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Abstract The construction and characterization of a core

kinetic model of the glucose-stimulated insulin secretion

system (GSIS) in pancreatic b cells is described. The model

consists of 44 enzymatic reactions, 59 metabolic state

variables, and 272 parameters. It integrates five subsys-

tems: glycolysis, the TCA cycle, the respiratory chain,

NADH shuttles, and the pyruvate cycle. It also takes into

account compartmentalization of the reactions in the

cytoplasm and mitochondrial matrix. The model shows

expected behavior in its outputs, including the response of

ATP production to starting glucose concentration and the

induction of oscillations of metabolite concentrations in the

glycolytic pathway and in ATP and ADP concentrations.

Identification of choke points and parameter sensitivity

analysis indicate that the glycolytic pathway, and to a

lesser extent the TCA cycle, are critical to the proper

behavior of the system, while parameters in other compo-

nents such as the respiratory chain are less critical. Nota-

bly, however, sensitivity analysis identifies the first

reactions of nonglycolytic pathways as being important for

the behavior of the system. The model is robust to deletion

of malic enzyme activity, which is absent in mouse pan-

creatic b cells. The model represents a step toward the

construction of a model with species-specific parameters

that can be used to understand mouse models of diabetes

and the relationship of these mouse models to the human

disease state.

Introduction

Type 2 diabetes mellitus (T2DM), along with associated

problems such as hypertension, dyslipidemias, and obesity,

is an increasing problem in human populations: 150 million

individuals are currently affected and a rapid expansion is

expected during the next 20 years (Freeman and Cox 2006).

Human genetic studies provide strong evidence that predis-

position to T2DM, and in particular its defining phenotype,

glucose intolerance, has a complex genetic basis (McCarthy

2004). This is supported by studies in animal models. A

significant number of candidate genes for involvement in

predisposition to T2DM are implicated in pancreatic b-cell

dysfunction (Freeman and Cox 2006). Glucose-stimulated

insulin secretion (GSIS) is the pivotal homeostatic process in

the control of blood glucose levels and takes place in pan-

creatic b cells (Ashcroft and Rorsman 2004). GSIS takes in a

number of relatively well characterized biochemical path-

ways such as glycolysis, the TCA cycle, and the respiratory

chain (Fig. 1A), but new discoveries implicate novel fea-

tures of b-cell biochemistry (Eto et al. 1999; Newgard et al.

2002; Ronnebaum et al. 2006; Rubi et al. 2004). The effects

of individual mutations on the GSIS system are not always

intuitively obvious and qualitative descriptions do not allow

for a quantitative analysis of these effects. It should be

possible to overcome these problems by building explicit

mathematical models of the system.

Systems biology aims at system-level understanding of

biological processes and how a system’s behavior emerges
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from the interactions among its components. An objective

milestone for successful cell simulation might be the con-

struction of a whole metabolic model. Consequently, bio-

chemical dynamic models composed of a relatively large

number of metabolic reactions are being developed.

Examples are models of central carbon metabolism in

E. coli (Chassagnole et al. 2002; Varner 2000), glycolysis in

lactic acid bacteria (Hoefnagel et al. 2002), mitochondrial

Fig. 1 Pathways involved in GSIS. A Diagrammatic representation

of processes linking glucose uptake to insulin secretion in pancreatic

b cells. The diagram represents processes taking place in the presence

of extracellular glucose. Glucose is imported into the b cell and

undergoes glycolysis. The primary product of glycolysis is pyruvate,

which is imported into mitochondria. Malate, an intermediate product

of glycolysis and NADH, also a product of this pathway, may also be

imported into mitochondria via the NADH shuttles. Malate is

converted to fumarate, which is also a product of the TCA cycle

fed by pyruvate and is a substrate of the respiratory chain, whose end

product is ATP. Imported NADH can also feed into the respiratory

chain. Pyruvate may also be recycled from the mitochondrial matrix

to the cytoplasm via the pyruvate cycling pathway. ATP interacts

with the KATP channel to block it, resulting in an increase in

intracellular K+ and depolarization of the cell membrane. This in turn

leads to activation of the voltage-gated Ca2+ channel, influx of Ca2+,

and activation of insulin granule exocytosis. B Overview of the

kinetic network modeled. Reactions are represented as arrows (which

may be uni- or bidirectional) and labeled v1 to v44. Metabolites,

which are transformed by the reactions, are labeled according to their

cellular location: metabolites in the cytoplasm and intermembrane

space are labeled in blue, and metabolites in the mitochondrial matrix

are labeled in black. Enzymes catalyzing reactions are labeled in

brown. Abbreviations are as in Table 1
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NADH shuttles and anaplerosis in b cells (Westermark et al.

2006), and mitochondrial ATP production (Bertram et al.

2006; Magnus and Keizer 1997, 1998a, 1998b). The

advantage of such detailed, biochemically formulated

models is that a one-to-one comparison can be made be-

tween model and experiment. Thus, they provide platforms

that allow discovery of new intrinsic biological properties.

A number of mathematical and computational models

have been developed related to the GSIS system. Topp

et al. (2000) designed a model that includes three ordinary

differential equations (ODEs) representing the dynamics of

glucose and insulin within the mass of b cells. As a coarse-

grid model, the model concentrates on investigating the

normal behavior of the glucose regulatory system and

pathways into diabetes. Another minimal model was

developed by Bertram et al. (2006). They built a simplified

ATP synthesis model based on earlier models of oxidative

phosphorylation (Magnus and Keizer 1997, 1998a, 1998b)

to capture the same behavior as in Magnus and Keizer’s

models. In the Bertram et al. model, they took pyruvate as

the main input of their system and ATP as the end product.

Four mitochondrial variables (NADHm, ADPm, DW, and

Cam) are described with equations corresponding to the

dynamics of different types of fluxes or reactions. With

their simplified model they investigated the dynamics of

the four mitochondrial variables versus the change of

glycolytic flux and pulses of calcium. A more refined

simulation model for the mitochondrial system was

developed by Yugi and Tomita (2004). In this model 58

enzymatic reactions and 117 metabolites are included to

represent four pathways (respiratory chain, the TCA cycle,

fatty acid b oxidation, and the inner-membrane transport

system) in mitochondria. Previously published enzyme

kinetics studies from the literature were integrated into a

single dynamic model using the E-cell2 simulation plat-

form (http://www.e-cell.org).

Following recent research on the importance of NADH

shuttles in ATP production, a mathematical model of

mitochondrial NADH shuttles has been developed by

Westermark et al. (2006). The model comprises the mito-

chondrial NADH shuttles and mitochondrial metabolism,

which in total included 19 enzyme reactions and 10

metabolites with simplifications on the boundary of the

system. The model reproduces the experimental finding by

Eto et al. (1999) that blocking the NADH shuttles attenu-

ates the signaling to ATP production while retaining the

rate of glucose oxidation. Besides the model of NADH

shuttles, Westermark and Lansner (2003) also constructed

a model of the upper part of glycolysis in the pancreatic b
cell. The model concentrated on studies on the enzymatic

reactions of PFK (phosphofructokinase), which has been

shown to control metabolite oscillations in the glycolysis

pathway. Although more and more computational dynamic

models have been constructed, a complete, detailed kinetic

model with a large number of enzyme rate equations

mimicking the dynamics from glucose input to ATP pro-

duction has not been developed so far.

We therefore initiated the development of a quantitative,

kinetic model of the core processes in GSIS as an aid to

understanding genetic and biochemical data in mouse

models of T2DM. Constructing such a model poses a sig-

nificant technical and intellectual challenge because the

GSIS system consists of at least five biochemical sub-

pathways (glycolysis, TCA cycle, the respiratory chain,

NADH shuttles, and the pyruvate cycle) that take place in

more than one cellular compartment (cytoplasm and

mitochondrion). In addition, the system consists of a large

number of interacting metabolites and enzymes. Here we

describe a kinetic model of the pathways leading from the

beginning of glycolysis to ATP production, which we call

the core process. We show that the model has qualitative

properties consistent with expectations, including showing

oscillations in the glycolysis pathway and in ATP con-

centration. We also discuss some analyses of the properties

of the network and its applicability to mouse models and

the understanding of human disease.

Methods

We used mathematical modeling in which all metabolite

interactions are described in terms of kinetic equations.

The components of our mathematical model are kinetic

parameters and state variables, which indicate the state of a

system at a certain time. The kinetic parameters include

Michaelis-Menten constants, rate constants of association

and dissociation, etc. Most of the kinetic parameters were

taken from the literature (see Supplementary Materials).

Our model is based on ODEs and consists of 44 enzy-

matic reactions, 59 metabolic state variables, and 272

parameters. The number of parameters is large because

most of the rate equations inside the mitochondrion follow

complex reaction mechanisms (Ping-pong Bi Bi, Ordered

Bi Bi, etc.), although identical reactions in different com-

partments have been assumed to have the same parameters.

The following is a representative derivation of one of the

59 ODEs. To determine the change in the concentration of

a certain metabolite [mi] over time, we calculate the sum of

the reaction rates producing [mi] minus the rates consum-

ing [mi]. Thus, we get the following differential equation,

where i represents one of the 59 metabolites:

d mi½ �
dt
¼
X

mproduction �
X

mconsumption

The simulation is then equivalent to solving the following

differential equations:
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d mi½ �
dt
¼ f t; mi½ �; pð Þ

m t0ð Þ ¼ m0 pð Þ

in which p represents the parameters in the model.

Constructing the network

There is a growing appreciation of the complexity of the

pathways involved in GSIS from pancreatic b cells. Tra-

ditionally, it has been accepted that an increase in the ATP/

ADP ratio brought about by glucose flux through glycolysis

and the tricarboxylic acid (TCA) cycle is central to the

GSIS. In addition, it has been demonstrated that the con-

tributions of the TCA cycle and NADH shuttle system to

mitochondrial ATP production may be approximately

equal (Eto et al. 1999; Rubi et al. 2004). Recently, the role

of cytosolic NADP-dependent isocitrate dehydrogenase

(ICDc) in control of GSIS in b cells has been studied

(Newgard et al. 2002; Ronnebaum et al. 2006). From these

studies it has been concluded that the pyruvate cycling

pathway involving ICDc plays an important role in the

control of GSIS. Therefore, in our model we included five

subpathways: glycolysis, the TCA cycle, the respiratory

chain, NADH shuttles and the pyruvate cycle, as shown in

Table 1 and Fig. 1B. Reactions represented by arrows in

Fig. 1B are specified in detail in the Supplementary

Materials. The molecular components (metabolites and

enzymes) of the model are shown in detail in Supple-

mentary Table 1. ATP is a natural point at which to sep-

arate these core metabolic processes from downstream

processes taking place at or near the cell membrane (KATP

channels, voltage-gated Ca2+ channels, and insulin granule

exocytosis) because it integrates the outputs of the various

metabolic pathways.

Three compartments are considered in our model: the

mitochondrial matrix, mitochondrial intermembrane space,

and the cytoplasm surrounding the mitochondrion. All the

enzymatic reactions are represented by rate equations.

Cytoplasmic and mitochondrial pools of metabolite are

treated separately, as are cytoplasmic and mitochondrial

reactions. Table 1 contains details of cytoplasmic and

mitochondrial metabolites and associations of the various

reactions and metabolites with individual subpathways.

The reactions within the mitochondrion are based on the

work done by Yugi and Tomita (2004) (see their article for

references to original studies). Other reactions (Halestrap

1975; Matsuoka and Srere 1973; Påhlman et al. 2002;

Swierczynski 1980) were collected from the SABIO-RK

database (http://www.sabio.villa-bosch.de/SABIORK/).

The initial metabolite concentrations are taken from the

literature. The matrix volume is set at 4.3 · 10–16 in

correspondence to the Yugi-Tomita model. The volume of

cytoplasm is taken to be 6.5 · 10–12 L.

The metabolite and enzyme concentrations, rate equa-

tions, and kinetic parameters were formulated and trans-

ferred into SBML (Systems Biology Markup language;

Hucka et al. 2004) for simulation. Simulations are per-

formed by CVODE solvers (SUNDIALS suite) (Hindmarsh

et al. 2005; Serban and Hindmarsh 2005) with Matlab

(Mathworks, Natick, MA) and the Systems Biology Tool-

box (Schmidt and Jirstrand 2006).

Because our initial set of parameters came from differ-

ent sources, we needed to make them all consistent in this

system. To do this we assumed the parameters within one

reaction to be constant, then we scaled the rate equations

appropriately.

Network analysis

Choke point analysis was performed using the Pathway

Hunter Tool (Rahman and Schomburg 2006) to identify the

enzymes or reactions that are crucial for the network. A

choke point is defined as an enzyme or reaction that un-

iquely consumes and/or produces a certain metabolite.

Normally, the simulation results of a large-scale model

depend on various parameters, through the parameters of

rate equations and the initial conditions. Sensitivity anal-

ysis measures the sensitivity of the simulation results with

respect to the model parameters to estimate which

parameters are most influential in affecting the behavior of

the simulation. The solution of sensitivity with respect to

the model parameter pi is defined as the vector

si tð Þ ¼ @m tð Þ
@pi

and satisfies the following equations:

si ¼
@f

@m
si þ

@f

@pi

si t0ð Þ ¼
@m0 pð Þ
@pi

The outputs of the above partial equations are parameter

sensitivity trajectories (versus time). For each trajectory,

the bigger the changes the more the model simulation re-

sults are sensitive to the related pi and vice versa. We

calculated the sensitivity trajectories and scaled them into

0–1 (shown as a matrix) to show parameter sensitivities

versus simulation output of the model. Sensitivity analysis

was performed with the SBaddon package v1.1 and the

Systems Biology Toolbox (Schmidt and Jirstrand 2006) for
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Table 1 Membership of subpathways in the model

Subpathway Reactions Enzymes Metabolites

Glycolysis

(cytoplasmic)

v1-v7 Glucokinase (GK) Glucose (GLC)

6-Phosphofructokinase (PFK) Fructose-6-phosphate (F6P)

Fructose-bisphosphate aldolase (FBA) ADP(cyt)

Glyceraldehyde 3-phosphate dehydrogenase (GAPD) ATP(cyt)

Bisphosphoglycerate phosphatase (PGP) Fructose-1,6-bisphosphate

(FBP)

Pyruvate kinase (PK) Glyceraldehyde 3-phosphate

(GAP)

Lactate dehydrogenase (LDH) 1,3-bisphospho-D-glycerate

(DPG)

NAD+(cyt)

NADH(cyt)

Phosphoenol pyruvate (PEP)

Pyruvate (PYR(cyt))

Lactate (LAC)

TCA cycle

(mitochondrial)

v9-v12, v14-v18, v23,v36 Pyruvate dehydrogenase complex (PDC) Carbon dioxide (CO2)

Citrate synthase (CS) Citrate (Cit)

Aconitase (ACO) Coenzyme A (CoA)

Isocitrate dehydrogenase (NAD+) (IDHa) Oxaloacetate (OXA)

Phosphate carrier (PiC) Acetyl_CoA

Oxoglutarate dehydrogenase complex (OGDC) Isocitrate (IsoCit)

Succinyl-CoA synthetase (SCS) Oxoglutarate (OG)

Succinate dehydrogenase (SDH) Phosphate (Pi)

Fumarase (FM) Succinyl-CoA (SCoA)

Malate dehydrogenase (MDH) Succinate (Suc)

Aspartate transaminase (AspTA) Guanosine diphosphate (GDP)

Nucleoside diphosphate kinase (NDK) Guanosine triphosphate (GTP)

Pyruvate carboxylase (PC) Fumarate (Fum)

Ubiquinone (Q)

Ubiquinol (QH2)

Malate (Mal)

Glutamate (Glu)

Aspartate (Asp)

ADP

ATP

PYR

Respiratory chain

(mitochondrial)

v24-v26, v28 Complex-I NAD+

Complex-III NADH

Complex-IV Q

Complex-V QH2

Ferricytochrome C (Cyt_c2+)

Ferrocytochrome C (Cyt_c3+)

Water (H2O)

ADP

ATP

Pi
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Table 1 continued

Subpathway Reactions Enzymes Metabolites

NADH shuttles V16-v18, v20-v22, v30-v32,

v34-v35, v37-v38

FM NAD+

Alanine transaminase (AlaTA) NADH

SDH NAD+(cyt)

AspTA NADH(cyt)

Aspartate/glutamate carrier (AGC) OXA

Oxoglutarate carrier (OGC) OXA(cyt)

MDH OG

ETF:Q oxidoreductase (ETF-QO) OG(cyt)

Glutathione reductase (GSSGR) Q

Pyruvate carboxylase (PC) QH2

Glycerol-3-phosphate dehydrogenase

(FAD dependent) (GUT2P)

Mal

Glycerol-3-phosphate dehydrogenase (NAD+) (G3PD) Mal(cyt)

Glu

Glu(cyt)

Asp

Asp(cyt)

Electron Transfer Flavoprotein

(oxidized form) (ETF_ox)

Electron Transfer Flavoprotein

(reduced form) (ETF_red)

FAD

FADH2

Dihydroxyacetone-phosphate

(DHAP)

Glycerol-3-phosphate (G3P)

Fum

Suc

Pyruvate Cycle v10-v12, v18, v27, v29-v31,

v33, v36, v39, v41-v42, v44

CS NAD+

ACO NADH

IDHa NAD+(cyt)

OGC NADH(cyt)

PC Cit

Citrate carrier (CIC) Cit(cyt)

Malate dehydrogenase (oxaloacetatedecarboxylating) IsoCit

(NADP+) (ME) IsoCit(cyt)

Cytosolic isocitrate dehydrogenase (NADP+) (IDHc) Mal

MDH Mal(cyt)

NADP+

NADPH

NADP+(cyt)

NADPH(cyt)

Acetyl-CoA

Acetyl-CoA(cyt)

CoA

CoA(cyt)
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Matlab, which was also used to perform correlation anal-

ysis. Correlation analysis calculates the correlated behavior

of parameters in the system during sensitivity analysis and

can be taken as an indication of concerted behavior, or

constraints, of reactions or reaction parameters.

Results

Performance analysis

The most basic dynamic property of the GSIS system is

oscillation along glycolysis (see Westermark and Lansner

2003) and the concentration relationship between ATP and

glucose (Detimary et al. 1996). Figure 2 shows dynamic

simulation results of some metabolites in the network. The

metabolites along the glycolysis pathway show the desired

oscillations. The metabolites outside the glycolysis path-

way (e.g., malate and citrate inside the mitochondrion) did

not show oscillations. ADP and ATP showed oscillations,

as required for stimulation of Ca2+ transport in b cells

(Westermark and Lansner 2003). ATP concentration in-

creased with the change of glucose concentration from 0 to

20 mM, while ADP concentration decreased. Figure 3

shows the concentration change of ATP with changes of

glucose concentration. Consistent with the observations of

Detimary et al. (1996), the model predicts ATP levels to

increase more than twofold between 0 and 10 mM glucose

and then plateau. At 6 mM glucose, the ATP level was

1.78-fold higher than the initial state concentration. ADP

progressively decreased to 0 mM as glucose increased from

0 to 6 mM (data not shown). It should be noted that the

ATP concentrations predicted by the model represent an

upper bound on intracellular ATP concentration because

they do not take into account consumption of ATP by KATP

channel activity and other cellular processes.

Deletion of malate dehydrogenase

MacDonald (2002) reported that murine pancreatic islets do

not contain detectable levels of malic enzyme (malate

dehydrogenase; ME), whereas human and rat islets do. We

Table 1 continued

Subpathway Reactions Enzymes Metabolites

OXA

PYR

PYR(cyt)

ATP

ADP

Pi

CO2

Matabolite transport v8, v13, v19, v30, v33,

v40, v42-v43

Pyruvate Carrier (PYC) PYR (cyt)

Phosphate Carrier (PiC) PYR

Dicarboxyrate Carrier (DIC) Pi(IMS)

OGC Pi

CIC Mal

ATP/ADP Carrier (AAC) Mal(cyt)

Cit

Cit(cyt)

IsoCit

IsoCit(cyt)

OG

OG(cyt)

ATP

ATP(cyt)

ADP

ADP(cyt)

The table provides information on the reactions, enzymes, and metabolites associated with each of the subpathways included in the model.

Abbreviations used for enzymes and metabolites elsewhere in the article are given in parentheses. Cytoplasmic and metabolic metabolites are

distinguished where relevant.
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therefore simulated the effect of removing ME from the

model. The model showed a 7.5% increase in cytoplasmic

malate concentration and a 9.6% decrease in pyruvate on

deletion of ME, as well as small effects on the concentrations

of some other metabolites (of the order of 1%–2%). However

the resultant ATP concentration was not significantly altered.

The oscillatory behavior of the model was also unaffected.

Network analysis

Choke point analysis

A choke point is defined as a reaction that uniquely con-

sumes and/or produces a certain metabolite. Choke points

are critical points in networks (Yeh et al. 2004). In our

network inactivation of choke points may lead to a failure to

produce or consume particular metabolites that could cause

serious problems for ATP production. To detect choke

points we input the EC numbers of all enzymes in our

Fig. 2 Simulation results of the model. Plots of the variation in concentration of selected metabolites from a starting state with successive cycles

of the model. Concentrations are represented as molar concentrations. The x axis represents individual sequential states of the model

Fig. 3 Relationship of ATP with glucose. The graph shows the effect

of varying input glucose concentration on the final ATP concentration

of the model after 500 cycles of modeling
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network into the Pathway Hunter Tool (PHT; Rahman and

Schomburg 2006). Six enzymes were identified as choke

points: GK (E.C.2.7.1.2; glucokinase), PFK (E.C.2.7.1.11;

6-phosphofructokinase), FBA (E.C. 4.1.2.13; fructose bis-

phosphate aldolase), PGP (E.C.5.4.2.1/5.4.2.4; bisphos-

phoglycerate phosphatase), PK (E.C.2.7.1.40; pyruvate

kinase), and NDK (E.C.2.7.4.6; nucleoside diphosphate

kinase). Five of these are in the glycolysis pathway; we

therefore conclude that glycolysis is the most critical sub-

pathway for the functioning of the network.

Parameter space analysis

Because the glycolysis pathway is the critical pathway in

our system and shows oscillations, we calculated the

parameter ranges for oscillations in the pathway. The re-

sults are shown in Fig. 4. The oscillation behavior of the

pathway is sensitive to parameters of reactions v2, v5, and

v6. Thus, we predict that the enzymes PFK, PGP, and PK

have crucial influences on oscillation, whereas reaction v3

catalyzed by FBA is the most robust reaction.

Sensitivity and correlation analysis

With a detailed biochemically formulated model, it is

convenient to analyze the behavior of any metabolite of

interest within the system. However, for analysis of the

global properties of the system, the model could be sim-

plified. Sensitivity analysis-based methods can be used to

identify those parts of the model that are relatively unim-

portant for the properties of the system, and those parts

could be eliminated from the model (Dano et al. 2006).

Sensitivity analysis also provides an indication of the

biological realisticness of the model. We therefore per-

formed sensitivity analysis of the parameters along each

subpathway using SBaddon and the Systems Biology

Toolbox (Schmidt and Jirstrand 2006). Figure 5A shows

the analysis results for the glycolysis pathway. The rest of

the results are shown in the Supplementary Materials. We

can see that along the glycolysis pathway parameters in

reactions v1, v2, v6, and v8 have the most effect on the

state variables. Three reactions in the TCA cycle also

showed a high level of sensitivity: v9, v14, and v17. The

other subpathways in the model showed less sensitivity to

parameter changes than glycolysis. Typically, any sensi-

tivity observed lay at the beginning of a particular sub-

pathway. Thus, sensitivity was observed at reaction v9 at

the beginning of the TCA cycle (from the perspective of

incoming pyruvate), at reaction v17 in the NADH: malate

aspartate shuttle, which is the reaction consuming incom-

ing malate, at reaction v24 in the NADH:glycerophosphate

shuttle, which is the first step of the respiratory chain, and

at reactions v41 and v44 of the pyruvate cycle.

Correlation analysis is based on the output from sensi-

tivity analysis and represents concerted behavior of

parameters in the system. Correlation analysis of glycolysis

(Fig. 5B) shows strong interreaction correlations between

most of the reactions in the pathway with the exception of

reaction v8 (pyruvate transport across the mitochondrial

membrane), which showed only self-correlation. Strong

cross-correlation was also observed in the pyruvate cycle.

In the other subpathways, particularly the TCA cycle and

NADH:malate aspartate shuttle, little evidence of correla-

tion was seen between reactions. However, correlation was

Fig. 4 Parameter space for oscillations (glycolysis pathway). The

plot represents ranges of individual parameters (represented as

relative values compared with those presented in Supplementary

Table 3) for which the model produced oscillations in the glycolysis

pathway. A complete list of modeling parameters with their origins is

provided in the Supplementary Materials
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seen only in the NADH:glycerophosphate shuttle between

reactions v28, v40, and v43 (import of ADP into the

mitochondrion, production of ATP by complex V, and its

export) and reactions v38 (the start of the NADH:glyc-

erophosphate shuttle, catalyzed by G3PD [glycerol-3-

phosphate dehydrogenase]) and v4 (catalyzed by GAPD

[glyceraldehyde-3-phosphate dehydrogenase]).

Discussion

In this article we describe a mathematical model of the core

dynamics of the glucose-stimulated insulin secretion

(GSIS) pathway of pancreatic b cells. This model draws on

a body of previous work on the modeling of the glycolysis

pathway (Nielsen et al. 1998) and mitochondrial metabo-

lism (Yugi and Tomita 2004 and references therein) but

brings in additional features, notably NADH shuttles and

the pyruvate cycle (Eto et al. 1999; Newgard et al. 2002;

Ronnebaum et al. 2006; Rubi et al. 2004), to provide a

more comprehensive view than has previously been

available. The model calculates the changes over time in

the concentration of 59 metabolites. We have assessed the

behavior of the model with respect to two core properties

of the GSIS system: (1) the relationship between ATP

output and glucose input concentrations and (2) oscillations

of metabolite concentration in the glycolysis pathway. By

measuring the nucleotide content of islets isolated from

NMR1 mice, Detimary et al. (1996) showed a twofold

increase in ATP content between 0 and 10 mM starting

glucose concentration, with a subsequent flattening off of

the rate of increase. Our model shows the same pattern of

ATP concentration change (Fig. 3). Oscillations in the

glycolysis pathway are a well-established feature of the

system (Westermark and Lansner 2003) and are observed

Fig. 5 A Sensitivity analysis.

Individual parameters from

reactions in the pathway are

arranged vertically and

metabolites are arranged

horizontally. Sensitivity values

on a scale from 0 to 1 are

plotted as brown scale boxes at

the intersections of the

respective columns and rows.

High-sensitivity interactions are

white, as indicated by the scale

on the right. Membership of

subpathways and intracellular

locations are indicated by bars

below the figure. B Correlation

analysis. In this case parameters

are arranged both vertically and

horizontally in the same order

so that the diagonal represents

self-correlation. High

correlations are represented by

light browns
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in our model for a number of metabolites in this pathway

but not for metabolites outside glycolysis (Fig. 2).

Metabolites showing oscillatory behavior in our simula-

tions do include ATP and ADP, which have been shown to

show coordinated oscillations with glucose-6-phosphate

concentration, calcium concentration, and insulin secretion

(Deeney et al. 2001; Nilsson et al. 1996).

Figure 4 summarizes investigations designed to map the

parameter ranges within which oscillations in the glycol-

ysis pathway are observed in our model. This study iden-

tifies the reactions catalyzed by PFK, PGP, and PK

(reactions v2, v5, and v6 in Fig. 1B) as being particularly

sensitive to parameter changes, while reaction v3 was

particularly insensitive to parameter changes. PFK was

previously identified as being central to the oscillatory

behavior of this pathway and in particular for modulating

the frequency of oscillations (Westermark and Lansner

2003), but roles for PGP and PK are not well established

and merit further investigation.

We also investigated the global properties of our system.

Choke point analysis (Rahman and Schomburg 2006; Yeh

et al. 2004) identifies reactions that either uniquely con-

sume a specific substrate or uniquely produce a specific

product. These are suggested to be particularly sensitive

points in metabolic networks (Yeh et al. 2004). We iden-

tified six enzymes—GK, PFK, FBA, PGP, PK, and

NDK—as choke points. Five of these are in the glycolysis

pathway, the exception being NDK, suggesting that defects

in the glycolytic pathways are likely to be particularly

deleterious to insulin secretion. Intriguingly, the first of

these enzymes, GK, has been found to be mutated in

Maturity-Onset Diabetes of the Young, Type II (MODY 2)

(Vionnet et al. 1992). This raises the possibility that choke

point analysis of particular systems may help identify

candidate genes.

Sensitivity analysis of the glycolysis pathway (Fig. 5A)

indicates that four reactions (v1, v2, v6, and v8) are sen-

sitive to changes in parameter values. Three of the five

choke points in the glycolysis pathway are also identified

by sensitivity analysis as important. Reaction v1 is cata-

lyzed by GK, which has been argued to be the primary

control point of glycolysis, i.e., it controls the flux through

the pathway (Matschinsky et al. 1998; Sweet and Mats-

chinsky 1995; Wang and Iynedjian 1997). V2 is the PFK

reaction discussed above, while v6 is the PK reaction,

which is also a choke point on the glycolytic pathway. V8

is the transport of pyruvate into the mitochondrion, whose

effects are notably not correlated with the rest of the gly-

colytic pathway. Outside the glycolytic pathway the model

is relatively resistant to perturbation. However, it does

show significant sensitivity in reactions v9 of the TCA

cycle (the first step after pyruvate import), v17 of the

NADH:malate aspartate shuttle (the first reaction con-

suming imported malate), v24 of the NADH:glycerophos-

phate shuttle (first reaction of the respiratory chain), and

v41 and v44 of the pyruvate cycle. Therefore, these may be

important control points in the network.

Taken together, these properties of the GSIS core model

are consistent with previous experimental and modeling

results. It should be emphasized, however, that the con-

centrations of metabolites that our model predicts have not

been tested against experimental evidence. In addition, the

parameters of our model, although based on published

values and producing acceptable qualitative behavior, have

not been optimized as a concerted set. That is, although we

have considered the effects of altering individual parame-

ters on the behavior of the system, we have not explored

parameter space in a consistent way to estimate an optimal

set of values or range of values (e.g., Liebermeister and

Klipp 2005). To do this we will require a set of experi-

mental measurements tailored to the optimization of the

model. The value of generating such a data set will lie in

testing our ability to test the relationships between mea-

sured metabolite concentrations and in the model optimi-

zation per se.

The utility of this model is expected to lie in its ability to

aid our understanding of processes leading to type II dia-

betes (although it may also have other uses). To do this we

will need to extend it to include additional processes, most

notably the generation and detoxification of reactive oxy-

gen species, which has recently been implicated in a mouse

model of type II diabetes (Freeman et al. 2006a, 2006b),

and downstream processes leading to the transport of cal-

cium in response to fluctuations in ATP concentration and

the eventual export of insulin.

Comparative aspects

An important consideration of future analysis will be the

comparative aspects of the model. There are two significant

issues. First, the structure and parameterization of the

current model draw from a number of different studies that

have been performed either under different conditions or in

different species. Our aim is to build a model that repre-

sents the situation in mouse pancreatic b cells rather than a

generic model. This will require optimization of parame-

ters against experimentally determined concentrations of

metabolites under different glucose concentrations and in

the absence of specific enzyme activities. This optimization

will bear on our second major issue, which is the ability to

assess the utility of particular mouse models in the human

context. The use of the mouse as a model of human disease

is predicated on the assumption that it represents a good

approximation of the human state. This assumption is

usually based on the relatively close phylogenetic and se-

quence relationship between humans and mice, but sys-
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tematic study of similarities and differences is lacking.

Studies of this kind will be important from an evolutionary

perspective, i.e., identifying the kinds of changes that can

take place in core parts of metabolism as well as aiding in

the understanding of human disease states. We can foresee

a range of potential studies that could increase an under-

standing of this question. These could range from studies of

the parts list (are all the necessary genes present in both

species? are there gene duplications or deletions in one or

another species? what are the patterns of sequence con-

servation?), to studies of gene expression, splice variation,

protein-protein interaction, and protein modification,

through to physiologic comparisons of the properties of the

systems, including metabolomics, and changes (or other-

wise) in the underlying parameters.

Interestingly, we were able to model the effect of one

known interspecies difference in this study: the absence of

malate dehydrogenase (ME) from mouse (but not rat)

pancreatic islets (MacDonald 2002). Deleting ME from our

model increased the cytoplasmic malate concentration, as

might have been expected, and decreased the pyruvate

concentration, but it had no significant effect on ATP

concentration or oscillatory behavior. This illustrates the

robustness of the model and also how it can serve as the

basis for analyses of interspecies differences.

Acknowledgments The authors thank Frances Ashcroft, Andrei

Tarasov, and Michael Duchen for discussions. They also thank an

anonymous referee for pointing out the absence of malic enzyme

activity in mouse pancreatic b cells. This work was supported by

ENFIN, a Network of Excellence funded by the European Commis-

sion within its FP6 Programme, under the thematic area ‘‘Life sci-

ences, genomics and biotechnology for health,’’ contract number

LSHG-CT-2005-518254.

References

Ashcroft F, Rorsman P (2004) Type 2 diabetes mellitus: not quite

exciting enough? Hum Mol Genet 13:R21–R31

Bertram R, Gram Pedersen M, Luciani DS, Sherman A (2006) A

simplified model for mitochondrial ATP production. J Theor

Biol 243:575–586

Chassagnole C, Noisommit-Rizzi N, Schmid JW, Mauch K, Reuss M

(2002) Dynamic modeling of the central carbon metabolism of

Escherichia coli. Biotechnol Bioeng 79:53–73

Dano S, Madsen MF, Schmidt H, Cedersund G (2006) Reduction of a

biochemical model with preservation of its basic dynamic

properties. FEBS J 273:4862–4877

Deeney JT, Kohler M, Kubik K, Brown G, Schultz V, et al. (2001)

Glucose-induced metabolic oscillations parallel those of Ca(2+)

and insulin release in clonal insulin-secreting cells. A multiwell

approach to oscillatory cell behavior. J Biol Chem 276:36946–

36950

Detimary P, Van den Berghe G, Henquin JC (1996) Concentration

dependence and time course of the effects of glucose on adenine

and guanine nucleotides in mouse pancreatic islets. J Biol Chem

271:20559–20565

Eto K, Tsubamoto Y, Terauchi Y, Sugiyama T, Kishimoto T, et al.

(1999) Role of NADH shuttle system in glucose-induced

activation of mitochondrial metabolism and insulin secretion.

Science 283:981–985

Freeman H, Cox RD (2006) Type-2 diabetes: a cocktail of genetic

discovery. Hum Mol Genet 15:R202–R209

Freeman H, Shimomura K, Horner E, Cox RD, Ashcroft FM (2006a)

Nicotinamide nucleotide transhydrogenase: a key role in insulin

secretion. Cell Metab 3:35–45

Freeman HC, Hugill A, Dear NT, Ashcroft FM, Cox RD (2006b)

Deletion of nicotinamide nucleotide transhydrogenase: a new

quantitive trait locus accounting for glucose intolerance in

C57BL/6J mice. Diabetes 55:2153–2156

Halestrap AP (1975) The mitochondrial pyruvate carrier. Kinetics

and specificity for substrates and inhibitors. Biochem J

148:85–96

Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, et al. (2005)

SUNDIALS: Suite of Nonlinear and Differential/Algebraic

Equation Solvers. ACM Trans Math Software 31:363–396

Hoefnagel MH, Starrenburg MJ, Martens DE, Hugenholtz J,

Kleerebezem M, et al. (2002) Metabolic engineering of lactic

acid bacteria, the combined approach: kinetic modelling, met-

abolic control and experimental analysis. Microbiology

148:1003–1013

Hucka M, Finney A, Bornstein BJ, Keating SM, Shapiro BE, et al.

(2004) Evolving a lingua franca and associated software

infrastructure for computational systems biology: the Systems

Biology Markup Language (SBML) project. Syst Biol 1:41–

53

Liebermeister W, Klipp E (2005) Biochemical networks with

uncertain parameters. Syst Biol 152:97–107

MacDonald MJ (2002) Differences between mouse and rat pancreatic

islets: succinate responsiveness, malic enzyme, and anaplerosis.

Am J Physiol Endocrinol Metab 283:E302–E310

Magnus G, Keizer J (1997) Minimal model of beta-cell mitochondrial

Ca2+ handling. Am J Physiol 273:C717–C733

Magnus G, Keizer J (1998a) Model of beta-cell mitochondrial

calcium handling and electrical activity. II. Mitochondrial

variables. Am J Physiol 274:C1174–1184

Magnus G, Keizer J (1998b) Model of beta-cell mitochondrial

calcium handling and electrical activity. I. Cytoplasmic vari-

ables. Am J Physiol 274:C1158–C1173

Matschinsky FM, Glaser B, Magnuson MA (1998) Pancreatic beta-

cell glucokinase: closing the gap between theoretical concepts

and experimental realities. Diabetes 47:307–315

Matsuoka Y, Srere PA (1973) Kinetic studies of citrate synthase from

rat kidney and rat brain. J Biol Chem 248:8022–8030

McCarthy MI (2004) Progress in defining the molecular basis of type

2 diabetes mellitus through susceptibility-gene identification.

Hum Mol Genet 13:R33–R41

Newgard CB, Lu D, Jensen MV, Schissler J, Boucher A, et al. (2002)

Stimulus/secretion coupling factors in glucose-stimulated insulin

secretion: insights gained from a multidisciplinary approach.

Diabetes 51:S389–S393

Nielsen K, Sørensen PG, Hynne F, Busse HG (1998) Sustained

oscillations in glycolysis: An experimental and theoretical study

of chaotic and complex periodic behavior and of quenching of

simple oscillations. Biophys Chem 72:49–62

Nilsson T, Schultz V, Berggren PO, Corkey BE, Tornheim K (1996)

Temporal patterns of changes in ATP/ADP ratio, glucose 6-

phosphate and cytoplasmic free Ca2+ in glucose-stimulated

pancreatic beta-cells. Biochem J 314:91–94
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