatory mechanism of gene expression
associated with AKI-to-CKD transition will be further elucidated.

Recent advances in other omics technologies, such as mass spectrometry-based pro-
teomics and metabolomics, has contributed to an understanding of AKI-to-CKD transition.
These include detecting novel biomarkers that detect or predict the prognosis of CKD
and pathways that contribute to CKD, which could be novel therapeutic targets for inter-
vention [42]. Recently, mass spectrometry-based proteomics was performed in mouse IRI
models, which detected the downregulation of phosphatase and tensin homolog on chro-
mosome ten (PTEN) in mice with maladaptive repair. This protein may represent a novel
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therapeutic target [43]. Also, liquid chromatography–mass spectrometry (LC–MS)-based
metabolomics revealed endogenous renal metabolism in mice, in which the mitochondrial
biogenesis regulator, PGC1α (peroxisome proliferator-activated receptor γ coactivator 1-α),
was a key determinant of kidney recovery from AKI through the regulation of nicotinamide
adenine dinucleotide (NAD) biosynthesis [44,45]. The sirtuins (SIRT) are a family of well-
conserved NAD+-dependent histone deacetylases [46]. SIRT3, which is highly expressed
in renal proximal TECs and widely distributed in mitochondria, plays an important role
in regulating mitochondrial dynamics and metabolism [47]. SIRT3 maintains mitochon-
drial homeostasis against IRI stimulation, suggesting that it may be a suitable target for
therapeutic intervention of kidney injury [46,48].

Recent advances in collective analyses of cells, tissues, and organs will enable us to
reveal further details of the molecular mechanisms involved in AKI-to-CKD pathology from
a new perspective and in an unbiased manner [42,49]. The effective use of omics technology
is expected to provide a better understanding of the details of epigenetic alteration.

3. Epigenetics of AKI-to-CKD Transition
3.1. Epigenetics Overview

Epigenetics refers to the mechanism of reversible and heritable changes in gene ex-
pression that are not caused by alterations in the nuclear DNA sequence itself [50].

Epigenetic features include modifications of DNA or histone proteins, or RNA inter-
ference mediated by non-coding RNAs [51] that regulate gene expression by changing the
chromatin structure or accessibility of genetic loci by transcriptional machinery [52] so that
seemingly identical genes exhibit different phenotypes in a temporally and spatially regu-
lated manner [53] (Figure 2). These modifications are stable during cell division and may
be influenced by environmental factors, aging, or disease [51], and are then stored as an
epigenetic memory [54]. For example, altered epigenetic markers at an earlier age not only
trigger acute adaptive responses but can also predispose an organism to late-onset diseases
following secondary triggers [55]. Epigenetic alterations are also potentially reversible
and the reversal of these alterations represents promising targets for the prevention and
treatment of diseases promoted by epigenetic mechanisms [56].

In the process of transcriptional regulation by chromatin structural changes, chemical
modifications of DNA (DNA methylation) or histone proteins function as marks for dis-
tinguishing areas that should or should not be transcribed [57]. Specific enzymes called
“epigenetic writers” catalyze additional reactions on these epigenetic marks, which may
be removed by enzymes called “epigenetic erasers” [51]. These marks are recognized by
functional proteins called “epigenetic readers”, and their consequent biological pathways
modulate chromatin accessibility and regulate gene expression.
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Figure 2. Chromatin structure in the nucleus. DNA strands are packaged into higher order structures
called chromatin in the nucleus. A nucleosome is the structural unit of chromatin, which consists
of 146 base pairs of negatively charged DNA wound around a positively charged histone octamer
containing two each of four core histones: H2A, H2B, H3 and H4 [57]. The chromatin condition is
fundamental to the control of gene expression [58]. Highly compacted heterochromatin effectively
shuts off all gene expression, whereas loosely configured euchromatin provides accessibility to
transcription factors and RNA polymerases and promotes gene transcription [57]. Even in the
latter state, the degree of relaxation is not uniform, and genes that are highly actively transcribed
are in a more relaxed region. The chromatin structure and epigenetic alterations discussed in this
review are shown here with their scales [59]. Chromatin interactions include long-range interactions
between regulatory elements, such as enhancers and their target genes. Chromatin domains include
topologically associating domains (TADs), which are reviewed later.

3.2. Involvement of Epigenetics in the Pathogenesis of AKI-to-CKD Transition

As reviewed in the previous chapter, hypoxia is a central player that contributes to the
pathophysiology of AKI-to-CKD transition (Figure 1). During the course of AKI-to-CKD
transition, hypoxia-induced epigenetic changes are recorded in the cell that have a long-
term effect, known as “hypoxic memory” [60]. These refer to epigenetic transcriptional
regulations that induce the progression to CKD in the long term following complete
recovery from an initial AKI episode [12,61].

Our group previously performed several studies that showed hypoxia-induced epi-
genetic regulations contribute to the pathogenesis of AKI-to-CKD transition. Using a
3C assay, we found that hypoxia-inducible factor (HIF)-1, a master transcription factor
under hypoxia, and lysine-specific demethylase 3A (KDM3A) conjugately regulated the
expression of a down-stream target gene, solute carrier family 2A3 (SLC2A3), through a
chromosome conformational change [53,62]. Under normoxia, a 35 kb upstream region of
the SLC2A3 promoter formed a loop via HIF1, which disappeared when HIF1 was knocked
down using siRNA. Under hypoxia, in addition to recruitment of KDM3A to the SLC2A3
loci, chromosome conformational changes upregulated SLC2A3 expression [53,63]. We also
exposed cultured tubular cells to hypoxia and identified HIF-1 downstream targets in a
genome-wide analysis of HIF-1 binding sites [64]. Combining the results of RNA-seq and
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chromatin immunoprecipitation (ChIP)-seq [65], 44 long non-coding RNA (lncRNA) were
identified that were shared by multiple tubular cell lines. The expression of novel lncRNA,
DARS-AS1 (aspartyl-tRNA synthetase anti-sense 1), was upregulated only under hypoxia
and HIF-1 was bound to its promoter region, which included two hypoxia-responsive
elements [60,64]. Functionally, DARS-AS1 plays an important role in inhibiting apoptosis
in renal tubular cells [64].

These two epigenetic regulatory events are located downstream of HIF-1. The patho-
genesis of AKI-to-CKD transition includes various phenotypic alterations in a variety of
cell types. Regardless of whether it goes through hypoxia or not, epigenetic regulation of
gene expression is considered an important process in the pathogenesis of AKI-to-CKD.

3.3. Histone Modification
3.3.1. Histone Acetylation

1. Basic Mechanisms of Histone Acetylation

Histone acetylation regulates gene expression in multiple ways. The addition of an
acetyl group neutralizes the positive charge of lysine, which relaxes the chromatin structure
to form an open chromatin configuration and allows transcription factors more access to
their target genes [66]. Acetylated lysine residues also function as docking sites for many
transcriptional activators, such as bromodomain proteins [67] (Figure 3).

Histone acetylation is reversible and fairly dynamic. It is catalyzed by histone acetyl-
transferases (HATs) and deacetylation is catalyzed by histone deacetylases (HDACs) [51].
The balanced actions of HATs and HDACs are key regulatory mechanisms for gene expres-
sion involving various developmental processes and diseases [67]. HATs include some
groups classified by amino acid sequences and conformational homology, such as GNAT,
MYST, and the CBP/p300 subfamilies [68]. In mammals, 18 HDAC proteins have been
identified, which are divided into the following four groups: class I includes HDACs
1, 2, 3, and 8; class II includes HDACs 4, 5, 6, 7, 9, and 10; class III includes silencing
proteins, sirtuins (SIRT1-7); and class IV includes HDAC11 [51]. They depend on zinc for
their catalytic activity, except for the class III HDACs, which require NAD+ for catalytic
activity [67].

Readers of epigenetic modifications commonly include one or more than one effector
domains that recognize target modifications of histones and DNA [69]. The bromodomain
is an evolutionarily conserved motif of 110 amino acids contained in proteins interacting
with chromatin, including transcription factors, HATs, and nucleosome remodeling com-
plexes [70]. Bromodomain (BRD) proteins function as readers of histone acetylation by
facilitating acetylation-dependent recruitment of transcriptional regulator complexes [71].
BRD proteins containing two N-terminal bromodomains and an extra-C terminal domain
are classified as BET (bromodomain and extra-terminal domain) family members, which
consists of four mammalian members: BRD2, BRD3, BRD4, and BRDT [72].
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structure or providing binding sites for the transcriptional machinery [51].

2. Histone Acetylation in AKI-to-CKD Transition

The level of histone acetylation was shown to change globally during the course of
ischemic AKI. In murine IRI, H3 acetylation was transiently decreased in proximal tubular
cells, probably resulting from reduced HAT activity during ischemia [74]. Decreased H3
acetylation was restored after 24 h of reperfusion and accompanied by the induction of a
key regulator of renal repair, bone morphogenetic protein 7 (BMP7), which is associated
with the selective downregulation of HDAC5 during the recovery phase [74]. However,
combined with the results of other similar studies with varying degrees and duration
of changes in histone acetylation, these depend on factors such as the intensity of the
injury, mouse lineage, and analytical methods [51]. Other nephroprotective genes, such
as Klotho and PGC-1a, were also shown to be downregulated by inflammatory cytokine-
mediated deacetylation in a folic acid-induced AKI model. Downregulation was prevented
by administration of HDAC inhibitors in cultured tubular cells exposed to inflammatory
cytokines [75,76].

The degree of H3 histone acetylation was progressively increased over the baseline,
together with the induction of inflammatory and pro-fibrotic genes, which is consistent with
AKI-to-CKD progression [77]. Moreover, at ten days after unilateral ureteral obstruction
(UUO) as a fibrotic kidney model, the level of H3K9 acetylation (H3K9Ac) was globally
increased [78]. In a murine model of lipopolysaccharide (LPS)-induced septic AKI, the
induction of a HAT, p300/CBP-associated factor (PCAF), was associated with increased
acetylation of H3K18 and upregulated inflammatory genes [79]. Conversely, silencing of
PCAF resulted in a significant decrease in H3K18Ac and inflammatory factors including
VCAM1, ICAM1, and MCP1 in cultured tubular cells [51].

Based on these findings, histone acetylation may be involved in the repression of
renoprotective genes in the acute phase and upregulation of inflammatory and profibrotic
genes in the chronic phase of AKI-to-CKD transition. In fact, the level of histone acetylation
over the course of AKI is heterogeneous and considered to be injury-, time-, and gene-
specific [71,80]. With respect to the treatment of AKI and its repair, HDAC inhibitors,
HDAC activators, and HAT inhibitors may exert therapeutic effects [51].

• HDAC Inhibitors in AKI-to-CKD Transition
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There is evidence to indicate that HDACs have an important role in the pathophysi-
ology of AKI through transcriptional regulation of various genes involved in apoptosis,
inflammation, oxidative stress, ATP production, and fibrosis [81]. They regulate pro-
inflammatory cytokine release, EGFR (epidermal growth factor receptor), TGF/Smad,
NF-κB signaling, and cell cycle arrest [81]. Class I and II HDAC inhibitors are generally
protective during experimental renal injury [71]. However, class I HDAC inhibitors have
exhibited mixed results in different AKI models, which may result from differences in the
time course of tubular repair among AKI models, the structures of administered HDAC
inhibitors, and the dose and timing of administration [81]. Class III HDACs, sirtuins,
are expressed in different subcellular compartments and play different roles in cellular
homeostasis. Many studies have shown that sirtuins are involved in the pathogenesis
of AKI through regulation of oxidative stress, apoptosis, inflammation, autophagy, and
mitochondrial biogenesis. Overexpression of SIRT1, SIRT3, and SIRT6, and the suppression
of SIRT7 and SIRT2 are renoprotective [81]. For class IV, HDAC11 gene silencing increased
PAI-1 expression, which can induce inflammation and functional impairment following
ischemic insult [82]. HDAC11 may represent a new therapeutic target for AKI [81].

Although a variety of HDAC inhibitors have been shown to exhibit anti-fibrotic and
anti-inflammatory activity and effectiveness on various renal diseases in animal models [83],
their application to human clinical trials has been limited because of their adverse effects,
which include hyponatremia, hypokalemia, edema, and blood pressure changes [81,84].
To reduce toxicity and improve clinical efficacy, more specific HDAC inhibitors, rather than
pan-HDAC inhibitors or class-specific HDAC inhibitors, need to be developed [81]. More-
over, the precise dosing for the desired effect, the proper timing of therapeutic intervention,
and effective drug delivery should all be taken into account for clinical application.

• HDAC Activators in AKI-to-CKD Transition

Resveratrol, SRT-2183, and SRT-1720 are SIRT1 activators, which exert effects on AKI
and subsequent repair [51]. Resveratrol exhibits renoprotective effects in cisplatin-induced
and septic AKI models [85,86]. Moreover, the administration of SRT-1720 in a murine IRI
model induced the proliferation of renal tubular cells and attenuated renal injury [87].

• HAT Inhibitors in AKI-to-CKD Transition

Curcumin, a HAT inhibitor that inhibits p300/CBP, was shown to have protective
effects in various AKI models, including cisplatin-induced, LPS-induced AKI, and IRI [88].
However, curcumin has other targets including HDACs, so whether a beneficial effect is
due to HAT inhibition is unclear [89].

3.3.2. Histone Methylation

1. Basic Mechanisms of Histone Methylation

Unlike acetylation, histone methylation does not change the electrical charge of the
histone proteins. Instead, it provides sites for the binding of transcription regulators associ-
ated with either activating or repressing target gene expression, depending on methylation
state and position [51,90]. Histone methylation on H3K4, H3K36, and H3K79 is associated
with activating gene expression, whereas methylation on H3K9, H3K27, and H4K20 is
linked to the repression of transcription [90].

There are many histone methyltransferases (HMTs) that function as “writers” and
demethylases as “erasers” for each site of methylation and their actions are precisely bal-
anced as shown in Figure 4 [91]. Since SUV39H1, which contains a catalytic SET domain,
was reported as the first identified HMT in 2000 [92], many HMTs have been identified
through SET-domain homology searching [91]. Although histone methylation was once
thought to be a low plasticity modification, the discovery of novel histone demethylases,
including lysine-specific demethylases (LSD1 and LSD2) and Jumonji (JmjC)-domain con-
taining histone demethylases, has changed this view and broadened our repertoire of
histone demethylases [51,91]. There are distinct effector proteins that recognize specific
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methylated lysine residues corresponding to the neighboring amino-acid sequence and
methylation state, and these “readers” are reviewed in detail elsewhere [91].
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2. Histone Methylation in AKI-to-CKD Transition

To date, the overall pattern of histone methylation during kidney injury has not been
analyzed; however, there is information on specific markers [71]. In a fibrotic kidney
model, 10 days after UUO, there was an increase in the global kidney H3K9 trimethylation
(H3K9me3) [78]. Moreover, both H3K27me3 and H3K4me3 were significantly upregulated
in UUO fibrotic kidney models and human CKD kidneys, which were intimately associated
with the fibrotic process [78,94]. Furthermore, there are some reports on altered histone
methylation for specific genes. Increased H3K4me3 methylation following IRI was closely
associated with the upregulation of inflammatory genes (TNF-α, CCL2), pro-fibrotic genes
(TGF-β1, type III collagen), and cholesterol regulatory genes (HMGRC), which ultimately
leads to a gradual progression to CKD [95–99].

The methylation processes mentioned above are catalyzed by their specific HMTs,
EZH2 (for H3K9me and H3K27me), SET7/9 (for H3K4me), and G9a (for H3K9me) [71,95].
Following the occurrence of AKI, they induce their specific histone methylation, which
promotes subsequent renal fibrosis [95].

Kidney inflammation and fibrosis were significantly improved after the blocking of
these HMTs. The EZH2 inhibitor, 3-deazaneplanocin A (DZNeP), decreased fibrosis in
the UUO model, decreasing signaling from several receptors including TGF-β1, EGFR,
and platelet-derived growth factor b receptor (PDGFbR), and PTEN, which may exert
a therapeutic effect [94]. Our group performed a genome-wide analysis of TECs using
RNA-seq in vivo and in vitro and discovered that DZNeP decreased the expression of pro-
fibrotic genes and inhibited tubulointerstitial fibrosis in a murine IRI model of AKI-to-CKD
progression [100]. The SET7/9 inhibitor, sinefungin, and the G9a inhibitor, BIX01294I, also
decreased fibrosis and reduced the levels of H3K4me1 or H3K9me1, respectively, in kidneys
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from UUO mice [101,102]. Histone methylation and demethylation inhibitors are in clinical
trial for some malignant hematologic diseases. However, there is no information on these
drugs being examined in the clinic or their effects on clinical kidney injury [71].

3.3.3. Other Histone Modifications

The recent application of mass spectrometry-based proteomics identified novel his-
tone lysine acylation including propionylation, butyrylation, 2-hydroxyisobutyrylation,
β-hydroxybutyrylation, malonylation, succinylation, crotonylation, glutarylation, and
lactylation [103]. Of these, lysine crotonylation is a recently described posttranslational
modification [104], which adds a crotonyl group (CH3CH=CHCO2) from crotonyl-CoA to
lysine residues catalyzed by histone crotonylases [71]. In addition to gene transcription,
histone crotonylation has been suggested to have a potential role in spermatogenesis and
AKI [71,105]. The detailed mechanisms of this modification still need to be clarified [106].

3.4. DNA Methylation
3.4.1. Basic Mechanisms of DNA Methylation

Generally, methylation of the promoter region is associated with repressed gene
expression, which contributes to physiological silencing to prevent chromosomal instability
caused by the transcription of repetitive sequences [57], whereas methylation of a gene
body tends to be associated with active transcription [107]. CpG promoter methylation
may suppress gene expression by the following two mechanisms: direct inhibition of the
recruitment of transcription factors to the promoter, or indirectly through the function of
recruited DNA methylation readers to form a repressor complex [51]. The susceptibility
of the methylation of the promoter region depends on whether the region contains CpG
islands. They are rarely methylated, whereas CpG sites present in promoter regions other
than CpG islands are highly methylated and gene expression is repressed. Over two thirds
of mammalian promoters have CpG islands and almost all of housekeeping genes contain
CpG islands [108].

• Writers and Erasers of DNA Methylation

DNA methylation is catalyzed by DNA methyltransferases (DNMTs). The DNMT fam-
ily consists of DNMT1, DNMT2, DNMT3A, DNMT3B, and DNMT3-like (DNMT3L) [109].
Among these, DNMT1, DNMT3A, and DNMT3B are major DNMTs essential for animal de-
velopment [51]. DNA methylation includes the establishment (de novo DNA methylation)
catalyzed by DNMT3A and DNMT3B and maintenance during DNA duplication, which is
catalyzed by DNMT1 [108].

The mechanism of de novo DNA methylation is shown in Figure 5 [108]. DNMT3A and
DNMT3B contain a highly conserved DNMT domain known as the MTase domain, and two
chromatin reading domains known as ATRX-DNMT3-DNMT3L (ADD) and PWWP [108].
During the process of de novo methylation, the ADD domain binds to unmethylated H3K4
and subsequently releases the MTase domain, which catalyzes methylation of the target
promoter region [110]. On the other hand, in CpG islands, promoters of actively transcribed
genes typically contain rich H3K4me3 marks [111]. The ADD domain cannot bind to H3K4
and instead binds to the MTase domain, which results in auto-inhibition of the enzyme
activity [108].

During the process of maintaining DNA methylation, DNMT1 in combination with
UHRF1, a member of the ubiquitin-like with PHD and ring finger domain-containing
(UHRF) protein family [51], recognizes hemimethylated CpG dinucleotides at replication
forks and methylates the daughter DNA strand [112]. Thus, the absence or inhibition of
DNMT1 or UHRF1 results in passive DNA demethylation.

DNA methylation was once considered a stable modification down to daughter
cells [51]. However, it has become clear that there is a mechanism of active DNA demethy-
lation through which mammalian methylated DNA can still be reversed to an unmodified
state [113]. Proteins of the ten-eleven translocation (TET) family, including TET1, TET2, and
TET3, can mediate the consecutive oxidation of 5mC to 5-hydroxymethylcytosine (5hmC),
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5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) [113]. All of the oxidized forms
are not recognized by a maintenance mechanism of DNA methylation mentioned above
resulting in DNA demethylation during replication. As for 5fC and 5caC, demethylation
can also be mediated through base removal by thymine DNA glycosylase (TDG) followed
by base excision repair (BER) [108].
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3.4.2. DNA Methylation in AKI-to-CKD Transition

In mouse IRI kidneys, the global level of 5hmC was decreased, whereas that of 5mC
was unchanged. This was accompanied by downregulation of TET1 and TET2, but not
of TET3 [114]. This decrease in 5hmC enrichment was observed in the promoter regions
of the pro-inflammatory genes, Cxcl10 and Ifngr2, which were associated with their in-
creased expression [114]. The transient decrease in genome-wide and CpG methylation
continued for up to 7 days and was associated with the downregulation of gene expression
after IRI for some methylated genes. This suggests that this promoter methylation con-
tributes to the persistent alteration of gene expression [115]. Moreover, hypermethylation
of renoprotective genes, such as Klotho, erythropoietin, and Ras GTPase activating-like
protein 1 (RASAL1), are involved in the progression of CKD after AKI, which may promote
fibrosis [95,116–118].

DNMTS inhibitors including 5-azacytidine (5-aza) and 5-aza-2-deoxycytidine (decitabine),
and hydralazine, which exhibit demethylating activity probably by increasing TET3 ex-
pression, prevent AKI-to-CKD progression by reducing methylation of the downregulated
genes mentioned above to restore their expression [95,116,119]. RASAL1, a renoprotective
gene that inhibits fibroblast activity, is downregulated by promoter methylation and causes
the activation of fibroblasts, an increase in TGF-β and type I collagen secretion, and sub-
sequent progression of interstitial fibrosis [95]. In RASAL1-deleted mice, demethylation
treatment effectively restored RASAL1 expression and successfully delayed AKI-to-CKD
transition [120]. RASAL1 methylation was not observed during mild and reversible injury,
and the level of its methylation was positively correlated with renal fibrosis after severe and
irreversible injury [95]. Low-dose hydralazine induces TET3 expression, which promotes
demethylation of the RASAL1 promoter and results in the inhibition of renal fibrosis after
ischemic injury [119]. Hydralazine is an antihypertensive agent that has been used since
the 1950s and is now mostly used for resistant hypertension and hypertension during
pregnancy [121]. With the advantage of its relatively benign adverse effects and established
safety profile, it is now being investigated for its potential role in epigenetic regulation as a
potential therapeutic agent to prevent CKD progression [122].

The effects of individual epigenetic drugs on the pathology of AKI-to-CKD transition
reviewed above are summarized in Table 1 [51,71,95].
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Table 1. The effects of individual epigenetic agents on the pathophysiology of AKI-to-CKD transition.
The targets of epigenetic drugs and their effects on kidney of animal models are listed.

Drug Target Model Effects on Kidney Ref.

Histone acetylation

HDAC inhibitors

TSA Class I and II HDAC
inhibitor IRI ↓ fibrosis [123]

UUO ↓ fibrosis [124]
PTBA Class I HDAC inhibitor AA ↓ fibrosis, ↓ inflammation [125]

PTBA analogs,
UPHD 25 Class I HDAC inhibitor IRI ↓ fibrosis, ↓ inflammation [126]

FR276457 Class I and II HDAC
inhibitor UUO ↓ fibrosis [127]

Valproic acid Class I HDAC inhibitor IRI ↓ fibrosis, ↓ inflammation [128]
MS-275 Class I HDAC inhibitor LPS ↓ inflammation, ↑ renal function [129]

UUO ↓ fibrosis [130]
IRI ↓ fibrosis [123]
FA ↑ renal injury [131]

TMP195 Class II HDAC inhibitor LPS ↓ inflammation, ↑ renal function [132]
MC1568 Class II HDAC inhibitor UUO ↓ fibrosis, ↓ inflammation [133]
RGFP966 Class I HDAC inhibitor UUO/AA ↑ Klotho, ↓ fibrosis [134]
ACY-1215 Class II HDAC inhibitor UUO ↓ fibrosis [135]
Entinostat Class I HDAC inhibitor IRI ↑ renal function [123,130]

UUO ↓ fibrosis
M4-PTB Class I HDAC inhibitor AA ↑ proliferation [125,136]

IRI ↓ fibrosis, ↓ inflammation

HDAC (SIRT1) activators
Resveratrol SIRT1 activator Cisplatin ↓ inflammation [85]

LPS ↓ inflammation [86]
SRT-1720 SIRT1 activator UUO ↓ fibrosis [137]

IRI ↑ proliferation, ↓ fibrosis [87]

HAT inhibitors
Curcumin HAT p300/CBP inhibitor Cisplatin ↓ inflammation [138]

LPS ↓ inflammation [139]
IRI ↓ fibrosis [88]

Histone methylation

HMT inhibitors
DZNeP HMT EZH2 inhibitor UUO ↓ fibrosis [140]

IRI ↓ fibrosis [100]
Sinefungin HMT SET7/9 inhibitor UUO ↓ fibrosis [101]
BIX01294I HMT G9a inhibitor UUO ↓ fibrosis, ↑ Klotho [102]

DNA methylation

DNMT inhibitors
5-azacytidine DNMT inhibitor UUO ↓ fibrosis [116]

Decitabine DNMT inhibitor UUO ↓ fibrosis, ↑ Klotho [141]
Hydralazine induction of TET3 IRI ↓ fibrosis, ↑ renal function [119]

TSA, trichostatin A; PTBA, phenylthiobutanoic acid; AA, aristolochic acid; LPS, lipopolysaccharide; FA, folic acid;
downward arrows (↓), decreasing; upward arrows (↑), increasing.

3.5. Non-Coding RNAs
3.5.1. Basic Mechanisms of Non-Coding RNAs

Non-coding RNAs, mainly microRNAs and long non-coding RNAs (lncRNAs), play
a role as epigenetic regulators [142]. Non-coding RNAs may be divided into small non-
coding RNAs (<200 nucleotides) and long non-coding RNAs (>200 nucleotides), both of
which regulate gene expression through their respective mechanisms [54].
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Small non-coding RNAs may be divided into three classes: microRNAs, small inter-
fering RNAs (siRNAs), and piwi-interacting RNAs (piRNAs) [54]. MicroRNAs, the most
intensively studied RNAs, contain 21 to 25 nucleotides and function as post-transcriptional
inhibitory regulators of gene expression [51]. MicroRNAs bind to the 3′ untranslated region
(UTR) of their target gene mRNA and exert inhibitory effects by either inducing mRNA
degradation or, more commonly, inhibiting the translation of mRNA into protein [51,143].
The siRNAs are involved in heterochromatin formation and chromosome condensation
through the RNA-induced transcriptional silencing complex and piRNAs contribute to
posttranscriptional silencing of transposons [54,144,145].

Long non-coding RNAs (lncRNAs) can regulate gene expression positively or nega-
tively at both transcriptional and post-transcriptional levels [51,146]. They participate in
various physiological processes including cell proliferation, cell cycle progression, differ-
entiation, apoptosis, and inflammation [95]. During transcriptional regulation, lncRNAs
function by the following mechanisms: recruiting transcriptional regulators, acting as
decoy factors by binding transcription factors or other proteins away from DNA, guid-
ing chromatin-modifying enzymes to their target gene, or serving as a scaffold to recruit
multiple factors to form transcription regulatory complexes [51,147].

3.5.2. Non-Coding RNAs in AKI-to-CKD Transition

Both microRNAs and lncRNAs are important epigenetic regulators during the course
of AKI and the subsequent repair process [51].

MicroRNAs play an important role in regulating various cellular and physiological
processes including cell proliferation, differentiation, organ development, and cell death,
and involve the pathogenesis of a variety of human diseases [51]. By binding to target
genes, they regulate the inflammatory response, cell cycle, and apoptosis during the injury
and repair phases of AKI, thereby affecting the subsequent transition to CKD protectively
or pathogenically [95]. Protective microRNAs that improve kidney function by reducing
the inflammatory response and fibrosis include miR-17-5p, miR-27a-3p, miR-126, miR-
205, and miR-688 [148–152]. On the other hand, pathogenic microRNAs that promote
CKD progression include miR-24, miR-150, miR-181a, miR-494 and miR-687 [153–157].
MiR-21 is generally protective but exhibits a bilateral character in that mild upregulation
inhibits fibrosis and the inflammatory response, whereas sustained upregulation promotes
tubulointerstitial fibrosis following AKI [158].

LncRNAs also play various roles in regulating different physiological processes, such
as cell cycle, cell proliferation, apoptosis, differentiation, and inflammation. They partic-
ipate in AKI-to-CKD transition [95]. Protective lncRNAs include DARS-AS1, MALAT1
(metastasis-associated lung adenocarcinoma transcript 1), and Miat (myocardial infarc-
tion associated transcript) [159–161]. In contrast, NEAT1 (nuclear paraspeckle assem-
bly transcript 1), PRINS (psoriasis susceptibility-related RNA gene induced by stress),
and LINC00520 are examples of pathogenic lncRNAs, which promote disease progres-
sion [148,162,163].

Details on the downstream mechanisms of each non-coding RNA are discussed else-
where. Recent identification of numerous microRNAs suggests the feasibility of microRNA-
based therapy using microRNA mimics or anti-microRNA oligonucleotides [51]. To date,
no microRNAs have been tested in clinical trials for AKI-to-CKD transition; however, future
studies may warrant therapeutic intervention with microRNAs.

3.6. Chromatin Conformational Changes
3.6.1. High-Order Chromatin Architecture

To obtain an overall picture of the regulatory mechanism of gene expression, it is
necessary to focus on the involvement of the high-order structure of chromatin. Within the
nucleus, chromosomes occupy distinct territories and their radial locations are associated
with gene content and activity [164]. Gene-poor, repressed regions are close to the nuclear
periphery and are often in close contact with the nuclear lamina (NL) [165]. These transcrip-
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tionally silent, large genomic regions interact with the NL and are called lamina-associated
domains (LADs) [166]. There are >1000 LADs distributed throughout the mammalian
genome comprising about 35% of the genome [166,167]. Moreover, inactive chromatin
compartments can aggregate near the nuclear chromocenter (pericentromere-associated
domains; PADs) [168] and are localized to the nucleolar periphery (nucleolus associating
domains; NADs) [164,169]. By contrast, gene-rich, activated regions are often localized
centrally, and also at nuclear pore complexes [164].

In the lower scale, transcriptional regulation involves long-range interactions between
regulatory elements, including enhancers and their target genes [164]. Enhancers are key
regulatory DNA elements that control gene expression by engaging in physical contact
with their target gene promoters, often over considerable genomic distances [170]. The
recent advances in chromosome conformation capture (3C) and its derivatives, such as
4C, 5C, Hi-C (High-through chromosome conformation capture), and ChIA-PET (chro-
matin interaction analysis with paired-end tag sequencing), have enabled us to explore
the detailed 3D architecture of the genome [171]. The 3D architecture may be organized
into hierarchical layers, which are intended to represent structural and functional build-
ing units of genome organization, including topologically associating domains (TADs)
and chromatin loops, often described as “insulated neighborhoods”, “loop domains”, and
“CTCF contact domains” [170]. TADs are megabase-sized regions that confine the accessible
space of regulatory elements, such as enhancers [164]. They are fundamental, structural,
and functional units that are surrounded by boundary elements, including the insulator
binding protein, CTCF (CCCTC-binding factor), across which the probability of chromatin
interactions is reduced [164,172,173]. TADs are considered to function as microenviron-
ments that promote intra-domain spatial interaction, thereby increasing the possibility
of encounters among regulatory elements within the 3D nuclear space [170]. The latter,
chromatin loops, are formed between two convergent CTCF regions that are coupled by
cohesin and are believed to function as structural units of transcription [170]. They also
raise the frequency of intra-domain interaction by confining enhancers to limited spatial
domains, thereby activating gene expression [170]. These emerging local dynamics in
chromatin conformation are important contributors to transcriptional regulation and may
represent therapeutic targets.

3.6.2. Chromatin Conformational Changes in AKI-to-CKD Transition

Brandt et al. revealed genome-wide alterations of the chromatin conformation in the
TECs of fibrotic kidneys, focusing on CKD-associated susceptibility regions by conducting
circular chromosome conformation capture (4C) analysis [174].

Wilflingseder et al. used ChIP-seq combined with RNA-seq of renal cortexes 2 days
after IRI and identified several transcription factors that bound specifically to enhancer and
super-enhancer sites [175]. They revealed enhancer dynamics and transcriptional changes
during kidney repair. They also showed that the enhancer dynamics following AKI are
dependent upon BRD4 in the kidney [175]. BRD4 is a member of the BET protein family and
pharmacological inhibition results in therapeutic activity against various pathologies, such
as cancer and inflammation [176]. BET protein family members interact with several key
proteins involved in transcriptional regulation at enhancer sites [177]. They showed that
BET inhibitors have different molecular effects in the kidney depending on the timing after
injury [175], which suggests a therapeutic use for BET inhibitors with timely administration.

Crump et al. recently demonstrated that a decrease in BRD4 and mediator binding
at the enhancers inhibited gene expression dramatically and rapidly; however, structures
of enhancer–promoter looping remained stable, which suggests that the promotion of
transcription and stabilization of enhancer–promoter interactions are separable events,
and that the presence of an enhancer–promoter loop itself is not sufficient for maintaining
transcription [178]. Further studies will elucidate the detailed mechanism of transcriptional
regulation at this enhancer–promoter interaction level.
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4. Future Perspectives

In this review, we summarized the known pathophysiology of AKI-to-CKD transition
and the current state of progress in the application of epigenetics to this process. Epigenetic
alterations, including histone modification, DNA methylation, non-coding RNAs, and
chromatin conformational changes, are largely involved in various pathologies contributing
to the disease progression of AKI-to-CKD transition (Figure 6). Coupled with remarkable
progress in various modern sequencing technologies, the field of epigenetics is making
rapid progress. The continued production of an increasing body of evidence will clarify the
detailed mechanisms of gene expression that are keys to elucidating the pathophysiology
of various diseases. However, from the perspective of clinical applications, there are still
many issues to be solved for epigenetic interventions including specificity. In particular,
when treating non-cancer diseases, target specificity is one of the most important issues
because of the issues of serious adverse effects and low efficacy of the intervention. To solve
these problems, in addition to drug-side ingenuity, such as increasing target specificity and
improving drug delivery, proper timing of the intervention is also an important factor to
consider. As discussed above, AKI-to-CKD transition consists of some temporal phases and
there are several temporal-specific gene expression patterns associated with the function of
gene clusters, which enables us to improve target specificity by a timely specific approach
to their epigenetic regulation mechanism. In addition, the time-course of AKI-to-CKD
suggests the occurrence of epigenetic “memory” in the pathogenesis; thus, the first insult
may have a long-term effect in the subsequent chronic phase, even after the recovery.
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In the clinical setting, AKI is a very common community-acquired condition accom-
panied by various situations, such as volume depletion, sepsis, and chemotherapy with
nephrotoxic agents, with a prevalence of up to 8 to 18% in hospitalized patients [81]. Cur-
rently, there are no effective therapies to intervene on the acquired predisposition to CKD
progression for AKI survivors. Therapeutic agents that prevent the progression to CKD,
which could be administered after suffering AKI or in the subsequent outpatient follow-up,
would be very valuable and innovative.

AKI-to-CKD transition is considered to be a good target for epigenetic intervention.
Further research will elucidate its detailed mechanism and lead to the development of
novel therapeutic agents.
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