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Abstract
The immune microenvironment in acute myeloid leukemia (AML) is closely 
related to patients’ prognosis. Long noncoding RNAs (lncRNAs) are emerging 
as key regulators in immune systems. In this study, we established a prognos-
tic model using an immune-related lncRNA (IRL) signature to predict AML 
patients’ overall survival (OS) through Least Absolute Shrinkage and Selection 
Operator (LASSO) and multivariate Cox regression analysis. Kaplan-Meier analy-
sis, receiver operating characteristic (ROC) analysis, univariate Cox regression, 
and multivariate Cox regression analyses further illustrated the reliability of our 
prognostic model. An IRL signature-based nomogram consisting of other clinical 
features efficiently predicted the OS of AML patients. The incorporation of the 
IRL signature improved the ELN2017 risk stratification system's prognostic ac-
curacy. In addition, we found that monocytes and metabolism-related pathways 
may play a role in AML progression. Overall, the IRL signature appears as a novel 
effective model for evaluating the OS of AML patients and may be implemented 
to contribute to the prolonged OS in AML patients.
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1   |   INTRODUCTION

Acute myeloid leukemia (AML) is the most prevalent leu-
kemia in adults with a sequence of somatic mutations that 
cause the abnormal growth and differentiation of hema-
topoietic stem cells (HSCs).1 At present, the mainstream 
therapy is chemotherapy, which does not prevent the pa-
tient from AML relapse. The 5-year overall survival (OS) 
of patients younger than 60 is 40% and only 10%–20% for 
those aged 60 years and older.2 The European LeukemiaNet 
(ELN) integrated cytogenetics, and molecular data were 
implemented to perform the risk stratification at diagno-
sis.3 Although the ELN 2017 system has been extensively 
applied as a tool to evaluate AML patients’ prognosis, due 
to the complexity of AML, the results of this stratification 
are still not perfect. Hence, further studies of critical poten-
tial biomarkers related to the prognosis of AML are needed.

Rapid progress in sequencing technology nowadays has 
bought noncoding RNA (ncRNA) to light, exceptionally 
long non-coding RNAs (lncRNAs), which have critical roles 
in malignant transformation and progression.4 LncRNAs 
are participators in regulating gene expression through 
chromatin modification and the process of transcriptional 
and posttranscriptional.5 As more and more studies on ln-
cRNA function have been revealed, lncRNAs can regulate 
biologic processes and serve as a prognostic biomarker in 
many solid tumors.6-10 Moreover, lncRNAs also regulate the 
hemopoiesis system.11 For example, HOTTIP is abnormally 
activated in AML, and HOTTIP loss leads to the inhibition 
of genes crucial for hematopoiesis and AML leukemogen-
esis.12 Knockdown of LncRNA ANRIL results in a drop in 
glucose uptake and blockage of AML cell maintenance.13 
In addition, lncRNA USP30-AS1 is highly expressed in 
AML and promotes the survival of acute myeloid leukemia 
cells by cis-regulating USP30 and ANKRD13A.14

In-depth research on the cancer-immune field has 
led to researchers’ attention on the immune microenvi-
ronment in the development of AML.15 To some extent, 
immunotherapy was not novel for the long history of suc-
cessful application of allo-SCT in AML. Immune check-
point therapy and chimeric antigen receptors have made 
significant tumor immunotherapy progress.16 However, 
AML has not benefited from such breakthroughs, mainly 
due to the lack of actionable immune targets. Research on 
AML immunotherapy has been lagging far behind solid 
tumors.17 We have much to do to get a better understand-
ing of the AML immune microenvironment.

Previous IRL-related study explored the immune-
related competing endogenous RNA network and their 
association with AML prognosis.18 Using the ESTIMATE 
algorithm, they divided AML patients into low-risk and 
high-risk groups based on immune and stromal scores.19 
Differentially expressed genes including mRNA, miRNA, 

and lncRNA were identified and these genes were sub-
jected to construct a competing endogenous RNA network. 
Finally, each gene in the competing endogenous RNA net-
work was evaluated for the association with AML prog-
nosis. They failed to develop a model for predicting AML 
patients’ prognosis is a regret. In this study, we identified 
IRLs using Pearson correlation analysis and constructed an 
IRL-based prognostic model, filling the gap in AML.

2   |   METHODS

2.1  |  Data collection

RNA-Seq (FPKM) data and clinical features of AML pa-
tients were obtained from the TCGA-LAML cohort. All 
samples included in this study were accorded with the 
inclusive criteria: (a) newly diagnosed AML samples and 
(b) availability of transcriptome and clinical data. AML 
patients were randomly divided into training and test co-
horts (ratio 1:1) for building and validating the IRL model, 
respectively. Computer-generated random number se-
quences performed randomization. The clinicopathologic 
features of AML patients are detailed in Table 1. Immune-
related genes (IRGs) were acquired from the ImmPort 
database (https://immpo​rt.niaid.nih.gov) and 1731 genes 
were extracted after integrating with the mRNA data from 
the TCGA-LAML cohort.

2.2  |  Establishment of the IRL signature

Pearson correlation analysis was conducted to identify IRLs 
between IRGs and lncRNAs from the TCGA-LAML cohort, 
and the selection criteria were set to |R| >0.8 and p value 
<0.001. At last, we obtained 70 IRLs. To evaluate the as-
sociation between IRLs and OS, univariate Cox regression 
analysis was conducted, and nine of them had prognostic 
values (Table S1). LASSO regression analysis was used to 
minimize the risk of overfitting, and a multiple stepwise 
Cox regression method was applied to identify hub IRLs 
for establishing the prognostic model. The risk score was 
calculated using the following equation: β1 × gene1 expres-
sion + β2 × gene2 expression + β3 × gene3 expression … 
+ βn × genen expression, where β was the correlation coef-
ficient produced by the multiple Cox regression analysis.

2.3  |  Evaluation of the IRL signature

Based on the risk score median, AML patients were classi-
fied into high-risk and low-risk groups. Next, the Kaplan-
Meier analysis was performed to assess the IRL signature's 

https://immport.niaid.nih.gov
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prognostic value. The sensitivity and specificity of the IRL 
signature were assessed by the receiver operating charac-
teristic (ROC) curve. In addition, univariate and multivar-
iate Cox analyses were applied to prove the model was an 
independent prognostic model. A prognostic nomogram 
was then established to predict 1-, 2-, and 3-year OS of 
AML patients. The calibration curve was plotted to evalu-
ate the accuracy of this nomogram.

2.4  |  Refinement of the European 
LeukemiaNet (ELN) 2017 System

Patients were divided into the three novel groups: ELN 
favorable/IRLhigh and ELN adverse/IRLlow patients were 
reclassified to the intermediate-risk group. ELN interme-
diate/IRLhigh patients were reclassified to the high-risk 

group. ELN intermediate/IRLlow patients were reclassified 
to the low-risk group. We assessed the new risk stratifica-
tion system's prognostic significance using Kaplan–Meier 
analysis.

2.5  |  Immune cell-infiltrating and GSEA 
analyses among risk groups

CIBERSORT package was applied to explore the differ-
ences in several immune cell subtypes among risk groups. 
The Mann-Whitney U test was used to identify differences 
among risk groups. ESTIMATE algorithm was applied to 
study the status of infiltrating immune cells among two 
subgroups. Gene set enrichment analysis (GSEA) per-
formed by GSEA software was applied to evaluate all gene 
functions associated with risk groups.

T A B L E  1   Correlation between clinicopathologic characteristics and the immune-related lncRNA signature in the TCGA-LAML cohort

Variables

Training cohort (n = 76) Testing cohort (n = 75) Entire TCGA (n = 151)

High risk Low risk P High risk Low risk P High risk Low risk P

Age (years)

<65 21 34 0.002 23 29 0.018 44 63 0.000

≥65 17 4 17 6 34 10

Gender

Female 13 19 0.163 15 21 0.052 28 40 0.020

Male 25 19 25 14 50 33

Status

Alive 6 26 0.000 5 17 0.001 11 43 0.000

Dead 32 12 35 18 67 30

WBC

<10 × 109/L 16 12 0.342 14 16 0.345 30 28 0.989

≥10 × 109/L 22 26 26 19 48 45

BM blast

<70% 23 18 0.179 13 12 0.870 36 30 0.531

≥70% 15 20 27 23 42 43

ELN2017

Favorable 4 13 0.002 6 9 0.088 10 22 0.000

Intermediate 12 14 16 9 28 23

Adverse 22 7 18 6 40 13

Transplant

Yes 13 22 0.038 20 12 0.170 33 34 0.598

No 25 16 20 23 45 39

Chemotherapy

Yes 35 38 0.240 38 35 0.495 73 73 0.059

No 3 0 2 0 5 0

Relapse

Yes 14 17 0.674 20 16 0.897 34 33 0.723

No 24 21 20 17 44 38
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2.6  |  Statistical analysis

The R software (version 4.0.2, https://www.r-proje​ct.org/) 
was used to perform all statistical analyses. “survival” pack-
age was applied to perform the univariate and multivariate 
Cox regression analyses. “glmnet” and “survival” packages 
were applied to conduct LASSO regression analysis. Riskscore 
curve and survival scatter diagrams were performed using the 
“pheatmap” package. Kaplan–Meier analysis was conducted 
by “survminer” and “survival” packages. “survivalROC” 
package was used to determine area under the curve (AUC) 
values and construct ROC curves. The “rms” R package con-
structed nomogram. All statistical tests were two-sided, and 
p < 0.05 was considered to be statistically significant.

3   |   RESULTS

3.1  |  Identification of IRL and 
construction of the prognostic model in 
AML patients

To construct the prognostic model of AML, 76 samples 
data sourced from TCGA served as the training set. The 
mRNA data from the TCGA database and the immune-
related gene set from the ImmPort database were inter-
sected to obtain 1731 immune genes related to AML. 
Pearson correlation analysis between lncRNA expres-
sion and 1731 immune-related gene expression identified 

nine IRLs. These nine prognostic IRLs were subjected to 
LASSO regression analysis and six IRLs were selected, in-
cluding AC244502.1, AC025259.3, AC099811.1, FAM30A, 
AC131097.4, and U62631.1 (Figure 1A,B). Multiple step-
wise Cox regression was conducted to select the IRLs 
with better prognostic value, and four hub IRLs were 
produced to construct the prognostic model for AML pa-
tients (Figure  1C). The hazard ratio of AC244502.1 and 
AC099811.1 is <1. The hazard ratio of FAM30A and 
AC131097 is >1. The coefficient for calculating the risk 
score is shown in Figure 1D.

3.2  |  Evaluation of the prognostic model

With the IRL signature, we divided the patients into 
high-risk and low-risk groups. Kaplan–Meier survival 
curves depicted that AML patients with higher risk 
scores had worse clinical outcomes in the test, train-
ing, and entire cohorts, respectively (Figure  2A). The 
ROC curves indicated that the IRL model could accu-
rately predict OS in the TCGA cohort (training cohort 
AUC  =  0.848, test cohort AUC  =  0.704, entire cohort 
OS  =  0.766; Figure  2B). Survival status distributions 
and risk scores are plotted in Figure 2C,D. We observed 
that patients in high-risk groups had a higher mortality 
rate. Through the above analysis, the prognosis model 
we constructed showed a convincing judgment on the 
prognosis of AML patients.

F I G U R E  1   Establishment of the 
IRL model. (A-B) LASSO regression was 
performed to calculate the minimum 
criteria. (C) Forest plot of the four IRLs 
included in the prognostic signature. (D) 
The coefficients of four lncRNAs were 
estimated by multivariate Cox regression
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3.3  |  Stratification analysis

We intended to ascertain whether the IRL signature 
could be applied to different clinicopathologic sub-
groups. In the subgroup of age ≤65, the prognostic 
model retained its predictive power of telling the OS 
(Figure 3A). However, in the senior age group, the dif-
ference in OS between the low-risk and the high-risk 
groups is not as distinct as in the age ≤65 (Figure 3A). It 

implied that old age has a massive impact on prognosis. 
Likewise, compared with patients with lower risk, AML 
patients with higher risk had worse OS in the relapse 
or disease-free subgroups (Figure  3B). We also con-
firmed that the IRL model could still accurately predict 
OS for patients who have undergone a transplant or not 
(Figure 3C). According to different clinical information 
to stratify patients, our model still shows good prognos-
tic prediction ability.

F I G U R E  2   Evaluation of the IRL model. (A) Kaplan–Meier analysis for the subgroups in the TCGA-LAML cohort. (B) ROC curves of 
IRLs for predicting the survival in the subgroups. (C-D) The distribution of risk scores and survival status of AML patients in the subgroups
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3.4  |  The IRL prognostic model 
was an independent factor for AML 
patients’ prognosis

We applied the univariate and multivariate Cox analyses 
to evaluate whether the IRL prognostic model was an in-
dependent factor for AML patients’ prognosis. The univari-
ate Cox analysis indicated that the IRL prognostic model 
was significantly associated with OS (hazard ratio = 1.197, 
p < 0.001; Figure 4A). The multivariate Cox analysis fur-
ther displayed that the IRL prognostic model was an inde-
pendent predictor of OS (HR: 1.179, p < 0.001; Figure 4B).

3.5  |  Construction and evaluation of  
nomogram

Integrated with conventional reliable risk factors, we can 
establish a nomogram containing the IRL signature to 

predict AML patinets’ prognosis quantitatively. The risk 
status (based on the IRL prognostic model), ELN2017 risk 
stratification system, and age in the TCGA data set were 
used to construct a nomogram (Figure 4C). The calibration 
plots indicated that the observed vs. predicted rates of 1-, 2-, 
and 3-year OS had an excellent concordance in the TCGA 
(Figure  4D). These results demonstrated that the nomo-
gram had an excellent ability to predict AML patients’ 
prognosis.

3.6  |  Incorporation with the IRL 
prognostic model improved the ELN2017 
risk stratification system

ELN2017 risk stratification system is widely used for 
AML patients’ risk stratification. However, the prognostic 
heterogeneity calls for a refinement of the risk stratifica-
tion. We then compared our ELN2017+ IRL model with 

F I G U R E  3   Stratification analysis. 
(A) Kaplan–Meier analysis of the IRL 
model in patients aged ≤40 or >40 years 
groups. (B) Kaplan–Meier analysis of 
the IRL model in disease-free or relapse 
groups. (C) Kaplan–Meier analysis of the 
IRL model in nontransplant or transplant 
groups
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ELN2017. The results indicated that 29% of patients in the 
favorable group and 25% in the adverse group of ELN2017 
were reclassified into the adverse group of our model, 44% 
of patients in the intermediate group of ELN2017 were 
re-classified into the favorable group and 56% of patients 
in the intermediate group of ELN2017 were reclassified 
into the adverse group (Figure 5A). In addition, we found 
that the combined ELN-IRL risk stratification system 
could more accurately define AML patients’ prognosis 
(Figure 5B,C).

3.7  |  Correlation between risk score and 
status of tumor-infiltrating immune cell

Immune cells play diverse roles in tumor development 
and eradication. The 22 different immune cell types 
among low- and high-risk groups were analyzed with the 
CIBERSORT algorithm. We can see in Figure 6A that the 
high-risk group displayed a more significant number of 
CD8+ T cells, activated NK cells, and monocytes. Also, we 

found that the levels of mast cells resting in the high-risk 
group were significantly lower than those in the low-risk 
group. Figure  6B shows that the immune score in the 
high-risk group is higher than it in the low-risk group. 
Moreover, the stroma score has no difference between the 
two groups.

3.8  |  GSEA analysis

To explore the potential biologic differences between 
high- and low-risk groups, we performed a GSEA anal-
ysis. These pathways could be roughly divided into 
three categories: immune-related (Figure  7A), tumor 
proliferation-related (Figure  7B), and metabolism-
related pathways (Figure  7C). The hallmark pathways 
enriched in high-risk patients are IL2-STAT5 signaling, 
IFN-γ response, TNF-α-NFκB signaling, k-RAS signal-
ing, adipogenesis, and fatty acid metabolism. These data 
informed us to explore the mechanism further in future 
work.

F I G U R E  4   Establishment and evaluation of the nomogram. (A) Univariate analyses of the IRL model. (B) Multivariate analyses of the 
IRL model. (C) Nomogram based on IRL model's risk score and clinical information. (D) Calibration plots for predicting the probability of 
OS at 1, 2, and 3 years
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4   |   DISCUSSION

Patients with identical cytogenetic and molecular 
“makeup” may not have uniform outcomes.20,21 These 
inconsistent prognostic outcomes may result from addi-
tional undiscovered critical factors. LncRNAs are crucial 
regulators of gene expression and play a significant part 
in cancer physiology and pathology.6,22 This study con-
structed a novel and reliable IRL model to predict AML 
patients’ OS and improved the ELN2017 risk stratification 
system's accuracy.

There are few reports on these four immune-related 
lncRNAs, and especially AC244502.1, AC099811.1, and 
AC131097.4 are considered as novel lncRNAs. AC244502.1 
is reported to be a protective factor (HR = 0.777) in breast 
cancer.23 AC131097.4 is a risk factor (HR = 2.019) for low-
grade glioma.24 FAM30A is highly expressed in B cells and 
plays an important role in immune regulation, including 
inflammatory immune response accompanied with B cells 
activation25 and various vaccine response-related immune 
pathways.26 In addition, FAM30A is reported to be a bio-
marker in many types of tumors, like gastric cancer,27 lung 
adenocarcinoma,28 laryngeal squamous cell carcinoma,29 
and AML.30

Nomograms are helpful and reliable tools for physi-
cians to plan individualized treatment, predict survival, 
and decide the interval for follow-up and/or imaging.31 In 

this study, we found that these variables, including WBC, 
platelet, sex, and BM Blast, were not statistically signifi-
cant in the univariate and multivariate Cox analyses and 
dropped from the model. In contrast, age, ELN2017 strat-
ification, and riskScore variables were significant in both 
analyses and integrated to form a nomogram, which pro-
vided an individualized survival estimate.

ELN2017 classification, integrated cytogenetic and 
mutational status information, is widely used in clinical 
practice.3 However, remarkable heterogeneity remains 
unresolved. Because immune-related factors were not in-
cluded in this classification, we integrated our IRL model 
with the ELN2017 classification, and this fused model had 
a better prediction efficiency than the ELN2017 classifica-
tion only.

Our study showed that the high-risk group displayed 
more CD8+ T cells, monocyte infiltration, and more im-
mune components. The GSEA analysis illustrated that the 
IFN-γ response was enriched in the high-risk group. As 
CD8+ T cells directly kill tumor cells and IFN-γ acts as a 
proapoptotic signal for tumor cells,32,33 the phenomenon 
that these tumor-suppressive factors are enriched in the 
high-risk group seems to be contrary to our cognition. 
However, IL2-STAT5 signaling is also highly expressed 
in the high-risk group. Recent studies show that a high 
level of IL-2 induces a persistent STAT5 activation in 
CD8+ T cells,34 and the IL2-STAT5 pathway is positively 

F I G U R E  5   Improved 
ELN2017 system. (A) Reclassification 
of patients according to incorporating 
the ELN2017 risk stratification system 
and the IRL model. (B) Kaplan–Meier 
analysis for AML patients classified by 
ELN2017 system or (C) ELN2017-IRL 
model system
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related to the CD8+ T cell exhaustion and Treg cells main-
taining.35,36 Also, differentiated monocyte-like AML cells 
have immunosuppressive functions that contribute to the 
pathogenesis of this disease.37 Hence, we assume that al-
though antitumor immune-related components are more 
in the high-risk group, their immune exhaustion and sup-
pression are more severe. So the original antitumor effect 
is diminished. Moreover, the TNF-α-NFκB signaling and 
k-RAS signaling pathways are prone to promote cancer 

proliferation. We guess that in the TME of the high-risk 
group, the anti-tumor immune system lost to tumor pro-
liferation signaling pathways.

Furthermore, adipogenesis and fatty acid metabolism 
are enriched in the high-risk group. High serum-saturated 
fatty acids can cause inflammation, and lipid metabolism 
disorder is vital in cancer advancement.38 De novo fatty 
acid (FA) synthesis is indispensable for T effector cell dif-
ferentiation, and CD8+ T memory cell behavior relies on 

F I G U R E  6   Association between risk score and immunity. (A) Violin plot of the 22 infiltrating immune cells. (B) The results of the 
ESTIMATE algorithm in the high-risk and the low-risk groups
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F I G U R E  7   GSEA analysis. (A) Immune-related pathways. (B) Tumor proliferation-related pathways. (C) Metabolism-related pathways
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FA synthesis and oxidation.39 Our GSEA analysis indicated 
that metabolism plays a vital role in AML progression.

With the development of bioinformatics and sequencing 
technology, many AML prognosis prediction models are es-
tablished. The abnormal expression of RNA-binding proteins 
(RBPs) plays a role in multiple cancers. The 12-RBP prognos-
tic signature was established, which can effectively stratify 
the risk of AML patients.40 Hypoxia can activate a series of 
immunosuppressive processes in tumors, resulting in a poor 
clinical prognosis. A hypoxia risk signature was developed to 
predict clinical prognosis.41 Our previous study constructed 
an immune-related gene signature to clarify the important 
role of immune factors and contribute to the improved pre-
diction of AML prognosis.42 This study used Pearson correla-
tion analysis to identify IRL genes for the first time in AML 
and constructed an IRL signature, which revealed a good 
prediction efficiency. We also identified three novel lncRNAs 
that may play important role in the development of AML. To 
a certain extent, several limitations of this study should be 
considered. (a) Three are three novel lncRNAs in our signa-
ture that are not reported in the previous study, which need 
to be studied using biologic experiments, (b) the number of 
samples in this study is limited and more patients need to be 
included in the future, (c) AML is a multifactorial disease 
and complex interactions between genetic and environmen-
tal factors. The investigation of single immune factors can-
not interpret the association of AML risk comprehensively.

In conclusion, we established a reliable IRL signature 
to predict AML patients’ OS and improved our prognostic 
model's ELN2017 risk stratification system. In the future, 
more high-quality clinical studies are needed to confirm 
this model's accuracy and applicability.
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