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Abstract: Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a con-
stantly evolving virus, resulting in an increased burden on the existing COVID-19 vaccines. Health-
care workers (HCWs) are the first line of defense against the coronavirus disease 2019 (COVID-19)
pandemic and have been prioritized among the risk categories receiving the COVID-19 vaccine. This
work aimed to investigate the maintenance of antibody response of the Oxford–AstraZeneca vaccine
(ChAdOx1/nCoV-19). Methods: Anti-spike immunoglobulin G (IgG) was measured at baseline point
(immediately prior to vaccination) and 12- and 24-week (w) points following vaccination. Adverse
reactions to the vaccine were reported. Participants were followed up for the incidence of COVID-19
during the 12 w interval between vaccination doses for 24 w after the second dose. Results: A total of
255 HCWs participated in the study. Prior to vaccination, 54.1% experienced COVID-19, 88.2% were
seropositive after the first dose, while seropositivity reached 95.7% after the second dose. Following
the first and second doses, the anti-spike IgG serum level was significantly higher in subjects with past
COVID-19 than in others (p < 0.001 and =0.001, respectively). Conclusions: The Oxford–AstraZeneca
vaccine is generally safe and provides a highly effective long-term humoral immune response against
the Delta and Omicron variants of SARS-CoV-2.

Keywords: COVID-19 infection; Delta variant; Egypt; healthcare workers; Omicron variant; Oxford–
AstraZeneca vaccine

1. Introduction

The COVID-19 pandemic has been caused by the novel severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection ranges from asymptomatic
to life-threatening sepsis. It may cause a broad spectrum of symptoms, including multiple
body systems [1,2]. COVID-19 infection is a potentially preventable disease. There has
been a positive correlation between the intensity of public health orientation with infection
control measures application and transmission control [2]. Nevertheless, vaccination was
the first recommendation of the Centers for Disease Control and Prevention (CDC) to
reduce the spread of COVID-19 and the health crisis [3].

HCWs are considered the front line in confronting the COVID-19 infection [4]. There-
fore, despite using standard and transmission-based precautions in health facilities to
limit the spread of SARS-CoV-2, HCWs are constantly at risk of COVID-19 infection [5].
Furthermore, between January 2020 and May 2021, the World Health Organization (WHO)
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has estimated HCW deaths to range between 80,000 and 180,000, a staggering number
that necessitates immediate action to protect HCWs worldwide [6]. Vaccination, testing
of symptomatic cases, and vetting HCWs are the pillars of health system protection. In
accordance with the WHO roadmap for prioritizing COVID-19 vaccination [7], the Egyptian
Ministry of Health and Population has prioritized HCWs for the COVID-19 vaccine among
high-risk categories.

Oxford–AstraZeneca vaccine, Covishield, and Vaxzevira are the used brand names for
the ChAdOx1 nCoV-19 (recombinant) vaccine, which has conditional authorization in the
UK for the prevention of COVID-19 [8]. Later, by the end of November 2021, more than
170 countries had approved and authorized the Oxford–AstraZeneca vaccine for emer-
gency use [9]. The vaccine employs a unique approach. A chimpanzee adenovirus vector
(ChAdOx) encodes SARS-CoV-2 spike (S) glycoprotein that induces an immune response
when expressed [10]. In terms of resource optimization, it outperforms Pfizer/BioNTech
and Moderna’s mRNA-based COVID-19 vaccines. Not only is it less expensive, but it also
does not require the same cold-chain management as mRNA-based vaccines [11]. The
AstraZeneca vaccine requires two standard doses (0.5 mL each) administered at intervals
ranging from 4 to 12 weeks (w). Based on phase-3 trials, the two doses of the Oxford–
AstraZeneca vaccine effectively prevent COVID-19 infections [12]. Additionally, they have
averted hundreds of hospitalizations and fatalities, even when used against the more con-
tagious COVID-19 Delta variant [10]. Antibody testing is indispensable for understanding
the dissemination of the SARS-CoV-2 virus in the population. It is essential to comprehend
the response to emerging variants to detect differences in the degree of immunity and
their durability. By inducing neutralizing antibodies, the majority of COVID-19 vaccines
demonstrate an acceptable safety profile behind their use in the real world [13,14]. However,
vaccination and SARS-CoV-2 antibody testing are not routine clinical practices. Therefore,
additional research is urgently needed to determine the vaccine’s efficacy and establish
future immunization guidelines [13,14].

The current work aimed to investigate the efficacy and safety of the Oxford/AstraZeneca
COVID-19 vaccine in preventing COVID-19 infections among Egyptian HCWs, despite the
ongoing evolution of the virus, in addition to analyzing the implications of the vaccine on
the Omicron variant era.

2. Materials and Methods
2.1. Participants

The present study was implemented at the Immunology Research Laboratory, Medical
Microbiology and Immunology Department, Zagazig Faculty of Medicine, Egypt. The
study included 268 HCWs who attended to the Infection Control Unit of ZUHs to receive the
Oxford/AstraZeneca COVID-19 vaccine during the period from June 2021 to March 2022.
All participants underwent a screening interview with a detailed clinical history including
past COVID-19 infections; however, they were not screened for SARS-CoV-2 nucleocapsid
antigen in their serum. Participants received two standard doses of Oxford/AstraZeneca
COVID-19 vaccine (5× 1010 viral particles) at the 12-week interval [12]. Figure 1 displays a
schematic illustration of study design and flow.



Vaccines 2022, 10, 1706 3 of 19

Vaccines 2022, 10, x FOR PEER REVIEW 3 of 19 
 

 

 

 

Figure 1. A schematic illustration of study design and flow. At the baseline point, healthcare work-

ers (HCWs) were recruited and assessed for eligibility criteria. Medical history was taken, and base-

line blood samples were withdrawn from 268 HCWs who were eligible for participation. Participant 

HCWs then received the 1st dose of vaccination. Participants were followed up for 12 weeks. Ad-

verse reactions to the 1st dose of the vaccine, the incidence of breakthrough COVID-19 infection, 

and dropouts were reported during the first 12-week follow-up period. At the 12th-week time point, 

a 2nd blood sample was withdrawn before the participants received the 2nd dose of the vaccine. 

Participants were followed up for another 12 weeks. Adverse reactions to the 2nd dose of vaccine, 

the incidence of breakthrough COVID-19 infection, and dropouts were reported during the second 

12-week follow-up period. At the 24th-week time point, a 3rd blood sample was withdrawn. Partic-

ipants were followed up for another 12 weeks. Incidence of breakthrough COVID-19 infection and 

dropouts were reported during the third 12-week follow-up period. At the 36th week time point, 

255 HCWs completed the study. Serum levels of anti-spike IgG antibody were measured from with-

drawn blood samples by enzyme-linked immunosorbent assay. All dropouts were excluded from 

the analysis. 

2.2. Blood Sampling 

At baseline (before vaccination), 12 and 24 w, two mL of peripheral blood were col-

lected from each participant via venous puncture. Serum was separated by centrifugation 

at 3000 RPM and stored at −20 °C. 

2.3. Measurement of Anti-Spike IgG Serum Level 

The serum level of IgG antibody against spike (S) of SARS-CoV-2 was determined at 

baseline, 12-, and 24-week time-points using indirect enzyme-linked immunosorbent as-

say (ELISA) according to the manufacturer’s instructions (Anti-SARS-CoV-2 QuantiVac 

ELISA (IgG), EUROIIMMUN, Lübec, Germany, REF# EI 2606-9601-10 G). The ELISA kit’s 

reagent well coat was recombinant S1 domain of the spike protein of SARS-CoV-2, which 

was recombinantly expressed in the human cell line HEK 293. Serum samples with anti-

spike IgG concentration ≥ 35.2 IU/mL were considered immunoreactive. 

  

Figure 1. A schematic illustration of study design and flow. At the baseline point, healthcare
workers (HCWs) were recruited and assessed for eligibility criteria. Medical history was taken,
and baseline blood samples were withdrawn from 268 HCWs who were eligible for participation.
Participant HCWs then received the 1st dose of vaccination. Participants were followed up for
12 weeks. Adverse reactions to the 1st dose of the vaccine, the incidence of breakthrough COVID-19
infection, and dropouts were reported during the first 12-week follow-up period. At the 12th-week
time point, a 2nd blood sample was withdrawn before the participants received the 2nd dose of the
vaccine. Participants were followed up for another 12 weeks. Adverse reactions to the 2nd dose of
vaccine, the incidence of breakthrough COVID-19 infection, and dropouts were reported during the
second 12-week follow-up period. At the 24th-week time point, a 3rd blood sample was withdrawn.
Participants were followed up for another 12 weeks. Incidence of breakthrough COVID-19 infection
and dropouts were reported during the third 12-week follow-up period. At the 36th week time
point, 255 HCWs completed the study. Serum levels of anti-spike IgG antibody were measured from
withdrawn blood samples by enzyme-linked immunosorbent assay. All dropouts were excluded
from the analysis.

Exclusion criteria for participation were HCWs refusal, pregnancy, lactation, and
COVID-19 vaccination contraindications (current COVID-19, any acute illness, history of
allergy to vaccine components, past administration of COVID-19 vaccine).

2.2. Blood Sampling

At baseline (before vaccination), 12 and 24 w, two mL of peripheral blood were col-
lected from each participant via venous puncture. Serum was separated by centrifugation
at 3000 RPM and stored at −20 ◦C.

2.3. Measurement of Anti-Spike IgG Serum Level

The serum level of IgG antibody against spike (S) of SARS-CoV-2 was determined at
baseline, 12-, and 24-week time-points using indirect enzyme-linked immunosorbent assay
(ELISA) according to the manufacturer’s instructions (Anti-SARS-CoV-2 QuantiVac ELISA
(IgG), EUROIIMMUN, Lübec, Germany, REF# EI 2606-9601-10 G). The ELISA kit’s reagent
well coat was recombinant S1 domain of the spike protein of SARS-CoV-2, which was
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recombinantly expressed in the human cell line HEK 293. Serum samples with anti-spike
IgG concentration ≥ 35.2 IU/mL were considered immunoreactive.

2.4. Follow-Up of Participants

After each vaccination dose, HCWs were monitored, and all adverse reactions (ARs)
ensuing were carefully reported. The Google form application was used to generate an
online questionnaire to collect data, and the link was sent to all participants. After com-
pleting the vaccine schedule, participants were followed up for a further six months. Any
incidence of breakthrough COVID-19 infection was reported during the study period, and
all COVID-19 infections were diagnosed clinically and confirmed by laboratory investiga-
tions, chest imaging, and nucleic acid testing as described before [15]. At the conclusion of
the study, all dropout subjects were excluded from statistical analysis (Figure 1).

2.5. Statistical Analysis

Numerical data were presented as mean ± standard deviation (SD) and median
(min-max). Categorical data were expressed as frequency and percentage. Pearson chi-
square (χ2) and Fisher’s exact tests were utilized to determine the association between
immunoreactivity to the vaccine and sociodemographic and clinical variables. McNemar’s
test was used to analyze the ARs to the vaccine. The Wilcoxon signed ranks test was used
to compare the median difference between baseline, 12 w, and 24 w anti-spike IgG serum
antibody levels. The Mann–Whitney U test was used to compare the median difference
between anti-spike IgG serum levels at 12 and 24 w prior to vaccination COVID-19 infected
and never-infected vaccinated groups. Spearman’s correlation coefficient (r) was used to
determine the degree and direction of association between numerical variables. p-values
≤0.05 are considered significant. Statistical analyses were performed using SPSS software
(version 24; IBM Corp., Chicago, IL, USA).

3. Results
3.1. Baseline Characteristics of the Studied HCWs

Two hundred and sixty-eight HCWs in Zagazig University Hospitals participated in
the present study. Of the 268 HCWs enrolled in the study, 13 were excluded. Nine had
personal reasons, one got pregnant, and three did not complete the vaccination schedule
due to current or recent COVID-19 infection. Therefore, 255 participants fulfilled the
requirements of the study. More than half of the participants (57.6%) were between 20
and 39 years old. Females were more prevalent (56.5%). Among the HCWs, 71.8% were
medical personnel, and 54.1% informed history of symptomatic COVID-19 infection before
vaccination. Nearly half of the participants (54.1%) took ivermectin for prophylactic and
therapeutic purposes, and over half of the participants (54.1%) experienced a previous
COVID-19 infection before vaccination. The baseline characteristics of the studied HCWs
are illustrated in Table 1.

Approximately half of the participants (51.8%) had associated comorbidities (Table 1).
The most frequent associated comorbidities were allergic rhinitis (18%), hypertension
(13.7%), osteoarthritis (13.7%), and diabetes (11%) (Figure 2). In addition, 22.4% of partici-
pants were on regular medication (Table 1).
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Table 1. Baseline characteristics of the studied patients.

Variable (N = 255) %

Age (Years)
Mean ± SD 40.7 ± 11.4

Median (Min–Max) 38 (23–69)
20–39 147 57.6
40–59 84 32.9
60–80 24 9.4

Gender
Female 144 56.5
Male 111 43.5

HCWs
Medical 183 71.8

Paramedical 72 28.2

Associated comorbidity 1 132 51.8

Regular drug use 2 57 22.4

Ivermectin Administration 138 54.1
Prophylactic 69 27.1
Therapeutic 15 5.8

Both 54 21.2

Past COVID-19 infection 138 54.1
1 Comorbidities included diabetes, hypertension, anemia, liver disease, neurologic disorders, thyroid disor-
ders, osteoarthritis, chest disease, allergic rhinitis, urticaria, drug allergy, and food allergy. 2 Regular drugs
included oral hypoglycemics, insulin, antihypertensives, nonsteroidal anti-inflammatory drugs, thyroid medica-
tion, and multivitamins.
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Figure 2. Associated comorbidities in descending order of frequency among study participants
(N = 255).

3.2. Adverse Reactions to the Vaccine

Local and systemic ARs were more prevalent in HCWs after the first vaccination
dose compared to those after the second dose (p < 0.001 and <0.001, respectively). The
most frequent local ARs were pain, swelling, and redness (p < 0.001, <0.03, and <0.001,
respectively). Fever, malaise, fatigue, headache, and palpitation were the most significant
systemic ARs (p < 0.001, <0.001, <0.001, <0.001, and <0.01, respectively) (Figure 3).
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3.3. Anti-Spike IgG Serum Level and Immunoreactivity to Vaccine 

Figure 3. Frequency of local and systemic ARs to vaccine after administration of the 1st and 2nd
doses. Data were analyzed by McNemar Test, and significant differences were defined as *** p < 0.001
and ** p < 0.01. AR; adverse reactions.

The experiencing of local and systemic ARs after two vaccination doses was indirectly
correlated with age (p < 0.01, 0.01, 0.001, and 0.2, respectively). Females had a higher risk
of developing local and systemic ARs than males after the first dose (p < 0.001 and <0.005,
respectively) and second vaccination doses (p < 0.001 and =0.7, respectively). The presence
of associated comorbidities was not correlated with local and systemic ARs occurring after
the first (p = 0.6 and 0.5, respectively) and second vaccination doses (p = 0.04 and 0.9,
respectively) (Table 2).

Table 2. Factors associated with adverse reactions to vaccine.

1st dose ARs 2nd dose AR

Variable
Local
N (%)

178 (69)

Systemic
N (%)

212 (83.1)
p Value, OR (CI)

Local
N (%)

120 (47.1)

Systemic
N = 130

130 (51.0)
p Value, OR (CI)

Age
20–39 n = 147 112 (62.9) 128 (60.4) 0.01 *, NA 1 84 (70.0) 72 (55.4) 0.001 *, NA 1

40–59 n = 84 54 (30.3) 69 (32.5) 0.01 *, NA 2 27 (22.5) 49 (37.7) 0.2, NA 2

60–80 n = 24 12 (6.7) 15 (7.1) 9 (7.5) 9 (6.9)

Sex

Female n = 144 116 (65.2) 128 (60.4) <0.001 *, 5.2
(3.0–9.2) 1 84 (70.0) 75 (57.7) <0.001 *, 2.9

(1.7–4.9) 1

Male n = 111 62 (34.8) 84 (39.6) 0.005 *, 2.6
(1.3–5.1) 2 36 (30.0) 55 (42.3) 0.7, 1.6 (0.7–1.8) 2

Comorbidity 3

n = 132
90 (50.6) 112 (52.8) 0.6, 0.9 (0.5–1.5) 1

0.5, 1.3 (0.7–2.5) 2 54 (45.0) 67 (51.5)
0.04 *, 0.6 (0.4–1.0)

1

0.9, 1.0 (0.6–1.6) 2

AR; adverse reactions, OR; odds ratio, CI; confidence interval, NA; non-applicable. Data were analyzed by
Pearson’s chi-square and Fisher’s exact tests when appropriate. * Significance; 1 Local adverse reactions; 2 Systemic
adverse reactions; 3 Comorbidities included diabetes, hypertension, anemia, liver disease, neurologic disorders,
thyroid disorders, osteoarthritis, chest disease, allergic rhinitis, urticaria, drug allergy, and food allergy.

3.3. Anti-Spike IgG Serum Level and Immunoreactivity to Vaccine

The baseline anti-spike IgG serum level was detectable in 35.6% of HCWs (mean:
40.5 ± 59.2 IU/mL). After the 1st vaccination dose, 88.2% of the studied HCWs were
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seropositive (mean: 280.3 ± 169.0 IU/mL), while after the 2nd vaccination dose seroposi-
tivity reached 95.7% (mean: 286.2 ± 130.7 IU/mL) (Table 3 and Figure 4).

Table 3. Immunoreactivity and seroconversion rate at different time points of the study.

Variable (N = 255) %

SARS-CoV-2 IgG
Immunoreactivity

Baseline 90 35.3
After 1st dose of vaccination 225 88.2
After 2nd dose of vaccination 244 95.7

Seroconversion rate (n = 165)
After 1st dose of vaccination 135 81.8
After 2nd dose of vaccination 154 93.3
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Figure 4. Anti-spike IgG antibody serum level (median and range) at baseline, 12 w, and 24 w time
points of the study. Data were analyzed by Wilcoxon Signed Ranks Test and significant difference
was defined as *** p < 0.001. w, week; ×, mean.

Compared to the baseline level, the anti-spike IgG serum level was significantly
elevated at 12 and 24 w (p < 0.001 and <0.001, respectively). There was no significant
variation in anti-spike IgG serum level between 12 w and 24 w (p = 0.5) (Figure 4). Among
the baseline non-reactive HCWs (64.8%), the seroconversion rates after the first and second
vaccination doses were 81.8% and 93.3%, respectively (Table 3).

The baseline anti-spike IgG serum level was significantly and directly correlated
with antibody serum level after the first and second vaccination doses (r = 0.8, p < 0.001
and r = 0.4 and p < 0.001, respectively) (Figure 5A,B). A significant direct correlation was
detected between 12 w and 24 w anti-spike IgG serum levels (r = 0.5, p < 0.001) (Figure 5C).
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Figure 5. Correlations between (A) baseline and 12 w, (B) baseline and 24 w, (C) 12 w and 24 w
anti-spike IgG serum levels. Correlations between age and (D) 12 w and (E) 24 w anti-spike IgG serum
levels. Correlations were measured by Spearman’s rank correlation coefficient (r) and significant
difference was defined as *** p < 0.001. w, week.

3.4. Factors Affecting Vaccine Immunoreactivity

Although a non-significant correlation was found between age and anti-spike IgG
serum levels after the first and second vaccination doses (Figure 5D,E) (r = −0.01, p = 0.8
and r = 0.02, and p = 0.8, respectively), the immunoreactivity to vaccination was signif-
icantly correlated with younger age group (p = 0.009) (Table 4). Sex, HCWs, ivermectin
administration, and associated comorbidities (liver disease, neurologic and thyroid dis-
orders, allergic rhinitis, urticaria, and drug and food allergy) had no significant effect on
immunoreactivity. However, the presence of diabetes, hypertension, and osteoarthritis was
significantly associated with non-immunoreactivity to vaccination (p < 0.001, =0.049, and
<0.001, respectively) (Table 4).

Local and systemic ARs following the first vaccine dose were significant indicators
of vaccine immunoreactivity (p = 0.01 and <0.001, respectively). Pain, fever, malaise, and
fatigue were the most significant indicators of immunoreactivity after the first dose (p = 0.01,
0.001, 0.01, and 0.002, respectively). Although ARs were non-significantly associated
with immunoreactivity after the second dose (p = 0.6 and 0.1, respectively), the odds of
immunoreactivity are increased by approximately three folds (OR: 2.9, CI: 0.75–11.17) with
experiencing systemic ARs (Table 5).
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Table 4. Factors influencing Immunoreactivity to vaccine.

Variable Immunoreactive
N = 244 N (%)

Non-Immunoreactive
N = 11 N (%) p-Value OR CI

Age

<0.009 * NA NA
20–39 n = 147 144 (59.0) 3 (27.3)
40–59 n = 84 80 (32.8) 4 (36.4)
60–80 n = 24 20 (8.2) 4 (36.4)

Sex
0.8 1.4 0.4–4.8Female n = 144 137 (56.1) 7 (63.6)

Male n = 111 107 (43.9) 4 (36.4)

HCWs
0.5 0.7 0.2–2.4Medical n = 183 176 (72.1) 7 (63.6)

Paramedical n = 72 68 (27.9) 4 (36.4)

Ivermectin administration
Prophylaxis n = 123 120 (49.2) 3 (27.3) 0.2 0.4 0.1–1.5
Therapeutic n = 69 66 (27.0) 3 (27.3) 1.0 1.0 0.3–3.9

Diabetes n = 28 22 (9.0) 6 (54.5) <0.001 * 12.1 3.4–42.9

Hypertension n = 35 31 (12.7) 4 (36.4) 0.049 * 3.9 1.1–14.2

Anemia n = 18 18 (7.4) 0 (0.0) 1.0 NA NA

Liver disease n = 7 7 (2.9) 0 (0.0) 1.0 NA NA

Neurologic disorders n = 6 6 (2.5) 0 (0.0) 1.0 NA NA

Thyroid disorders n = 13 13 (5.3) 0 (0.0) 1.0 NA NA

Osteoarthritis n = 35 28 (11.5) 7 (63.6) <0.001 * 14.8 4.1–53.8

Chest disease n = 12 12 (4.9) 0 (0.0) 1.0 NA NA

Allergic rhinitis n = 46 45 (18.4) 1 (9.1) 0.7 0.4 0.1–3.5

Urticaria n = 19 19 (7.8) 0 (0.0) 1.0 NA NA

Drug allergy n = 11 11 (4.5) 0 (0.0) 1.0 NA NA

Food allergy n = 6 6 (2.5) 0 (0.0) 1.0 NA NA

OR; odds ratio, CI; confidence interval, NA; non-applicable. Data were analysed by Pearson’s chi-square and
Fisher’s exact tests when appropriate. * Significance.

Table 5. Relation between adverse reactions and immunoreactivity to vaccine.

Immunoreactivity to 1st Dose Immunoreactivity to 2nd Dose

Variable Immuno-Reactive
N = 225 N (%)

Non-
Immunoreactive

N = 30 N (%)
p Value, OR (CI) Immuno-Reactive

N = 244 N (%)
Non-

Immunoreactive
N = 11 N (%)

p Value, OR (CI)

Local 163 (72.4) 15 (50) 0.01 *, 2.6 (1.2–5.7) 114 (46.7) 6 (54.5) 0.6, 0.7 (0.2–2.5)

Pain 163 (72.4) 15 (50) 0.01 *, 2.6 (1.2–5.7) 122 (45.9) 3 (27.3) 0.4, 2.3 (0.6–8.7)
Swelling 42 (18.7) 6 (20.0) 0.9, 0.9 (0.4–2.4) 15 (6.1) 3 (27.3) 0.03 *, 0.2 (0.0–0.7)
Redness 38 (16.9) 3 (10.0) 0.4, 1.8 (0.5–6.3) 20 (8.2) 3 (27.3) 0.07, 0.2 (0.1–1.0)
Itching 10 (4.4) 0 (0.0) 0.6, NA 6 (2.5) 0 (0.0) 1.0, NA

Systemic 196 (87.1) 16 (53.3) <0.001 *, 5.9
(2.6–13.4) 127 (52.0) 3 (27.3) 0.1, 2.9 (0.8–11.2)

Fever 138 (61.3) 9 (30.0) 0.001 *, 3.7 (1.6–8.5) 23 (9.4) 0 (0.0) 0.6, NA
Malaise 168 (61.3) 16 (53.3) 0.01 *, 2.6 (1.2–5.6) 95 (38.9) 3 (27.3) 0.5, 1.7 (4.4–6.6)
Fatigue 113 (50.2) 6 (20.0) 0.002 *, 4.0

(1.6–10.3) 52 (21.3) 0 (0.0) 0.1, NA
Headache 89 (39.6) 7 (23.3) 0.09, 2.2 (0.9–5.2) 36 (14.8) 3 (27.3) 0.3, 0.4 (0.1–1.8)

Nausea 10 (4.4) 0 (0.0) 0.6, NA 0 (0.0) 0 (0.0) NA
Vomiting 7 (3.1) 0 (0.0) 1.0, NA 0 (0.0) 0 (0.0) NA
Diarrhea 19 (8.4) 0 (0.0) 0.1, NA 0 (0.0) 0 (0.0) NA
Dyspnea 12 (5.3) 0 (0.0) 0.4, NA 0 (0.0) 0 (0.0) NA
Cough 7 (3.1) 0 (0.0) 1.0, NA 2 (0.8) 0 (0.0) 1.0, NA

Palpitation 10 (4.4) 3 (10.0) 0.2, 0.4 (0.1–1.6) 4 (1.6) 0 (0.0) 1.0, NA
Pruritis 3 (1.3) 0 (0.0) 1.0, NA 2 (0.8) 0 (0.0) 1.0, NA

OR; odds ratio, CI; confidence interval, NA; non-applicable. Data were analyzed by Pearson’s chi-square and
Fisher’s exact tests when appropriate. * Significance.
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3.5. COVID-19 Infection and Impact on Anti-Spike IgG Serum Level

More than two-thirds experienced past COVID-19 at least six months earlier (Figure 6).
Non-immunoreactivity at baseline was significantly observed in 80.2% of subjects with a
negative infection history (p < 0.001) (Table 6).

Vaccines 2022, 10, x FOR PEER REVIEW 10 of 19 
 

 

 

OR; odds ratio, CI; confidence interval, NA; non-applicable. Data were analyzed by Pearson’s chi-

square and Fisher’s exact tests when appropriate. * Significance. 

3.5. COVID-19 Infection and Impact on Anti-Spike IgG Serum Level 

More than two-thirds experienced past COVID-19 at least six months earlier (Figure 

6). Non-immunoreactivity at baseline was significantly observed in 80.2% of subjects with 

a negative infection history (p < 0.001) (Table 6). 

 

Figure 6. Frequency of time lapse periods from past COVID-19 infection to baseline point of the 

study among those who experienced infection prior to vaccination (n = 138). 

Table 6. Relation between baseline Immunoreactivity and past COVID-19 infection. 

Baseline Immunoreactivity 

Past COVID-19 Infection 

p OR CI 
Yes 

N = 138 

N (%) 

No 

N = 117 

N (%) 

Immunoreactive 73 (52.9) 18 (15.4) 
<0.001 * 6.2 3.4–11.3 

Non-Immunoreactive 65 (39.1) 99 (84.6) 

OR; odds ratio, CI; confidence interval. Data were analyzed by Pearson’s chi-square test. * Signifi-

cance. 

The incidence of breakthrough COVID-19 infection within 12 w from the first vac-

cination dose (6.4%) and during the follow-up period after second dose (23.5%) signifi-

cantly decreased (p < 0.001 and <0.001, respectively) compared to past COVID-19 infec-

tions (Figure 7). None of the reported breakthrough COVID-19 cases during the follow-

up periods required hospital isolation. However, the incidence of first and second break-

through infections in those with past COVID-19 infection (8% and 24.6%, respectively) 

compared to those without (5.1% and 22.2%, respectively) was non-significant (p = 0.5) 

(Figure 8). 

Figure 6. Frequency of time lapse periods from past COVID-19 infection to baseline point of the
study among those who experienced infection prior to vaccination (n = 138).

Table 6. Relation between baseline Immunoreactivity and past COVID-19 infection.

Baseline
Immunoreactivity

Past COVID-19 Infection
p OR CIYes

N = 138 N (%)
No

N = 117 N (%)

Immunoreactive 73 (52.9) 18 (15.4)
<0.001 * 6.2 3.4–11.3

Non-Immunoreactive 65 (39.1) 99 (84.6)
OR; odds ratio, CI; confidence interval. Data were analyzed by Pearson’s chi-square test. * Significance.

The incidence of breakthrough COVID-19 infection within 12 w from the first vaccina-
tion dose (6.4%) and during the follow-up period after second dose (23.5%) significantly
decreased (p < 0.001 and <0.001, respectively) compared to past COVID-19 infections
(Figure 7). None of the reported breakthrough COVID-19 cases during the follow-up peri-
ods required hospital isolation. However, the incidence of first and second breakthrough
infections in those with past COVID-19 infection (8% and 24.6%, respectively) compared to
those without (5.1% and 22.2%, respectively) was non-significant (p = 0.5) (Figure 8).
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Figure 8. Frequency of 1st breakthrough and 2nd breakthrough COVID-19 infections in those who
experienced past COVID-19 and those who did not. Data were analyzed by chi-square test and
p = 0.6.

In subjects with past COVID-19 infection, anti-spike IgG serum level was signifi-
cantly higher after the first dose (mean: 348.8 ± 140.5 IU/mL) and second dose (mean:
309.8 ± 120.9 IU/mL) of vaccination when compared to level after the first (mean:
199.5 ± 164.4 IU/mL) and second dose (mean: 258.5 ± 136. IU/mL) in those who gave a
negative history of past infection (p < 0.001 and =0.001, respectively) (Figure 9).
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4. Discussion

Declaring the COVID-19 pandemic as a global public health crisis by the WHO on 11
March 2020 [16] has resulted in accelerated developing and licensing of vaccines against the
emerging virus. A thorough benefit–risk assessment requires further evaluation of these vac-
cines’ safety and efficacy in different geographic, demographic, and ethnic populations. The
vaccines proposed were ChAdOx1 (AstraZeneca/Oxford), BNT162b2 (Pfizer/BioNTech),
JNJ-78436735 (Janssen), mRNA-1273 (Moderna), and NVX-CoV2373 (Novavax). mRNA
vaccines, such as BNT162b2 and mRNA-1273, demonstrated an efficacy of 95% and are cur-
rently used in several countries [17,18]. Although the effectiveness of viral vector vaccines
(ChAdOx1 and JNJ-78436735) was documented to have diminished efficacy compared to
mRNA vaccines, they satisfied the minimum efficacy criteria of the WHO. They were used
for early-stage vaccination in 2021 [19].

In the present work, we investigated the long-term efficacy of the Oxford–AstraZeneca
(ChAdOx1 nCoV-19) vaccine in preventing COVID-19 infection in 255 Egyptian HCWs,
who fulfilled the requirements of the study during the 12 w interval between the two vacci-
nation doses and throughout the six-month follow-up period after the second vaccination
dose. In addition, we correlated the serum level of anti-spike IgG and immunoreactivity
to vaccination with sociodemographic characteristics, clinical variables, and ARs to the
vaccine. In the present study, females (56.5%) and those aged 20 to 39 years (57.6%) were
predominant. However, paramedical HCWs represented less than one-third (28.2%).

Following that, several cases of thrombotic events accompanied by thrombocytope-
nia have been observed and linked to the administration of the Oxford–AstraZeneca
vaccine; Denmark, pursued by several European countries, was the first country to sus-
pend the use of the Oxford–AstraZeneca vaccine [20]. Nevertheless, research data could
not recognize platelet dysfunction in Oxford–AstraZeneca vaccinated population [21,22].
Therefore, the WHO and the European Medicines Agency declared that the trend of hy-
percoagulability could not be vindicated and recommended continued vaccination by the
Oxford–AstraZeneca vaccine [23].

The ARs reported in the current study align with those usually experienced following
any vaccine, including different COVID-19 vaccines and the ChAdOx1 nCoV-19 vaccine [24].
Both local (pain, swelling, and redness) and systemic (fever, malaise, fatigue, headache, and
palpitation) ARs were more prevalent following the first vaccination dose than the second.
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However, they were short-lived, self-limiting symptoms and were mild or moderate in
severity. They improved within 48 h, either spontaneously or with over-the-counter medi-
cations. No report of serious ARs either necessitated hospitalizations or induced disabilities
or fatalities. These findings are consistent with those reported in other studies [10,25,26].
After two vaccination doses, younger age groups and females encountered more ARs,
and reactogenicity was generally less frequent in the elderly. The increased likelihood
of ARs at younger ages had been previously noticed by Kamal et al. 2021 [27], Ali et al.
2021 [28], Menni et al. 2021 [25], and Tequare et al. 2021 [29]. The potent immunoreactivity
to vaccination observed in young subjects compared to the elderly increased the likelihood
of ARs [10]. Consistent with previous studies [29,30], females were more prone to ARs
due to the vigorous immune response provoked by the estrogen hormone [29,31]. It is
worth mentioning that the salience of ARs following the first vaccine dose was a significant
predictor of the production of anti-spike IgG antibodies, which was comparable to what
had been reported by Jeong et al. 2021 [13]. Furthermore, the underlying comorbidity of
the studied HCWs did not affect the severity of ARs to the vaccine.

The post-vaccine immune response incorporates several aspects, such as innate, hu-
moral, and cellular immune responses. Although the humoral immune response represents
only one aspect, it is far easier to detect serum antibody levels to assess the immune re-
sponse to vaccines due to their widespread application and standardization [32,33]. In
order to assess the long-term efficacy of the vaccine, the present study was designed to
measure anti-spike IgG serum levels at three time points: (1) the start point just prior to the
first vaccine dose (baseline), (2) the 12th w following the first vaccine dose (immediately
prior to the second dose), and (3) the 24th w following the first vaccine dose (12 w following
the second dose).

At the baseline point of the study, COVID-19 infection was reported in 54.1% of the
HCWs; nevertheless, the anti-spike IgG was detectable in 35.6%, since it passed over six
months in 71% of those who reported the previous infection. However, the seronegative
HCWs (64.8%) showed seroconversion rates of 81.8% and 93.3% after the first and sec-
ond vaccination doses, respectively. Of all the studied HCWs, 88.2% were seropositive
following the first vaccination dose, while 95.7% were seropositive 12 w following the
second dose, compared to a study conducted in England involving HCWs, who reported
a 97.1% seropositivity rate after a single dose of the Oxford–AstraZeneca vaccine and
before the second dose [34]. Meanwhile, a Korean study involving HCWs reported that
the seropositivity rate after one dose of the Oxford–AstraZeneca vaccine was 68.2–100%
after 66.2 days on average [35]. Furthermore, a study from Northern Ireland revealed that
86.9% of participants had been seropositive three weeks following the first vaccine dose,
dropping to 74.7% instantly prior to the second dose. Overall, 99% of the participants were
seropositive three weeks after the second dose, dropping to 90.5% six months after the
first vaccine dose [36]. Accordingly, the variability in the seropositivity rates following the
vaccine could be related to the different time points for collecting serum samples.

Our findings demonstrated that the Oxford–AstraZeneca vaccine successfully elicited
a robust and sustained elevated anti-spike antibody response at 12th and 24th w compared
to the baseline. These findings confirmed the vaccine’s efficacy discussed in the previous
report on the safety and immunogenicity of the vaccine [26]. Moreover, minor variation
between 12th and 24th w measurements of anti-spike IgG serum level coupled to the direct
association between baseline and 12th and 24th w time points of anti-spike IgG serum
level, particularly those with baseline antibody serum level exceeding the cut-off value,
were significant findings in the study. In addition, a direct association between the 12th
and 24th w measurement of anti-spike IgG serum level was evident. Overall, measuring
basal antibody level before vaccination could predict antibody response after vaccination,
and even more, measuring serum antibody level following the first vaccine dose could
predict the response to the second dose. Younger HCWs demonstrated immunoreactivity
to the vaccine despite the lack of correlation between age and anti-spike IgG serum level
at the 12th- and 24th-week time points. Due to the known decline in T-cell-derived an-
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tibody production and B-lymphocyte generation that occurs with age, older individuals
exhibit a weaker antibody response to various types of vaccines and a more rapid loss of
antibodies [37]. Nevertheless, the non-significant correlation between age and anti-spike
IgG serum level demonstrated in our work could be related to the under-representation of
old age in the studied HCWs, as only 9.4% of the participants were aged between 60 and
80 years old.

Unlike mRNA vaccines (Pfizer-BioNTech and Moderna), which store the genetic
instructions of building spike protein of SARS-CoV-2 in single-stranded RNA, the Oxford–
AstraZeneca vaccine stores the instructions in double-stranded DNA [38]. Despite the
extensive research on SARS-CoV-2 vaccines during the COVID-19 pandemic, the literature
provides limited data on how they work and induce the immune system. Few reports
have investigated mRNA vaccines and the expression of the spike protein. In their work,
Cognetti and Miller (2021) reported that the spike protein enters the bloodstream and
circulates for a week before complete clearance from circulation within one month [39].
However, regarding other types of vaccines, almost no data on the spike protein expression,
concentration, half-life, and degradation are yet available. Therefore, detecting the spike
protein serum level in recently vaccinated individuals and pursuing the post-vaccination
antibody serum level could bring the complete picture of the successfulness of vaccine take
and its dynamics to the spotlight.

Furthermore, among HCWs with a history of past COVID-19 infection before vacci-
nation, a robust antibody response was observed at the 12th- and 24th-week time points
compared to non-infected HCWs. Several studies confirmed that the decay of antibody
titer was faster in vaccinated individuals who had never been infected than in those who
had been infected prior to vaccination [34,36], which could be attributed to several factors.
First, there is limited data on antibody persistence duration following COVID-19 infec-
tion or vaccination. Recent studies have detected antibodies circulating for seven months
post-infection [40,41]. Additionally, another study on the Oxford–AstraZeneca vaccine
demonstrated elevated antibody levels three months after a single dose [42]. Second, two
recent studies proved that antibodies following COVID-19 originated in memory B cells
and are likely necessary for long-term immunity [43,44], a mechanism by which most
antiviral vaccines function [45]. Finally, vaccines might present viral proteins in slightly
more conformations than the actual virus, resulting in variation in antigen and antibody
kinetics [46]. Considering the immune response after infection is analogous to immune
priming, the elevated antibody levels in individuals infected prior to vaccination most likely
described the entirety of the antibodies developed following infection and vaccination [47].

In the present study, diabetic, hypertensive, and osteoarthritis patients demonstrated
low immunoreactivity to the vaccine. Although COVID-19 vaccines were highly influ-
ential in general population cohorts, data on their efficacy amongst groups with distinct
comorbidities were not satisfactory. Recent research on COVID-19 vaccines’ efficiency
and immunogenicity amongst persons in clinical risk groups reported significantly frail
seropositivity following a single dose of Oxford–AstraZeneca vaccine in diabetics [48].
Furthermore, reported seropositivity ensuing the vaccine’s first dose was 52.7% and 48%
of patients with type 1 and type 2 diabetes. However, antibody levels were comparable
after the second dose in patients with type 1 and type 2 diabetes and healthy controls.
Several flaws in immunity were linked to diabetes, mainly cellular immunity; however,
humoral immunity could also be affected [49]. The impaired humoral immune response
had been previously reported with other vaccines, e.g., influenza and hepatitis B, in people
with diabetes [50,51]. The association between osteoarthritis and diminished immunore-
activity to the vaccine can be attributed to old age or increased body mass index, which
are major risk factors for osteoarthritis and have a negative impact on humoral immune
response [52,53]. The dysregulation of cytokine profile associated with aging and obesity
induces a low-grade inflammatory state that chronically activates the immune system
and renders B cells refractory for further stimulation [54,55]. Consistent with Rifai et al.
2022 [56], we observed in hypertensive HCWs a lower trend in antibody production, and



Vaccines 2022, 10, 1706 15 of 19

therefore, they might be more prone to have COVID-19 infections despite completing the
vaccination schedule. Th2 subset number and IL-4 serum levels were significant reductions
in hypertensive patients [57]. Otherwise, the hypertensive stimuli induce the Th1- and
Th17-related cytokines, such as IFN-γ and IL-17A [58]. Therefore, the increased production
of Th1 cytokines with suppression of Th2 cytokines triggered by angiotensin II contributed
to suppressing humoral immunity and antibody production [59]. Moreover, the admin-
istration of angiotensin receptor blocker drugs somehow restored the balance of the Th
subsets, hence improving the Th2 differentiation [60].

Before initiating the vaccination in the studied HCWs, confirmed past COVID-19 infec-
tions were reported in 54.1%, and more than two-thirds had encountered infections at least
six months earlier. During the time spanning the scheduled two doses of the vaccine and the
six-month follow-up period, the incidence of breakthrough COVID-19 cases among the stud-
ied HCWs had fallen to 6.4% and 23.5%, respectively. All reported breakthrough COVID-19
cases were mild, and none of the reported cases required hospitalization. As mentioned ear-
lier, participants with past COVID-19 displayed significantly higher anti-spike IgG serum
levels than those without, albeit the incidence of first and second breakthrough infections
among those with past COVID-19 (8% and 24.6%, respectively) was surprisingly higher
when compared to those without (5% and 22.2%, respectively). However, our findings are
consistent with recent work during the Omicron Era [61]. Cerqueira-Silvae et al. (2022)
reported that past COVID-19 infection offered robust protection against severe disease but
not symptomatic infections, and this protection increased with hybrid immunity (combined
past infection and vaccination) [61].

One limitation of the present study was the absence of sequencing data about the SARS-
CoV-2 variants in the confirmed COVID-19 cases due to the limited resources restricting
the sequencing process on a routine basis. It should be noted that Delta (B.1.617.2) and
Omicron (B.1.1.529) variants were first reported in Egypt on August 24 and December 21,
2021, respectively, based on the WHO weekly epidemiologic updates [62], and started to
circulate from then, which synchronized with our study and follow-up period. However, as
described before [15], tracing the S gene expression status using TaqPath™ COVID-19 assay
(Thermo Fischer Scientific) was an alternative route to identify SARS-CoV-2 variants [63].
A second limitation was the lack of a control arm; however, it was unattainable to recruit
HCWs who could not be vaccinated and continue for nine months (the study duration)
as a control arm without vaccination during the current COVID-19 pandemic. Hence,
the design was a single-arm cohort study. Despite the adherence of the studied HCWs
to infection, prevention, and control measures such as face masking, social distancing,
and work restriction with proven COVID-19 infection, the relatively higher incidence of
second breakthrough COVID-19 infection after the second dose of the vaccine (23.5%)
compared to the first breakthrough (6.4%) can be accounted to several factors. A modest
reduction in vaccine effectiveness against infection has been noticed with Delta variant [64],
the predominated strain during the period between two doses of the vaccine (12 weeks).
However, the multiple mutations in the receptor-binding domain of the spike protein
in the Omicron variant might interfere with the performance of the currently available
vaccines against it and empower its ability to spread among vaccinated individuals [63,65]
widely. Furthermore, the easy and rapid dissemination of Omicron variants compared
to Delta variants [66] and the longer follow-up period (24 weeks) after the second dose
of vaccine could explain the increased incidence of breakthrough COVID-19 infection
in the present study after the second dose. Nevertheless, antibody levels decayed over
time after vaccination and remained detectable for more than six months following the
first vaccination. These findings highlighted the significance of the vaccination and its
substantial efficacy in alleviating the risk or severity of infections by new variants and the
need for hospitalization. However, the waning of immunity over time, as evidenced in
the current study by the increased incidence of infection in the Omicron era compared to
the Delta era, necessitates further booster doses at regular intervals, particularly in high-
risk groups [67]. Furthermore, the authors esteem the Egyptian public health authorities’
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potential to facilitate access to primary and booster vaccine doses, despite the limited
resources for mass vaccination. It reflects the successfulness of vaccination efforts and the
application of infection, prevention, and control policies in Egyptian hospitals by Egyptian
HCWs during the COVID-19 pandemic.

5. Conclusions

The Oxford–AstraZeneca vaccine is generally safe and is highly effective in preventing
COVID-19 infections among Egyptian HCWs. It provides a robust, sustained humoral
immune response successfully refractory to the constantly evolving SARS-CoV-2. Moreover,
particular alertness should be directed to the elderly, males, and those who develop frail
ARs following the first vaccine dose or those with associated comorbidities, particularly
diabetes and hypertension. Finally, measuring serum anti-spike IgG levels before and after
vaccination doses is a useful and standardized tool for predicting vaccine immunoreactivity
and preparing for other alternatives in high-risk groups.
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