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Abstract. Gt and G2 are two forms of the membrane- 
integrated G protein of vesicular stomatitis virus that 
migrate differently in gel electrophoresis because G~ is 
modified by high-mannose and G2 by complex-type 
oligosaccharide side chains. The cytoplasmic domain 
in GI is less exposed to cleavage by several proteases 
than in G2 molecules. Acylation by palmitic acid as 
well as inhibition of carbohydrate processing by swain- 
sonine and deoxynojirimycin resulted in the same pat- 
tern of proteolytic sensitivity of both glycoproteins as 
in untreated cells. In contrast, accessibility of the cyto- 
plasmic domain to proteases did not change when the 

intracellular transport of the G protein was blocked in 
carbonyl cyanide m-chlorophenylhydrazone- or 
monensin-treated BHK-21 cells, respectively. The 
results suggest that the increase in accessibility of the 
cytoplasmic tail of the G protein occurs after the 
monensin block in the trans-Golgi and might reflect a 
conformational change of functional significance-i.e., 
making the cytoplasmic domain of the viral spike pro- 
tein competent for its interaction with the viral core, 
inducing thereby the formation of the budding virus 
particle. 

T 
HF biosynthesis and modification of membrane gly- 
coproteins are biochemically quite well understood 
(Sabatini et al., 1982; Kornfeld and Kornfeld, 1985; 

Burgess and Kelly, 1987), but the mechanisms that spe- 
cifically guide membrane proteins from their site of synthe- 
sis in the endoplasmic reticulum via the Golgi apparatus to 
their final destination are yet to be elucidated. With the ex- 
ception of the mannose-6-phosphate receptor for lysosomal 
enzymes, receptors have not been described that could target 
different membrane proteins to their specific subcellular com- 
partment. Therefore, it has been postulated that the forma- 
tion of a correct tertiary and quaternary conformation is es- 
sential for the intracellular transport and correct targeting of 
membrane proteins to their specific destination (Copeland et 
al., 1986). 

The G protein of vesicular stomatitis virus (VSV)' is in- 
tegrated into the viral envelope as a transmembrane protein. 
The G protein sequence which was derived from a cDNA 
clone is characterized by four major domains: the NH2- 
terminal signal sequence, the main body of the protein con- 
raining the two glycosylation sites, the hydrophobic trans- 
membrane domain, and the cytoplasmic COOH-terminal 
region which is exposed to the cytoplasm (Rose and Gal- 
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1. Abbreviations usedin thispaper: BHK, baby hamster kidney; CCCP, car- 
bonyl cyanide m-chiorophenylhydrazone; endo H, endoglycosidase H; 
VSV, vesicular stomatitis virus. 

lione, 1981). There are two cell-associated forms of the G 
protein, termed G, and G2 (Knipe et al., 1977). G~ has a 
higher electrophoretic mobility in SDS-PAGE and is the ki- 
netic precursor of (32. Palmitic acid is covalently attached 
to the single cysteine residue of the cytoplasmic domain of 
the G protein in the cis-Golgi cisternae or late endoplasmic 
reticulum (Rose et al., 1984; Mack and Kruppa, 1988; Dun- 
phy et al., 1981; Berger and Schmidt, 1985). It is the G, 
species that is first acylated by palmitic acid (Mack et al., 
1987). 

Recently, evidence has been obtained that the G protein is 
assembled into homotrimers that may be essential for exit of 
the G protein from the endoplasmic reticulum (Kreis and 
Lodish, 1986; Doms et al., 1987). Mutants of the cytoplas- 
mic and transmembrane domain of the G protein generated 
by deletions of these domains are greatly inhibited by the 
efficient transport of the G protein to the plasma membrane 
(Rose and Bergmann, 1982; Adams and Rose, 1985). In ad- 
dition, the COOH-terminal tail of the G protein seems to be 
essential for budding of virus particles at the plasma mem- 
brane which is presumably driven by a COOH-terminal tail- 
nucleocapsid interaction (Metsikk6 and Simons, 1986). 

We report here about an increase in the accessibility of the 
cytoplasmic domain of the G protein contained in membrane 
preparations of VSV-infected baby hamster kidney (BHK) 
cells to proteolytic digestion during maturation of the G pro- 
tein. The role of fatty acid acylation and of terminal modifi- 
cation of the oligosaccharides for the alteration of the pro- 
tease sensitivity of the cytoplasmic domain of the G protein 
was investigated. Kinetic analysis and the use of inhibitors 
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of intracellular transport established that the change of the 
accessibility for proteolytic cleavage of the cytoplasmic do- 
main occurred in a late Golgi compartment. Therefore, this 
change does not reflect an alteration due to trimerization of 
the G protein but may be essential for the competence of the 
G protein in virus budding. 

Materials and Methods 

Virus Growth and Metabolic Labeling of Viral Proteins 

The San Juan strain of VSV (serotype Indiana) was grown on BHK cells 
and purified as described previously (Graeve et al., 1986). Confluent 
monolayers of BHK cells were infected with a multiplicity of infection of 
40 plaque-forming units per cell. The inoculum was removed after 30 min 
and the infection was continued for 3.5 h at 37°C if not stated otherwise. 
The monolayers were washed with prewarmed PBS, labeled for l0 rain 
at 37°C in 3 ml methionine-free medium supplemented with 100 #Ci 
[35S]methionine, and chased in serum-free medium containing an excess of 
unlabeled methionine for the times indicated in the figure legends. Cells 
were pulse labeled in 3 ml of serum-free medium containing 400 /.tCi 
[3H]palmitic acid for the times indicated in the figure legends. 

Labeling was terminated by washing the cells with ice-cold PBS. Cells 
were scraped off, collected by low-speed centrifugation, and resuspended 
in hypotonic buffer (15 mM KC1, 1.5 mM MgCl2, and 10 mM Tris-HCl, 
pH 7.5). The cell suspension was adjusted to 1% Triton X-100, nuclei were 
removed by centrifugation at 800 g for 5 rain, and the cytoplasmic extracts 
were stored at -20°C (Garreis-Wabnitz and Kruppa, 1984). 

Incubation of VSV-infected BHK Cells with lnhibitors 
The glycosylation inhibitors deoxynojirimycin (1 raM) or swainsonine (500 
ng/ml) were added 1 h after infection to VSV-infected BHK cells that were 
labeled as described above. Inhibitors were also present in the chase media. 

VSV-infected BHK cells were labeled with [35S]methionine for 10 rain 
at 37°C. The medium was then replaced by 10 ml of ice-cold PBS containing 
0.7 mM CaCl2, 0.5 mM MgCI2, and 5 #M carbonyl cyanide m-chloro- 
phenylhydrazone (CCCP) (Fries and Rothman, 1980; Morrison and Ward, 
1984). After 5 rain at 4°C, the ice-cold PBS was replaced by prewarmed 
PBS containing Ca 2+, Mg 2+, and 5 #M CCCP and the cells were chased 
at 37°C for 10 or 40 min. Infected cells were incubated with monensin (10 
#M) ! h after infection before radioactive labeling. Monensin was also pres- 
ent in the chase media. 

Preparation and Proteolytic Treatment of 
Membrane Fractions 
VSV-infected cells were incubated on ice for 15 min with hypotonic buffer 
and then homogenized by 20-30 strokes with a tight-fitting homogenizer 
(Dounce; Kontes Glass Co., Vineland, NJ). Nuclei were removed by cen- 
trifugation at 800 g for 5 min. Membranes were sedimented from the super- 
natant by centrifugation at 18,000 g for 15 min at 4°C, resuspended in iso- 
tonic buffer (0.2 M sucrose, 20 mM Hepes, pH 7.5, 50 mM KCI, 2 mM 
Mg-acetate, 1 mM DTT) at a concentration of 300-400 #g of protein/ml, 
and stored in small aliquots at -70°C. 

Aliquots (60 #1) of [35Slmethionine- or lZH]palmitic acid-labeled mem- 
brane preparations were incubated for 30 min at 37°C with bromelain (50 
#g) or proteinase K (10 #g). PMSF (40 #g/ml) was added to proteinase K 
digestions and the samples were kept for 10 min on ice. Proteins were 
precipitated with 1 vol of 20% "I'CA and collected by centrifugation for 10 
min in a centrifuge (Eppendorf, Hamburg, FRG) at 4°C. Pellets were 
washed in cold acetone and solubilized in gel sample buffer. 

PAGE 
Proteins and G protein fragments obtained after chemical cleavage at 
asparagine-glycine bonds by hydroxylamine (Saris et al., 1983) were ana- 
lyzed on 10 or 12.5% polyacrylamide gels, respectively, using the discon- 
tinuous buffer system of Laemmli (1970). Electrophoretic separation was 
carried out under reducing conditions at 15 mA (constant current) for 11 h. 
14C-methylated protein markers (Amersham Buchler GmbH, Braunschweig, 
FRG) were used as molecular weight standards. Gels were fixed, impreg- 
nated with 1 M sodium salicylute, vacuum dried, and exposed on x-ray film 

(Cronex 4; DuPont de Nemours GmbH, Bad Homburg, FRG) at -70°C 
(Chamberlain, 1979). 

Materials 
Triton X-100 and swainsonine were from Sigma Chemical GmbH (Munich, 
FRG). Bromelain, monensin, tunicamycin, and CCCP were from Calbio- 
chem-Behring GmbH (Frankfurt, FRG). Proteinase K, deoxynojirimycin, 
and PMSF were purchased from Boehringer-Mannheim GmbH (Mannheim, 
FRG). Hydroxylamine and guanidinium hydrochloride were from Fluka 
GmbH (Neu-Ulm, FRG). [35S]Methionine (specific activity 1,190 Ci/mmoi) 
was purchased from Amersham Buehler GmbH. [9,10-3H]Palmitic acid 
(specific activity 30 Ci/mmol) was obtained from New England Nuclear 
(Dreieich, FRG). 

Results 

Influence of the Oligosaccharide Structure on the 
Electrophoretic Mobility of the G~ and G2 Species 
Since we planned to study the proteolytic cleavage of 
membrane-integrated G~ and G2 protein molecules, we had 
to define their structural difference. Chemical cleavage of 
purified, [35S]methionine-labeled G protein at asparagine- 
glycine bonds by hydroxylamine (Saris et al., 1983) was used 
to localize the structural feature responsible for the difference 
in electrophoretic mobility of the G~ and G2 species. G pro- 
tein has two potential cleavage sites at asparagine ~ and as- 
paragine 387 (Rose and Gallione, 1981). Five fragments in 
addition to uncleaved G protein (Fig. 1 B) appeared after hy- 
droxylamine cleavage on the gel. Three fragments with the 
highest mobilities in SDS-PAGE represent final cleavage prod- 
ucts. They can be aligned to the COOH-terminal region con- 
raining the cytoplasmic and transmembrane domain and 75 
amino acids of the ectodomain (15,900 Mr), to the NH2-ter- 
minal region (19,700 Mr), and to the central part of the G 
sequence joining these two other fragments (34,700 Mr), 
which includes the two glycosylation sites of the G protein 
(Rose and Gallione, 1981). The apparent molecular weight 
of the NH2-terminal and COOH-terminal fragments of G~ 
and (32 seem to be identical since they comigrated in SDS- 
PAGE (Fig. 1 B). In contrast, a shift in electrophoretic mo- 
bility, similar in size as for the corresponding uncleared mol- 
ecules, was observed for the glycosylated central fragments 
of G~ and G2 (Fig. 1 B). The difference in the oligosaccha- 
ride side chains of the Gt and the G2 species was also dem- 
onstrated by endoglycosidase H (endo H) cleavage. The Gt 
species of the G protein was sensitive whereas the G2 spe- 
cies was resistant to digestion by endo H (Fig. 1 A, lanes 1-4). 
Therefore, the structural differences between GL and (32 that 
influence the electropboretic mobility are localized in the dif- 
ferentially processed oligosaccharide moieties of these mol- 
ecules. 

This interpretation is consistent with previous results. G~ 
represents the core glycosylated form of the G protein. Pro- 
cessing of the initially transferred GIcNAc2MangGlc3 resi- 
dues of the G~ species occurs during the passage of the G 
protein from the endoplasmic reticulum via the Golgi ap- 
paratus to the plasma membrane (Kornfeld and Kornfeld, 
1985). Conversion of the G~ to the G2 species, giving rise 
to GlcNAcsMan3Gal3NeuAc3 oligosaccharide side chains, is 
finished before the appearance of the G2 form on the cell 
surface where this species is integrated into budding virus 
particles (Reading et al., 1978; Knipe et al., 1977). 
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phobic domain in the lipid bilayer of  the endoplasmic reticu- 
lum in such a way that the COOH-terminal  tail remains ex- 
posed to the cytoplasm whereas the main body of the protein 
points into the lumen of the endoplasmic reticulum and is 
thus completely surrounded by the microsomal membrane.  
En bloc transfer of  preformed high-mannose oligosaccha- 
rides gives rise to the G~ species with an apparent 66,000 
Mr, which is exclusively labeled during the first 20 min 
(Fig. 2). Trimming and processing of the side chains resulted 
in the formation of the G2 species with an apparent 69,000 
M, carrying complex-type oligosaccharides, which appeared 
after 20 min of chase and became the major species after 
40-50  min of chase (Fig. 2). When the membrane fractions 
were incubated with bromelain, part of  the cytoplasmic do- 

Figure L endo H and hydroxylamine cleavage of Gl and G2. (.4) 
VSV-infectexl BHK ceils were treated with monensin (lanes 5 and 
6), swainsonine (lanes 7and 8), and deoxynojirimycin (lanes 9 and 
10) or served as controls (lanes 1-4). Cells were labeled with 
[35S]methionine for 10 min and were chased for 10 (lanes 1 and 
2), 40 (lanes 3 and 4), and 90 min (lanes 5-10) in the presence of 
unlabeled methionine. Cytoplasmic extracts were prepared and 
digested with endo H for 18 h at 37°C (Graeve et al., 1986); endo 
H was omitted in the controls. Proteins were separated on a 10% 
SDS-polyacrylamide gel. (B) The G~ (lane 1) and G2 species 
(lane 2) were excised from the gel and cleaved by hydroxylamine. 
Fragments were separated on a 12.5% SDS-polyacrylamide gel. 
Fluorograms of the gels are shown. 

The Protection of  the Cytoplasmic Domain of  the G 
Protein by lntraceUular Membranes against Proteolysis 
Is Changed during Intracellular Transport 

At the site of  synthesis, G protein is anchored by its hydro- 

Figure 2. Protease digestion of membrane-integrated G protein at 
different stages of intracellular transport. VSV-infected BHK cells 
were labeled with [35S]methionine for 10 rain followed by a chase 
in the presence of unlabeled methionine. Membrane fractions were 
prepared every 10 min from the beginning of the chase, and aliquots 
were digested with bromelain in the presence or absence of 0.1% 
Triton X-100 for 1 h at 37"C. As a control, bromelain was omitted. 
Proteins were precipitated with TCA and separated by SDS-PAGE. 
A fluorogram of the gel is shown. (G') Proteolytic fragments of Gt 
and G2, respectively. Molecular weights were determined using 
VSV (32 (69,000), N (49,500), and M (30,000) proteins as markers. 
Newly synthesized G protein which is contained in the nuclear 
envelope and in vesicles of the endoplasmic reticulum that adhere 
in part to the cell nucleus after mechanical homogenization was 
partly lost after our cell fractionation procedure (Puddington et al., 
1985; Bergmann and Singer, 1983). A better recovery of G protein 
in smooth vesicles was obtained. Total radioactive incorporation 
into cellular proteins did not increase during the chase period (data 
not shown). 
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Figure 3. Kinetics of G~ and 
G2 labeling by [3H]palmitic 
acid. VSV-infected BHK cells 
were labeled 4.5 h after infec- 
tion with [3H]palmitic acid 
for 2 (lane 2), 5 0ane 3), l0 
(lane 4), and 30 rain (lane 5). 
Cytoplasmic extracts were pre- 
pared and analyzed by SDS- 
PAGE. (Lane 1) [35S]Methio- 
nine-labeled VSV proteins as 
marker. A fluorogram of the 
gel is shown. 

main of both Gm and G2 were removed (Fig. 2, lanes 10 and 
50), giving rise to membrane-protected fragments of approx- 
imately equal electrophoretic mobility; thus, bromelain re- 
moves an apparently larger fragment from G2 than G~. The 
result suggests that in G2 a proteolytic site closer to the 
lipid bilayer becomes exposed that seems to be inaccessible 
to bromelain in G~. The fragments generated by bromelain 

Figure 4. Bromelain digestion of membane-integrated G~ and G2 
species labeled by [3H]palmitic acid. Membranes of VSV-infected 
BHK cell.~ mbeled with [3H]palmitic acid for 5 (lanes 2 and 3) and 
30 min (lanes 4-7) were prepared. Aliquots were digested with 
bromelain for 30 min at 37°C (lanes 2, 4, and 5). Bromelain was 
omitted in controls (lanes 3, 6, and 7). Proteins were precipitated 
by TCA and separated on two SDS-polyacrylamide gels. A fluoro- 
gram of one gel is shown (lane 1-3). The second gel was blotted 
onto nitrocellulose (Mack and Kruppa, 1988). G protein-specific 
polypeptides were detected with a monospecific rabbit antiserum 
raised against purified G protein (lanes 4, 6, and 8) (Garreis- 
Wabnitz and Kruppa, 1984). The blot was then impregnated with 
20% diphenyl oxazole in toluene and fluorographed (lanes 5, 7, and 
9). A fluorogram of these lanes is shown. [35S]Methionine-labeled 
VSV served as marker (lanes 1, 8, and 9). 

digestion were protected by the microsomal membrane be- 
cause they were degraded after solubilization of the lipid 
bilayer by 0.1% Triton X-100 (Fig. 2). Similar results were 
obtained by proteinase K digestions (data not shown). To find 
the cause for the observed differences in the protease sensi- 
tivity of the cytoplasmic domain of the G protein we studied 
the influence of acylation and carbohydrate processing on the 
accessibility of the COOH-terminal tail. 

The Increase in the Accessibility of the Cytoplasmic 
Domain Is Independent of Acylation 
Palmitic acid is covalently attached to cysteine ~s9 in the cy- 
toplasmic domain of the G protein (Rose et al., 1984; Magee 
et al., 1984; Mack and Kruppa, 1988). Fatty acid binding 
in the cytoplasmic domain of the G protein could influence 
the accessibility of this region to proteases. Pulse labeling of 
VSV-infected BHK cells by [3H]palmitic acid for 2 and 5 
rain showed exclusively G~ protein (Fig. 3, lanes 2 and 3). 
After 10 min of pulse labeling, a fraction of G~ shifted to G2 
(lane 4), which became after 30 min of labeling (lane 5) the 
predominant form of the G protein. Two [3H]palmitic acid- 
labeled membrane preparations containing G~ protein labeled 
for 5 min (Fig. 4, lane 3) and G2 protein labeled for 30 min 
(Fig. 4, lane 7) were incubated with bromelain. The G~ spe- 
cies completely retained the [3H]palmitic acid label although 
an amino acid sequence with an apparent 3,000 Mr was re- 
moved (Fig. 4, lane 2). Apparently, the acylated cysteine ~9, 
which is located seven amino acids distal to the putative trans- 
membrane domain, and the amino acids nearest to the mem- 
brane seemed to be protected against the attack of the endo- 
protease bromelain. In contrast, the radioactive label was 
completely removed from the (32 species (Fig. 4, lane 5). 
The resulting G2 fragment which can be identified by im- 
munoblotting has lost an amino acid sequence of ,~5,100 
Mr (Fig. 4, lane 4). This observation implies that in (32 mol- 
ecules the accessibility of the acylated cytoplasmic domain 
is increased to proteolysis. 

The Protease Sensitirity of the Cytoplasmic Domain Is 
Not Changed by Altering Oligosaccharide Processing 
The influence of the oligosaccharide structure on the differ- 
ential accessibility to proteases of the cytoplasmic domain of 
the G protein was investigated by using the glycosylation in- 
hibitors deoxynojirimycin and swainsonlne which block the 
trimming enzymes glucosidase I and ct-mannosidase II, re- 
spectively (Romero et al., 1983; Tnlsiani et al., 1982). G 
protein molecules synthesized in cells treated with these in- 
hibitors always retain oligosaccharides that are completely 
endo H sensitive (Fig. 1,4, lanes 7-10) even after 90 rain of 
chase. 

VSV-infected BHK cells were incubated with deoxyno- 
jirimycin and swainsonlne, respectively, and labeled with 
[35S]methionine. Membrane fractions containing mainly G~ 
and (32 protein were prepared after 10 and 40 rain of chase, 
respectively, and digested with proteinase K and bromelain. 
In contrast to control cells (Fig. 5 C, lanes 5 and 6), the G2 
species was not formed in cells treated with these inhibitors 
(Fig. 5, ,4 and B, lanes 5 and 6). However, a similar increase 
in the protease sensitivity of the cytoplasmic G protein domain 
was observed in membranes prepared after 40 min of chase 
from cells treated with deoxynojirimycin (Fig. 5, A, lanes 
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Cells were treated with the inhibitors, and labeled mem- 
brane fractions were prepared and digested with proteinase 
K and bromelain. CCCP-treated cells contained only G~ 
(Fig. 6 A, lanes 5 and 6) and therefore differences in the sen- 
sitivity of the cytoplasmic domains to proteolytic digestion 
could not be detected in membrane preparations from cells 
chased for 10 or 40 min (Fig. 6 A, lanes 1-4). In monensin- 
treated cells, G protein was also not processed to the G2 
species (Fig. 6 B, lanes 9 and I0). Using proteinase K and 
bromelain, no differences in the accessibility of the cytoplas- 
mic domain of G protein could be detected in membrane 
preparations of cells chased for 10 and 40 min (Fig. 6 B, 
lanes 2, 4, 6, and 8). The fusiogenic G protein (Florkiewicz 
and Rose, 1984) apparently did not reach the cell surface in 
monensin-treated cells because no fusion centers could be 
detected after lowering the pH to 5.5 (Fig. 7 C) as compared 
with untreated (Fig. 7 B), deoxynojirimycin- (Fig. 7 D), and 

Figure 5. Protease sensitivity of membrane-integrated G protein 
with altered oligosaccharide processing. VSV-infected BHK ceils 
were treated with deoxynojirimycin (A) and swainsonine (B) or 
served as control (C). The cells were labeled with [35S]methionine 
for 10 min and were chased for 10 (lanes 1, 3, and 5) or 40 min 
(lanes 2, 4, and 6) in the presence of unlabeled methionine. Mem- 
brane fractions were prepared, and aliquots were digested with pro- 
teinase K (lanes I and 2), and bromelain (lanes 3 and 4) for 30 min 
at 37°C. As a control, proteases were omitted (lanes 5 and 6). Pro- 
teins were precipitated with TCA and separated by SDS-PAGE. 
Fluorograms of the gels are shown. The proteolytic fragments of 
GI and G2 are marked by lines. 

1-4), swainsonine (Fig. 5 B, lanes 1-4), and control cells (Fig. 
5 C, lanes 1-4). These results suggested that the increase in 
protease accessibility of the COOH-terminal tail on the cyto- 
plasmic side of the lipid bilayer of the vesicles is independent 
of the modification of the carbohydrate side chains to com- 
plex-type oligosaccharides that takes place on the other side 
of the membrane in the lumen of the vesicles. Our observa- 
tions imply that reduced glycosylation does not prevent the 
change in accessibility to proteolytic cleavage. 

The Accessibility of  the Cytoplasmic Domain Is 
Increased in the trans-Golgi Compartment 

Since posttranslational modifications like fatty acid acyla- 
tion, oligosaccharide processing, and terminal glycosylation 
were not essential for the differential accessibility to pro- 
teases of the cytoplasmic domain, we asked whether the in- 
tracellular transport of the G protein to a specific compart- 
ment is a prerequisite for the change in protease accessibility 
of the cytoplasmic domain. This was investigated by block- 
ing intracellular transport at different compartments with 
CCCP and monensin. CCCP, an inhibitor of oxidative phos- 
phorylation, blocks the exit of membrane proteins from the 
endoplasmic reticulum (Fries and Rothman, 1980). Monen- 
sin blocks the transport from medial- to trans-Golgi cister- 
nae and leads to an accumulation of membrane proteins in 
the medial-Golgi cisternae (GrifIith et al., 1983). 

Figure 6. Protease sensitivity of membrane-integrated G protein af- 
ter treatment of cells with CCCP and monensin. (,4) VSV-infected 
BHK cells were labeled with [3~S]methionine for 10 min at 37°C. 
Cells were then treated with CCCP as described in Materials and 
Methods and chased for 10 (lanes 1, 3, and 5) and 40 rain (lanes 
2, 4, and 6). Membrane fractions were prepared, and aliquots were 
digested with proteinase K (lanes 1 and 2) and bromelain (lanes 3 
and 4) for 30 min at 37°C. As a control, proteases were omitted 
(lanes 5 and 6). (B) VSV-infected cells were treated with monensin. 
Cells were labeled with [35S]methionine for 10 min followed by a 
chase for l0 (lanes 1, 2, 5, 6, and 9) and 40 min (lanes 3, 4, 7, 8, 
and 10). Membrane fractions were prepared and digested with 
bromelain (lanes 1-4) and proteinase K (lanes 5-8) in the presence 
and absence of 0.1% Triton X-100 for 90 min at 37°C. As a control, 
proteases were omitted (lanes 9 and 10). Proteins were precipitated 
with TCA and analyzed by SDS-PAGE. Fluorograms of the gels are 
shown. The respective proteolytic fragment of G is marked by a 
line. 
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Figure 7. Fusiogenic activity of G protein exported to the cell surface of BHK cells treated with glycosylation and transport inhibitors. 
VSV-infected BHK cells were treated with monensin (C), deoxynojirimycin (D), (10 #g/ml) tunicamycin (E), and swainsonine (F) or were 
not treated with inhibitors (B) and not infected (,4). 5 h after infection, cells were washed with prewarmed PBS, and prewarmed fusion 
buffer, pH 5.5, was added for I min (Florkiewicz and Rose, 1984). Fusion buffer was removed, and complete medium containing the respec- 
tive inhibitors was added. After an additional hour at 37°C, cells were washed and fixed with 3% paraformaldehyde for 20 min at room 
temperature. Representative fields of phase-contrast microphotographs are shown. Bar, 60 ~tm. 
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swainsonine-treated (Fig. 7 F) cells. Apparently, partially 
endo H-insensitive G protein molecules accumulated in 
monensin-treated cells migrating in the Gt position (Fig. 1 
A, lanes 5 and 6). The oligosaccharides of these molecules 
seem to be trimmed and not completely processed and do not 
contain neuraminic acid because otherwise they would mi- 
grate like G2 (Knipe et al., 1977). The results suggest that 
the change in accessibility to proteases of the cytoplasmic do- 
main of the G protein occurs after the monensin block in the 
trans-Golgi cisternae. 

In membrane fractions of monensin-treated cells, an addi- 
tional fragment appeared after bromelain cleavage that had 
a higher mobility in SDS-PAGE. This fragment was also pro- 
tected by the lipid bilayer of the vesicle and became degraded 
when the vesicles were solubilized with Triton X-100 (Fig. 
6 B, lanes 1-4). The production of the fragment with the 
higher mobility may be related to the fragility of swollen 
Golgi membranes in monensin-treated BHK cells (Griffith et 
al., 1983). 

Discussion 

In this report we describe a change in the accessibility to pro- 
teases of the cytoplasmic domain of the Gt and G2 species 
of the G protein in membrane preparations of VSV-infected 
BHK cells. Limited cleavage by hydroxylamine (Fig. 1 B) lo- 
cated the structural difference between Gt and G2 species 
on the central glycosylated fragment. Since GI and G2 were 
sensitive or resistant to cleavage by endo H (Fig. 1 A, lanes 
1-4), respectively, we conclude that the structural difference 
between the Gt and G2 species is also located in their 
oligosaccharide side chains (Knipe et al., 1977) and not due 
to aberrant electrophoretic behavior of G~ or G2. Kinetic 
analyses demonstrated that this alteration of the protease sen- 
sitivity of the cytoplasmic domain of the G protein could be 
detected as soon as the G2 species was the predominant la- 
beled species of the G protein (Fig. 2, lanes 30). The in- 
creased accessibility of the cytoplasmic domain of the G2 
species to digestion by two different proteases with differing 
specificities excluded that the observed alteration was due to 
a fortuitous property of a single proteolytic enzyme. 

During the intracellular transport of the G protein from its 
site of synthesis in the rough endoplasmic reticulum to the 
plasma membrane, the G protein is subjected to posttransla- 
tional modifications including trimming and terminal glyco- 
sylation of its oligosaccharides and covalent attachment of 
palmitic acid (Komfeld and Komfeld, 1985; Schmidt and 
Schlesinger, 1979). 

A [35S]methionine-labeled G~ protein band in SDS-poly- 
acrylamide gels contains a mixture of acylated and nonacyl- 
ated Gt molecules because newly synthesized Gt molecules 
need a period of 15-20 min to reach the cis-Golgi compart- 
ment in which the fatty acid transfer occurs (Schmidt and 
Schlesinger, 1980). Since bromelain digestion of [35S]meth- 
ionine-labeled G~ molecules gives rise to one single band, 
one has to assume that acylation does not account for the pro- 
tection of the amino acid sequence that is proximal to the 
lipid bilayer (Rose et al., 1984; Mack and Kruppa, 1988). 

The requirement of different glycoproteins of their oligo- 
saccharide side chains for efficient intracellular transport 
varies significantly (Kornfeld and Kornfeld, 1985). Efficient 
intracellular transport of the G protein of the San Juan strain 

of VSV used in this study is very sensitive to alterations of 
glycosylation (Leavitt et al., 1977; Gibson et al., 1979, 1981; 
Schlesinger et al., 1984). The oligosaccharide side chains 
are thought to contribute to the correct folding of the G poly- 
peptide chain. Since G~ had endo H-sensitive but G2 had 
endo H-resistant oligosaccharides (Fig. 1 A, lanes 1-4), we 
investigated the effect of inhibitors of glucosidase I and t~-man- 
nosidase II, deoxynojirimycin and swainsonine, on the occur- 
rence of the alteration of the accessibility of the cytoplasmic 
domain of the G protein to protease digestion. Processing of 
the high-mannose oligosaccharides is inhibited in cells treated 
with these drugs (Romero et al., 1983; Tulsiani et al., 1982) 
and therefore the (32 species of the G protein was not detected 
(Fig. 5, A and B, lanes 5 and 6) and the oligosaccharides re- 
main endo H sensitive even after 90 min of chase (Fig. 1 A, 
lanes 7-10). However, the change in the protease sensitivity 
of the cytoplasmic domain occurred identical to the change in 
untreated control cells (Fig. 5). In contrast, no change of the 
protease sensitivity of the cytoplasmic domain was observed 
when N-glycosylation of the G protein was inhibited by tuni- 
camycin (Leavitt et al., 1977; data not shown, but results were 
similar to those in CCCP-treated cells [see below]). Ungly- 
cosylated G protein is not efficiently transported to the plasma 
membrane in tunicamycin-treated cells (Fig. 7 E) but accu- 
mulates in the endoplasmic reticulum (Leavitt et al., 1977), 
whereas the G protein synthesized in deoxynojirimycin- or 
swainsonine-treated cells reached the cell surface (Fig. 7, D 
and F; Kang and Elbein, 1983; Schlesinger et al., 1984), 
leading to pH-dependent cell fusion. Therefore, inhibition of 
trimming and terminal glycosylation of the oligosaccharides 
of the G protein did not influence the alteration in protease 
accessibility of the cytoplasmic domain as long as the G pro- 
tein was normally transported to the cell surface. 

We used CCCP and monensin, which block the intracellu- 
lar transport between the endoplasmic reticulum and Golgi 
apparatus and between medial- and trans-Golgi cisternae 
(Fries and Rothman, 1980; Griffiths et al., 1983), to localize 
the intracellular compartment in which the alteration of the 
protease accessibility of the cytoplasmic domain of the G 
protein takes place. Membrane proteins accumulate in the 
transitional elements of the endoplasmic reticulum or 
medial-Golgi cisternae in cells treated with these drugs. In 
CCCP-treated cells, no change in protease accessibility of 
the cytoplasmic domain was detected (Fig. 6 A); similarly, 
there was no change in tunicamycin-treated cells (data not 
shown). 

In monensin-treated cells, G protein did not reach the cell 
surface (Fig. 7 C), was not terminally glycosylated (Fig. 1 
A, lane 5), and was partially endo H insensitive (Fig. 1 A, 
lane 6), and the change in the accessibility of the cytoplasmic 
domain of the G protein to proteases did not occur (Fig. 6 
B). Taken together, these data and the observation that the 
increase in the accessibility of the cytoplasmic domain to 
protrmlytic cleavage occurs as soon as the G2 species is the 
predominantly labeled form of the G protein (Fig. 2, lanes 
30) that already had acquired endo H-resistant and termi- 
nally modified oligosaccharides (Fig. 1 A, lanes 1-4; Knipe 
et al., 1977) strongly suggest that the change in the accessi- 
bility to proteases of the cytoplasmic domain of the G protein 
takes place after the monensin block in the trans-Golgi 
cisternae. 

Our results show that intracellular transport of the G pro- 
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tein leads to a change in accessibility of the cytoplasmic do- 
main to proteases but the data do not allow us to conclude 
that this change is required for efficient transport of the G 
protein. Studies of deletion mutants of the cytoplasmic and 
transmembrane domains of the G protein and of hybrid pro- 
teins containing the ecto- and transmembrane domains of the 
G protein fused in phase to the cytoplasmic domains of the 
hemagglutinin of influenza virus and of an immunoglobulin 
# membrane heavy chain demonstrated that the cytoplasmic 
domain of the G protein is essential for efficient transport to 
the cell surface since many of these mutant G proteins accu- 
mulated in the endoplasmic reticulum or Golgi apparatus or 
were transported to the cell surface with slow kinetics (Rose 
and Bergmann, 1983; Adams and Rose, 1985; Puddington et 
al., 1986). Indirect evidence has been obtained for an oligo- 
merization of the G protein during intracellular transport 
(Kreis and I_axtish, 1986). Since the oligosaccharides of 
oligomerized G protein were reported to still be endo H sen- 
sitive, oligomerization would be assumed to occur before the 
alteration of the protease sensitivity of the cytoplasmic do- 
main. Recently it has been elegantly demonstrated that 
trimerization of G protein takes place in the endoplasmic 
reticulum. Formation of trimers is essential for the subse- 
quent transport of G protein via the Golgi complex to the cell 
surface (Doms et al., 1987). The proper folding into the cor- 
rect quaternary structure seems to be one general prerequi- 
site for the exit from the endoplasmic reticulum. This hy- 
pothesis has been suggested from studies of monomeric or 
incompletely assembled subunits of immunoglobulins (Mains 
and Sibley, 1983; Bole et al., 1986), retinal-binding protein 
(Ronne et al., 1983), influenza virus hemagglutinin (Gething 
et al., 1986), and the major histocompatibility complex I 
antigens (Severinsson and Peterson, 1984), which are not 
transported. 

Since trimerization of G protein takes place in the en- 
doplasmic reticulum, it cannot be directly related to the 
change in the proteolytic accessibility of the cytoplasmic do- 
main. However, trimerization of the hemagglutinin of influ- 
enza virus is also an early event, but stabilization of the trimer 
to resist detergent extraction and gradient centrifugation takes 
place only in the trans-Golgi cisteruae and may involve a 
change in the base of the trimer or in the transmembrane an- 
chors (Copeland et al., 1986). A similar stabilization event 
of the G protein trimer could result in the observed increase 
in the protease accessibility of the cytoplasmic domain. There- 
fore, it has been postulated that additional information in the 
cytoplasmic domain may also be required for transport (Rose 
and Bergmann, 1982; Doyle et al., 1985; Doms et al., 1987). 

The increase in accessibility of the cytoplasmic domain in 
the late Golgi compartment may also be a result of the lower 
pH of these cisteruae (Anderson and Pathak, 1985). The 
conformational change of the cytoplasmic domain may serve 
the purpose of making the cytoplasmic tail of the G protein 
competent for the interaction with the virus core. This specu- 
lation is compatible with studies of Metsikk6 and Simons 
(1986) that have shown that the tail is essential for viral parti- 
cle formation. 

On the other hand, the increase of the proteolytic accessi- 
bility of the cytoplasmic domain of the G protein could result 
from other effects than a conformational change. First, pro- 
teins of viral or cellular origin could specifically bind to the 
cytoplasmic domain of the G protein when it reaches the 

trans-Golgi cisternae and may alter the accessibility to pro- 
teolytic digestion. Second, different surroundings .with re- 
spect to lipid and protein composition in different intmcellu- 
lar compartments could result in an altered exposure of the 
cytoplasmic domain of the G protein. Although the signifi- 
cance of the hydrophobic amino acids of the transmembrane 
domain of the G protein for membrane anchorage has been 
clearly established (Rose and Bergmann, 1982; Guan and 
Rose, 1984), the exact boundary between the transmembrane 
and cytoplasmic domains is not well defined. Exposure of 
these boundaries could vary in different compartments and 
lead to an altered accessibility of the cytoplasmic domain to 
proteolytic digestion. 
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