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ABSTRACT

Motivation: DNA sequence reads from Sanger and pyrosequencing
platforms differ in cost, accuracy, typical coverage, average read
length and the variety of available paired-end protocols. Both read
types can complement one another in a ‘hybrid’ approach to whole-
genome shotgun sequencing projects, but assembly software must
be modified to accommodate their different characteristics. This is
true even of pyrosequencing mated and unmated read combinations.
Without special modifications, assemblers tuned for homogeneous
sequence data may perform poorly on hybrid data.

Results: Celera Assembler was modified for combinations of ABI
3730 and 454 FLX reads. The revised pipeline called CABOG (Celera
Assembler with the Best Overlap Graph) is robust to homopolymer
run length uncertainty, high read coverage and heterogeneous read
lengths. In tests on four genomes, it generated the longest contigs
among all assemblers tested. It exploited the mate constraints
provided by paired-end reads from either platform to build larger
contigs and scaffolds, which were validated by comparison to a
finished reference sequence. A low rate of contig mis-assembly was
detected in some CABOG assemblies, but this was reduced in the
presence of sufficient mate pair data.

Availability: The software is freely available as open-source from
http://wgs-assembler.sf.net under the GNU Public License.
Contact: jmiller@jcvi.org

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

New DNA sequencing technologies demand new assembly software
to stitch together short strings of nucleotide bases—as determined
by a sequencer—called reads. Many mature assemblers were
developed when virtually all DNA sequence data were generated
using Sanger chemistry to produce high-fidelity long reads. De novo
assemblers, for which sequence data are the only input, include:
Phrap (www.phrap.org), TIGR Assembler (Sutton er al., 1995),
Celera Assembler (Myers et al., 2000), Euler (Pevzner et al., 2001),
PCAP (Huang and Yang, 2005) and Arachne (Jaffe et al., 2003).
The pyrosequencing platform produced by 454 Life Sciences is
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sold with Newbler, an assembler specifically for 454’s medium-
length reads (Margulies et al., 2005). New assemblers including
Velvet (Zerbino and Birney, 2008) offer functionality specifically for
short-read sequencing technologies, such as Solexa (Bentley, 2006).

Hybrid sequencing: hybrid sequencing strategies leverage the
strengths of two or more sequencing platforms and may require
assembly software tuned for specific-read type combinations (Hall,
2007). At least three groups have introduced software for hybrids of
pyrosequencing and other read types. We introduce a package that
best exploits paired-end mate information.

The first protocols for assembly of hybrid data applied a multiple-
assembler pipeline. Newbler combined ‘pyro’ reads into initial
contigs that were shredded to produce overlapping pseudo-Sanger
reads. These were processed with Sanger reads by a Sanger-specific
assembler: using Celera Assembler (Goldberg er al., 2006) or
Arachne for whole genomes, or using Phrap (Wicker et al., 2006)
for cloned targets. Recent protocols use a single assembler tuned for
hybrid data. Newbler was updated to accept non-pyro data (Roche,
2007), and Euler was modified to accept pyro data in a version called
Euler-SR (Chaisson and Pevzner, 2008). Now, Celera Assembler has
been modified to accept pyrosequencing data natively, alone or in
combination with Sanger data.

Modified Celera Assembler: the Celera Assembler software has
modules for successive phases of assembly: pairwise overlap
detection; initial ungapped multiple sequence alignments called
unitigs; unitig consensus calculation; combination of unitigs with
mate constraints to form contigs and scaffolds, which are ungapped
and gapped multiple sequence alignments, respectively; and finally,
scaffold consensus determination (Myers et al., 2000). Our approach
to hybrid data assembly reuses the Celera Assembler scaffold
and consensus modules. Independent of the hybrid problem, the
scaffold module was revised to recover trimmed base calls confirmed
by co-locating reads, and the consensus module was revised to
determine alternate consensus sequences in regions of apparent
polymorphism (Denisov et al., 2008). Our analysis narrowed the
source of hybrid assembly problems to the overlap and unitig
stages.

For speed, Celera Assembler relies on short exact matches
between reads as seeds for overlap detection. Its exact-match
algorithms were sensitive to the different proclivities for stutter
observed between platforms. Stutter, that is, incorrect determination
of the number of bases in homopolymer (single-letter) runs, is more

© 2008 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.


http://wgs-assembler.sf.net
http://creativecommons.org/licenses/

Pyrosequencing reads with mates

prevalent in pyro reads than Sanger reads. We therefore modified the
software to search for matches in compressed sequence, in which all
single-letter repeats are reduced to a single base. The uncompressed
sequence is consulted later before the seeds become overlaps.

Celera Assembler was sensitive to the different average read
lengths between platforms. The shorter reads are more likely
to be entirely contained within genomic repeats. Over-collapsed
alignments of short repeat reads induce true and false overlaps to
the interior of longer reads. Where the longer reads extend beyond
the genomic repeats, they do not all overlap each other. The result is
short reads with containment overlaps to multiple long reads that do
not overlap each other. These overlap tangles were triggering Celera
heuristics designed to detect mis-assembly, leading to unnecessarily
short contigs.

Celera Assembler was also sensitive to the higher coverage
typical of lower cost pyrosequencing. Higher coverage leads to
increased collisions of reads with exactly the same prefix sequence.
The assembler’s arbitrary tie-breaking heuristics, sufficient for
infrequent ties, had the potential to lead the assembler away from
the global optimum in hybrid data. To address these problems we
developed an aggressive approach to unitig construction that builds
unitigs in greedy fashion, always following a read’s best overlap
(by an appropriate criterion), and ignoring contained reads at first.
The aggressive unitigs initially incorporate mistakes that, ideally,
are caught and corrected later by pattern analysis applied to best
overlaps and mate constraints.

High coverage could also increase the number of spurs, that is,
reads with invalid sequence at one end. These seemed to contribute
to fractured unitigs on hybrid data. We realized the software could
turn higher coverage to its advantage by carefully trimming reads
of unconfirmed sequence.

The new pipeline for hybrid data assembly is named CABOG
(Celera Assembler with the Best Overlap Graph). It was challenged
to assemble small genomes from 454 GS FLX reads in combination
with paired-end mates from either FLX, or Sanger sequencing, or
both. It was compared with other hybrid assembly protocols for
continuity, accuracy and performance.

2 ALGORITHM

CABOG parses the native SFF files produced by the 454 FLX
pyrosequencing machines. It discards 454 reads that include at least
one unresolved base (the letter N). It recognizes mated reads as
those whose sequence contains 454 linker sequences. From these
mated reads it generates one or two shorter, linker-free pseudo-
reads, plus a distance constraint set to the estimated mean separation
(default 3 kb).

Overlap-based trimming: to exploit the increased expected read
coverage, CABOG employs a read-trimming step. This functionality
has been explored previously in Lucy (Chou and Holmes, 2001),
PCAP, Arachne, UMD Overlapper (Roberts et al., 2004), and Figaro
(White et al., 2008). The new read trimmer first computes for all read
pairs local alignments, or partial overlaps that may not span the end
of either read. On reads with sequence beyond the initially specified
clear range, it extends the clear range to the extent confirmed by
overlaps. It flags regions with discontinuous overlap coverage and
trims the clear range to the longest covered span, possibly length
zero, using heuristics to identify the precise boundaries. It identifies

probable spurs and chimers (reads that join discontinuous genomic
loci) and trims each to one trusted clear range.

Anchors and overlaps: CABOG uses exact-match seeds to detect
possibly overlapping reads quickly. It finds these seed matches in
compressed sequence where consecutive instances of the same base
are reduced to one base. Compression compensates for the stutter
that is observed more frequently in pyro reads. Each seed is a k-mer
(a substring of k bases, with k=22 by default). CABOG counts
the number of instances of each distinct k-mer observed in the
compressed input sequence. To avoid highly repetitive k-mers, it
dynamically tabulates a threshold M so that k-mers with more than
M occurrences constitute at most 1% of all k-mer occurrences. Only
k-mers with between two and M occurrences are used for overlap
seeds. CABOG identifies read pairs as likely to overlap if they
share sufficiently many k-mers, with a sliding threshold that favors
rare k-mers but accepts more common k-mers if they cover longer
spans. For the selected read pairs, it chooses a single O-length anchor
position from the rarest k-mer shared by that pair of reads.

CABOG then determines which anchors extend to overlaps.
Iteratively and in parallel, it considers each read as a reference to
which it aligns all other reads anchored to it. It calculates pairwise
alignments by first extending from the anchor in one direction to find
the last aligning position X. If X is at the end of either read, the full-
alignment extension is computed from X back across the anchor.
Calculating all alignments in a consistent direction with respect
to the reference read produces a more accurate multialignment,
particularly near homopolymer runs. A modified version of the
Landau—Vishkin algorithm (Gusfield, 1997) is used to efficiently
find the position X. The multialignment of overlapping reads to each
reference read is used to detect likely sequencing errors and modify
alignments accordingly. It is also used to average the homopolymer
run lengths, applying different weighting criteria for Sanger and
pyro reads. Finally, it outputs directed overlaps from the corrected
reference sequences, with each overlap region required to span at
least 40 bases covering two-read ends, and to have 94% or better
sequence identity.

Best overlap graph: conceptually, reads and overlaps are
represented in a multigraph, G, with both directed and undirected
edges. Each read is represented by a pair of nodes, corresponding to
the two ends of the read, connected by an undirected edge. Directed
edges represent dovetail overlaps, that is, those that span exactly one
end of each read. Dovetail paths in G are acyclic paths that include an
undirected edge immediately before and after every directed edge.
Path length is the number of implicit reads traversed.

When CABOG creates G, it disregards overlaps from reads with
containment overlaps. It also disregards overlaps that do not satisfy
a quality threshold (by default, at most 1.5% alignment error and
at least 40 bp spanned). It loads at most one directed edge per
node, which represents the corresponding read end’s best overlap.
By default ‘best’ is measured as most bases spanned by the overlap
alignment, although other criteria can be used. Ties are broken by
alignment percentage error, or failing that, arbitrarily by read ID. G
is a best overlap graph, or BOG. It is implemented as multiple linked
lists in an array of reads, where each array element includes one left
and one right (possibly null) pointer to a particular end and strand of
another read. The BOG represents a drastic and lossy data reduction
of the overlap set. It is a greedy heuristic to avoid the overlap tangles
expected in high-coverage hybrid data that present a wide mix of
read lengths.
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Fig. 1. Two representations of a best overlap graph. In (a), the layout
resembles a multiple sequence alignment. In (b) each read is represented
by two nodes joined by an undirected edge. Arrows represent best overlaps,
where best means covering the most sequence. There are mutual best overlaps
between successive pairs of reads A through D. Due to erroneous bases
at one end (wavy line), read E has a non-mutual best overlap to B. Paths
span undirected and directed edges alternately. Path EBA converges on path
ABCD. CABOG scores read E lower than the others since only three reads
are on paths from it. Starting with any one of the high-scoring reads, CABOG
would build initial unitig ABCD, then E. Using saved information about each
path intersection, CABOG would discount the intersection at B because the
path from E spanned only one read before B. It would break ABCD only
if there were also a change in read arrival rate at B, which is not the case
here. Although linear-time directed-path following finds the longest possible
unitig in this constructed case, it is not guaranteed to do so when paths span
multiple intersections.

Unitig construction: any cycles in G are eliminated by deletion
of one edge, chosen arbitrarily. The resulting BOG paths cannot
diverge because each node has out-degree of at most one in the
overlap edges. The BOG paths can converge due to overlaps that
are not mutually best for both reads involved. See Figure 1.

CABOG scores each read by the number of other reads reachable
from it along BOG paths. Each read’s score is the sum of the lengths
of the paths from both of the read’s nodes. CABOG finds path
lengths efficiently by reusing saved path lengths to short-circuit path
following.

CABOG sorts the reads by score. Starting at higher scoring reads,
it follows paths and builds a unitig from each path. More precisely,
starting at the next-highest scoring read R, it skips R if R is already
in a unitig. Otherwise, it begins a new unitig with R and follows the
two dovetail paths from R’s two nodes, adding reads to the unitig
until it encounters a path end or a read already belonging to some
unitig.

This completes the greedy, aggressive stage of unitig construction.
At this point, the unitigs partition the reads. The initial unitigs are
called ‘promiscuous’ because their paths could span non-mutually
best overlaps. The read visitation order ensures that the longest
path through each intersection becomes a unitig first. Shorter
convergent paths become shorter unitigs that terminate at the
intersections. On paths with a single intersection, CABOG always
selects the longer path first. On paths with multiple intersections,
it can miss opportunities for even larger unitigs. Such unitigs
would be revealed by making all overlap edges bi-directional in G.
However, in such a graph, path following would be a non-linear
operation.

Unitig splitting: CABOG breaks promiscuous unitigs at sites
corresponding to selected path intersections. Each BOG path
intersection can signal a genomic repeat boundary or represent noise.
CABOG uses heuristics designed to select most repeat-induced
intersections while avoiding noise-induced intersections. Spurs are
a common form of noise, and not all spurs would be corrected during
the overlap-based trimming step. Spur-induced path intersections
produce an ‘intruder’ path of length 1. It would be wrong to ignore
all length=1 intruders; a valid read that spans a genomic repeat
boundary can have no overlaps at its non-repetitive end due to
random low coverage. Therefore, CABOG ignores most, but not
all, length =1 intruders, according to the heuristics below.

A BOG path is called ‘long’, if its unitig contains more than one
read and has a total sequence length >500 bases. CABOG visits
every BOG path P and applies the following operations in order. If
it splits P, then it also splits the corresponding unitig. (i) At each
point where P is intersected by path L, it breaks P if L is long. (ii)
Between every consecutive pair of intersections with P, if neither
incident path is long, then it examines the bracketed interval of P.
If the interval’s read-arrival rate is approximately double or more
compared to the surround, it breaks P at both intersection points.
Apath’s arrival rate is measured by the average spacing between read
starts in the corresponding unitig. (iii) If P has one or more incident
paths that are not long, and if the intersection points correspond to
changes in arrival rate in P, then CABOG chooses one such point
and breaks P there. It chooses the intersection point across which
P’s read arrival rate changes most dramatically.

After intersection-based splitting, CABOG breaks unitigs further
using mate constraints. First, CABOG incorporates into unitigs
the contained reads, according to their best overlaps. It tabulates
mate pair satisfaction and violation from mate pairs that co-
locate to a unitig. Satisfaction means placement within predicted
mean length+5 SDs at the proper orientation relative to each
other; anything else is a violation. CABOG ejects from unitigs
any contained reads whose placement violates a mate constraint.
It breaks unitigs where total mate coverage is sufficient but the
number of violations is above a given threshold.

Contigs, scaffolds, consensus: the rest of the Celera Assembler
pipeline runs without any special modification for hybrid assembly.
Note the scaffold module may re-incorporate reads ejected
previously for mate constraint violations; it can use mate constraints
to guide individual reads to their appropriate contigs.

3 METHODS

Assemblers: the Celera Assembler was used for the CABOG, Goldberg and
traditional Celera pipelines; version 5.0 from 5/2008 was used everywhere
except the human trial, which used version 5.2 from 10/2008. The latest
production version of Newbler (1.1.03.24) was used on FLX data, with the
large option for the human trial. The software for Arachne, PCAP and Euler-
SR were current through 5/2008. Velvet version 0.7, from 10/2008, ran with
expected coverage set to 24. Assemblies ran under SuSE Linux on 64-bit
Intel or AMD processors with 24 GB or 32 GB RAM, although the human
assembly also exploited 48 GB of a high-RAM node. CABOG and Newbler
were fed 454 reads in SFF format. Arachne was fed files from NCBI, slightly
modified to satisty the input parser. Euler-SR, PCAP and Velvet were fed
files generated by CABOG’s parser following instructions in each program’s
documentation.

Analysis: continuity statistics were gathered from each assembler using
Perl analysis of the FASTA output files. Assembly alignments were
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generated with MUMmer (Kurtz er al., 2004), ATAC (http://kmer.sf.net)
and Stretcher (http://emboss.sf.net). Repeat annotation was generated with
REPuter (Kurtz et al., 2001) with a post-process to aggregate repeat
classes by overlapping sequence. EST alignments were generated with the
ESTmapper (http://kmer.sf.net) extension to Sim4 (Florea et al., 1998).

Reference:  the  Psychromas sp. CNPT3 reference (RefSeq
NZ_AAPGO00000000), with 2945265 bases in one linear contig, had
been produced at JCVI using Celera Assembler plus finishing. The
Porphyromonas gingivalis W83 reference (GenBank NC_AE015924), with
2343476 bases in one circular contig, had been sequenced by Sanger
chemistry, assembled with TIGR Assembler, and finished at TIGR/JCVI
(Nelson et al., 2003). The Sanger reads assembled here were a distinct set.
The Escherichia coli K12 MG1655 reference (GenBank NC_000913), with
4639221 bases in a circular contig, had been produced independently
by a method other than whole-genome shotgun sequencing (Blattner
et al., 1997). There was no reference for Cryptosporidium muris RN66, a
eukaryotic genome estimated at 9 Mb. The ESTs were obtained from NCBI
via CryptoDB.

Reads: many reads were obtained directly from JCVI. All reads
are available at the NCBI Trace Archive or Short Read Archive (see
Supplementary Material for detail). The homogeneous component sets of
reads were combined to make hybrid datasets with realistic levels of genome
coverage.

4 RESULTS

Reads were combined from several genome sequencing projects as
shown in Table 1. Pyrosequencing reads were used in the half-plate
units provided by 454 FLX sequencers. Half-plates of unpaired
reads (~250 bases/read) were combined with Sanger mate pairs
(~800 bases/read) to make hybrid sets. Half-plates from paired-end
libraries were considered hybrid sets in themselves because they
consist of mostly unpaired reads mixed with some (~30%) mate
pairs (~100 bases/read).

CABOG and other assemblers were run on each combination
dataset. Contig and scaffold statistics were tabulated for every
assembly by an automated process. CABOG assemblies were
compared with reference genomes and also to the outputs from
other assemblers. The comparisons included the recent version of
Newbler designed to handle FLX mate and Sanger mate hybrid
sets, and Euler-SR which had been demonstrated on a hybrid set
of 454 GS 20 reads plus simulated Sanger mates (Chaisson and
Pevzner, 2008). Velvet was tested on one dataset; it was designed
for short reads but recent versions also accept long reads. PCAP,
Arachne and the traditional Celera Assembler were included though
they were designed for Sanger reads only. The last two were
abandoned part way through testing after they produced fractured or
no assemblies of several datasets. The Goldberg pipeline (Goldberg
et al., 2006), which applies Newbler to pyrosequencing reads and
Celera Assembler to Sanger mates, was run on those sets that
included Sanger data.

4.1 Contig analysis

Contig size is one measure of assembly utility. Table 2 presents four
contig size statistics for assemblies of selected hybrid datasets, with
CABOG assemblies compared with Newbler assemblies.

The differences in Table 2 are clearly significant. On average,
CABOG’s largest contig was twice the Newbler’s. Its N50 contig
was more than twice as large. CABOG consistently assembled more

Table 1. Homogeneous components for hybrid datasets

Sp Cmp Library #Unmated Len #Mated Len Cov
Pgingivalis
Fl1 FLX unmated 255329 259 0 - 28.2
F2 FLX unmated 254703 259 0 - 28.2
Ml FLX 3-6Kbp 184680 243 80304 116 23.1

M2 FLX 3-6Kbp 187012 243 81926 116 234

S1 Sanger 40Kbp 90 601 2786 728 1.0
E. coli

F1 FLX unmated 230517 253 0 — 12.6

F2 FLX unmated 216458 253 11.8

0 — .
Ml FLX 3-6Kbp 234299 232 65118 115 13.3

F1 FLX unmated 298610 266 0 — 26.0
F2 FLX unmated 278142 267 0 — 24.3
S1 Sanger 40Kbp 38 537 1522 830 0.4
C. muris
F1 FLX unmated 434956 243 0 — 11.7
S1 Sanger 40Kbp 3272 434 21092 713 1.7
Sanger 6-8Kbp 4108 727 17382 892 1.7

Sanger 2-3Kbp 2652 508 27296 826 2.7

Sequence contribution from each component dataset. Sp, species name; Cmp,
component name; Unmated/Mated, number of non-paired or paired-end reads; Len,
for unmated and mated, the average clear range per read in bases; Cov, fold coverage
of the genome by reads; FLX reads originate from the 454 GS FLX sequencer. Sanger
reads originate from the ABI 3730 sequencer.

Table 2. CABOG and Newbler assemblies of hybrid data sets

Assembler #Contigs Contig N50 Contig Max Contig Sum
Pgingivalis / FLX reads + FLX mates (F1 + M2)

CABOG 48 67993 205585 2332097

Newbler 119 27561 134859 2183278
Pgingivalis / FLX reads + Sanger mates (F1 + S1)

CABOG 65 51745 169923 2266305

Newbler 104 32377 154008 2184009
P.gingivalis / FLX mates + Sanger mates (M2 + S1)

CABOG 34 101 101 307732 2314836

Newbler 115 29216 110686 2179717
E.coli / FLX reads + FLX mates (F2 + M1)

CABOG 22 440632 861331 4642198

Newbler 87 87223 240232 4516116
P.sp CNPT3 / FLX reads + Sanger mates (F1 + S1)

CABOG 39 126 165 336216 2992650

Newbler 70 79879 203365 2963428
P.sp CNPT3 / FLX reads + Sanger mates (F2 + S1)

CABOG 42 138508 365104 2983118

Newbler 99 45693 171391 2951683
C.muris /| FLX reads + Sanger mates (F1 + S1)

CABOG 69 323162 819035 9186849

Newbler 73 247897 731211 9097078

The analysis included all contigs 2 kb or longer found in each assembler’s FASTA output.
N50, the length of the shortest contig required to span 50% of the genome length; Max,
the length of the longest contig, Sum, the total contig span. Contig size statistics are
shown in bases. The codes in parentheses refer to component datasets described in
Table 1. Assemblies are compared by contig size statistics. Selected combinations are
shown; others are provided in the Supplementary Material.

total bases into fewer (larger) contigs. Thus, CABOG demonstrated
greater continuity than Newbler on these data.

In Table 2, the rows for P.gingivalis F1+S1 and M2 + S1 offer a
comparison between sets containing the same Sanger reads (S1)
but distinct FLX reads. The FLX paired-end reads in M2 give
that set slightly shorter reads on average, but also additional mate
constraints. In the combination with M2, the CABOG contig N50
doubled but the Newbler value actually dropped. CABOG may
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Table 3. Assemblies of one hybrid data set by all assemblers

Table 4. Scaffold analysis of CABOG and Newbler assemblies

Assembler #Contigs Contig N50 Contig max Contig sum Assembler #Scaf. Scaf. N50 Scaf. max Scaf. sum Cov. (%)
E.coli / FLX reads + FLX mates (F1+M1) Pgingivalis /| FLX mates (M2)
CABOG 27 285910 833636 4629,501 CABOG 7 392892 661267 2324,483 98.7
Newbler 89 82668 209279 4519,532 Newbler 9 268678 718704 2187430 94.1
PCAP 152 50897 175160 4554652 P.gingivalis / FLX mates + FLX mates (M1 + M2)
Euler-SR 328 22159 71505 4343338 CABOG 7 417898 758093 2339970 98.9
Velvet 490 11510 53664 4230559 Newbler 11 266 698 718559 2183668 93.9
P.gingivalis / FLX reads + FLX mates (F1 + M2)
The analysis is described in Table 2. Only CABOG and Newbler were designed for CABOG 9 450308 758275 2335950 98.8
FLX hybrid datasets. Euler-SR had been introduced for 454 GS 20 reads + Sanger P Ne“fbkl:f JFLX reads + S 382223 Fl 72801519 2189593 94.2
mates. PCAP was designed for Sanger mates only. Velvet was designed for short reads. ‘gg;g]l;g (l; Grea s+ a?gj%r;;ngs ( T 5 07) 760 2268548 2.6
The Goldberg method was not run since it requires Sanger mates to improve Newbler Newbler 51 1489797 1489797 2185214 94‘3
contigs. Arachne and the traditional Celera Assembler did not assemble this dataset. Pgingivalis / FLX mates + Sanger mates (M2 + S1)
The assemblies are summarized and compared using contig length statistics. CABOG 1 2317095 2317095 2317095 98.7
Newbler 6 1550861 1550861 2184352 93.9

exploit mate constraints more fully during contig construction.
It has been observed that Newbler uses mate constraints mostly to
join contigs in scaffolds (Jarvie and Harkins, 2008).

In Table 2, the rows for P.gingivalis F1 + M2 and E.coli F2 + M1
are devoid of Sanger data. On both of these sets, CABOG assembled
over 120 000 more total bases into 1/2 to 1/4 as many contigs. Thus,
CABOG provided more continuity than Newbler on 454-only sets
that included mate data. To address the question of whether the
mates were critical, CABOG and Newbler were further tested on
homogeneous sets of just 454 unpaired reads. Here, the statistics
were similar between assemblers and the assembler ranking varied.
This provides additional support for the observation that CABOG
better exploits mate constraints during contig construction.

The genomes in Table 2 include three prokaryotes and a small
eukaryotic genome from C.muris. Thus, CABOG provided more
continuity across both domains. CABOG’s gain over Newbler was
smallest for the eukaryote, possibly because coverage was lowest
on that dataset.

CABOG’s extra sequence may represent genomic repeats. To
investigate this hypothesis, the P.gingivalis reference was annotated
for repeats. CABOG and Newbler contigs for six datasets were
mapped to the annotated reference. The repeat and contig spans were
compared for overlap. The result indicated that CABOG contigs
spanned more repeats and longer repeats in all the assemblies. In
one example, using the F1+M2 combination, CABOG spanned
34 repeats of average length 1099 bases, but Newbler spanned
14 repeats of average length 703 bases. The difference was more
pronounced in the M2+S1 combination, which included long-range
Sanger mates. CABOG contigs spanned 26 repeats of average length
1981. Newbler contigs spanned nine repeats of average length 815.
Thus, some of CABOG’s continuity gain is attributable to increased
resolution of repetitive sequence inside assembled contigs, which
increases with mate availability.

Table 3 shows contig size statistics on one dataset for all
assemblers tested. PCAP produced surprisingly large contigs
considering it was not designed for hybrid data. The table is
representative of results on other datasets, provided as Supple-
mentary Material. The statistics consistently ranked CABOG first,
followed by Goldberg (when run), Newbler, PCAP and Euler-SR.

4.2 Scaffold analysis

Scaffold size is another measure of assembly utility. Table 4 presents
scaffold size statistics for CABOG and Newbler assemblies of

The analysis included all scaffolds 2kb or longer found in each assembler’s FASTA
output. Scaffold length statistics are shown in bases excluding the lengths of the gaps
between contigs. Note that scaffold sum may not equal contig sum (Table 2) due to the
2kb threshold being applied at the scaffold not contig level. Cov, bases of the reference
covered by a sum over single best alignments of each full or partial scaffold sequence.

selected combinations of P.gingivalis data. The table indicates
that CABOG scaffolds were significantly larger. All but two
measurements favored CABOG. In one of the exceptions, Newbler’s
largest scaffold was longer than CABOG’s on the M2 set. It may be
significant that this was a low-coverage dataset.

In one case, CABOG produced exactly 1 scaffold, and it covered
99% of the reference sequence. That dataset, M2+S1, included short-
range FLX mates and long-range Sanger mates. It is possible that the
high concentration of mate constraints, or the combination of mate
distances, enabled CABOG to resolve a single-scaffold assembly.

Scaffold span is an alternate measure of scaffold size. Span
includes the estimated lengths of the gaps between the contigs, as
well as the contig lengths. On many datasets, Newbler scaffold span
statistics exceeded those of CABOG.

4.3 Assembly correctness

Selected assemblies were tested for their coverage of the reference
genome sequence. Table 4 indicates the genome coverage provided
by CABOG and Newbler assemblies of hybrid sets of P.gingivalis
reads. CABOG coverage was consistently above 96% and was
always higher than Newbler coverage. This test considered best
matches only, so collapsed assemblies of repeat copies would cover
only one repeat copy.

The same assemblies were measured for consensus accuracy. The
alignments to reference were parsed to count all inserted, deleted,
substituted and unmapped bases. Accuracy was expressed as the
fraction of assembled bases that did not fall into one of these
categories. For the four datasets in Table 4, CABOG accuracy varied
between 99.932% and 99.980%. Newbler accuracy varied between
99.995% and 99.998%.

Selected alignments were assessed by visual inspection to
reveal assembly errors, such as mis-oriented or misordered contigs
within scaffolds. No errors were found at the scaffold level.
Some rearrangements within CABOG contigs were noticed; these
were also revealed by the subsequent analysis.

Next, alignments of contigs were inspected in detail. The analysis
relied on manual and scripted review of textual representations
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Table 5. Errors in CABOG assemblies

Genome Dataset Chimeric Chimeric Bad Bad Collapsed
join end end contig  tandem
Pgingivalis Fl1 0 0 0 0 4
P.gingivalis Fl1 + M2 3 8 1 1 11
Pgingivalis F1 +S1 0 0 1 0 7
Pgingivalis M2 +S1 0 1 2 0 9
Psp CNPT3  Fl 0 1 0 0 1
Psp CNPT3  F2 0 2 0 0 4
Psp CNPT3  Fl1+Sl1 0 0 0 0 1
Psp CNPT3  F2+Sl1 0 0 0 0 0

The analysis included contigs at least 2kb long. Chimeric join, a concatenation of
unrelated sequences of at least 1kb. Chimeric End, concatenation of less than 1kb
to a contig end. Bad end, less than 1kb of unaligned sequence at a contig end. Bad
Contig, unaligned contig. Collapsed Tandem, multiple alignments between a contig
and the reference, partially overlapping in either sequence. Errors were estimated by
analysis of alignments to reference sequences. Estimates were confirmed by two other
alignment-based methods.

of alignments. It covered four CABOG assemblies of P.gingivalis,
four CABOG assemblies of P. sp CNPT3, and the corresponding
Newbler assemblies. Breaks in the alignments were counted and
inspected. Results based on MUMmer were confirmed by analyses
with other software.

Table 5 lists some minor problems found in CABOG contigs:
bad ends, bad contigs and collapsed tandem repeats. Collapse of
tandem repeats has been observed before in Celera Assembler
(She et al., 2004) and other assemblers. Most CABOG collapses
involved the omission of <100 bases. CABOG’s bad end and bad
contig problems also involved small (under 1 kb) bits of sequence.
CABOG assemblies showed more serious problems: chimeric joins
and chimeric ends. The analysis of Newbler assemblies (data not
shown) revealed no serious problems and three minor problems.
Note Newbler’s rate of collapsed tandem repeats would have been
underestimated because only contigs that spanned a repeat region
could contribute to the alignment breaks that were counted here.

The chimeric joins in the CABOG assemblies corresponded to
repetitive regions of the reference genome sequences. In no case did
a Newbler contig span the corresponding region. Thus, it appears
that CABOG was more aggressive than Newbler about including
whole repeats inside larger contigs while committing false joins in
a few repetitive regions.

On both genomes for which alignments were studied, the chimer
rate dropped when the S1 (Sanger mates) set was included. This
is consistent with CABOG’s use of long-range mate constraints
to correct mis-assembly errors within unitigs. Sanger sequencing
provided the long-range mates here, but long-range mate constraints
may be available soon from the pyrosequencing platform (Jarvie
and Harkins, 2008). In summary, CABOG has a chimeric join rate
that may be acceptably low for some genome projects, and that is
diminished by inclusion of long-range mate data.

Assemblies of the C.muris genome were validated by EST
mapping since no independent reference was available. All available
ESTs were mapped to the CABOG and Newbler scaffolds with a
threshold of 95% identity over 95% of EST length. No EST mapping
spanned multiple scaffolds in either assembly. Of 27 498 ESTs, there
were 14 148 unspliced and 2312 spliced alignments to CABOG’s
assembly. Thus, over half the ESTs confirmed CABOG scaffolds
by full-length, high-stringency alignments. There were 13214
unspliced and 1883 spliced alignments to Newbler’s assembly.

Thus, the CABOG assembly showed a higher rate of EST
confirmation than the Newbler assembly.

4.4 Large genomes

Large eukaryotic genome projects present additional problems of
scale and complexity. To test whether CABOG would scale up to
such problems, it was applied to human genome data. It was run
on a hybrid set consisting of 6X 454 FLX unmated reads from the
Watson genome project (Wheeler et al., 2008) plus 3X in 10 kb
and larger Sanger mate pairs from the Venter genome project (Levy
et al., 2007). The computation consumed 5209 CPU hours over 5
days on our grid. The assembly’s statistics included:

* Contig count= 145971

* Contig N50=36460 bp

¢ Contig max=310470 bp

» Contig sum=2715539585 bp
Scaffold N50=10913 700 bp

Correctness is more difficult to evaluate on larger genomes.
Using the NCBI B36 human reference sequence, a whole-genome
alignment was generated by the ATAC method (Istrail ez al., 2004).
Reference coverage by ungapped matches was 97%, indicating
completeness and short-range agreement. A measure of long-range
agreement was provided by the maximal one-to-one mappings
between reference chromosomes and assembled scaffolds 2 kb
or longer. These mappings span at most one chromosome and
one scaffold. Ninety-three percent of mapped scaffolds were
included in exactly one mapping. The 223 discontinuously mapped
scaffolds could indicate incorrect assembly or other factors including
reference errors, population differences or alignment artifacts. For
comparison, the Venter assembly was reported to have 12 chimera
(Levy et al., 2007) though it has 116 discontinuous mappings by
this technique. Thus, CABOG produced a reasonable assembly of
the human genome from this hybrid mixture of pyrosequencing
reads plus mates. On the same dataset, Newbler reported overflow
conditions and terminated.

5 DISCUSSION

The rapid recent emergence of new sequencing technologies has
made it difficult for assembly software to keep pace. Especially
challenging has been the problem of assembling heterogeneous
mixtures of data so as to exploit the relative advantage of each
data type. The hybrid assembly problem is new but it will retain
importance as long as different platforms each offer different
characteristics and compelling advantages. It is not surprising
that assemblers, such as Newbler and Velvet, explicitly support
hybrid datasets. Hybrid assembly software is critical even for
some seemingly homogenous data. The 454 paired-end protocol
produces a mixture of paired and non-paired reads, where the paired
reads are less than half the length of the non-paired, on average.
This phenomenon would persist even if the new 454 FLX ‘Titanium’
upgrade is able to deliver Sanger-length reads.

Here, we described improvements to the Celera Assembler that
were embodied in a pipeline called CABOG. CABOG parses native
454 output and Sanger reads. It handles mate pairs of either type
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alone or in combination. These abilities make CABOG a versatile
tool for modern assembly tasks.

CABOG assemblies of heterogeneous data compare favorably
to those produced by other assembly software. CABOG assembles
more bases into fewer and larger contigs and scaffolds. CABOG is
more aggressive than Newbler at repeat resolution. Its large-contig
and large-scaffold output would provide more substrate for manual
review and automatic annotation. CABOG is a valuable tool for
projects where repeat resolution is desirable.

CABOG can generate mis-assemblies, but the problem appears to
be mitigated by inclusion of long-range mate data. Indeed, CABOG
makes broad use of mate constraints to build larger contigs, to
span repeats, and to avoid mis-assemblies. CABOG should be
valuable to sequencing projects that include mate pairs, whether
those are derived from Sanger sequencing or pyrosequencing. With
the expected availability of long-range, as well as short-range, mates
from the 454 GS FLX platform, CABOG could become the preferred
assembler for projects with 100% FLX data.

CABOG used Celera Assembler’s consensus module without any
modification specific to pyrosequencing reads. CABOG’s consensus
accuracy, though high, is less than Newbler’s. Thus, the consensus
module may need to be tuned for pyrosequencing reads.

To our knowledge, CABOG is the only software capable of
calculating a de novo assembly of the human genome from
pyrosequencing and Sanger whole-genome shotgun reads. CABOG
is a modification to Celera Assembler, which had previously
assembled Sanger-only data from human (Levy et al., 2007). The
454 technology had previously been applied to sequencing an
individual human (Wheeler et al., 2008) and to comparing individual
humans (Korbel et al., 2007), though neither experiment employed
de novo whole-genome shotgun assembly. Our test on human data
showed that CABOG is able to run on a large-eukaryotic dataset
within the memory limitations of modern computers. Our attention
has shifted toward the testing and tuning of CABOG for hybrid
datasets from large genomes. Other proportions of mated reads and
mate distances, or further adjustment to the software, may refine
CABOG’s large-genome capabilities.
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