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Abstract
Muscle specific signaling has been shown to originate from myofilaments and their associated cellular structures, including the
sarcomeres, costameres or the cardiac intercalated disc. Two signaling hubs that play important biomechanical roles for cardiac
and/or skeletal muscle physiology are the N2B and N2A regions in the giant protein titin. Prominent proteins associated with
these regions in titin are chaperones Hsp90 and αB-crystallin, members of the four-and-a-half LIM (FHL) and muscle ankyrin
repeat protein (Ankrd) families, as well as thin filament-associated proteins, such as myopalladin. This review highlights
biological roles and properties of the titin N2B and N2A regions in health and disease. Special emphasis is placed on functions
of Ankrd and FHL proteins as mechanosensors that modulate muscle-specific signaling and muscle growth. This region of the
sarcomere also emerged as a hotspot for the modulation of passive muscle mechanics through altered titin phosphorylation and
splicing, as well as tethering mechanisms that link titin to the thin filament system.
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Introduction

The myofilaments of cross-striated muscle cells provide me-
chanical power for the contraction of the heart or the move-
ment of the skeletal muscles. The machinery that drives the
power development also serves additional functions: as a
mechanosensory unit that provides constant feedback on the
current power requirements, as a signaling node that integrates
the input of muscle specific components and sensors with
common cellular signaling pathways to modulate the muscle

gene program and as finely tuned regulators of not only active
but also passive force development and tension.Many of these
functions emanate from and are mediated by three filament
systems: actin, myosin and titin filaments, as well as an intri-
cate system of accessory proteins and cellular structures, such
as the intercalated discs (specialized cell-cell contacts in car-
diac muscle cells) or costameres (structures that connect the
sarcomere to the muscle cell membrane and extracellular ma-
trix). Together, the three filament systems make up the sarco-
mere, the smallest contractile unit in myofilaments (reviewed
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in Gautel and Djinovic-Carugo (2016) and Henderson et al.
(2017)). Several regions within the sarcomere can be
discerned from microscopic images, such as the A-band,
which is formed by the myosin (thick) filaments and appears
as electron-dense regions within electron micrographs
(Figure 1A). Interspersed between the A-bands are the I-
bands, which contain the actin (thin) filaments and part of
the elastic filaments formed by the giant protein titin.
Crosslinkers in the Z-disc and M-band regions provide struc-
tural stability and link the three filament systems together
(Lange et al. 2020; Luther 2009).

Over the last decades, the giant protein titin has emerged as
a master regulator for muscle development, function, signal-
ing and maintenance and as a modulator of passive muscle
mechanics (Herzog 2018; Kotter et al. 2014a; Kruger and
Kotter 2016; Linke 2008). Titin is the largest protein in the
human body and spans ~1 μm from the sarcomeric Z-disc to
the M-band. The protein is expressed in three main full-length
isoforms in adults: shorter, stiffer N2B and longer, more com-
pliant N2BA isoforms in the heart, as well as the N2A isoform
in skeletal muscles (Figure 1B). Additional splice isoforms
that are reminiscent of the N2BA isoform can be found during
embryonic and postnatal development of the heart (Lahmers
et al. 2004; Opitz et al. 2004) and in skeletal muscles (Li et al.
2012). Smaller titin isoforms like Cronos or Novex-3 that only
incorporate part of the full titin sequence have also been iden-
tified (Kellermayer et al. 2017; Labeit et al. 2006;
Zaunbrecher et al. 2019). However, their role is much less
characterized and may extend beyond cross-striated muscles.

Much of titin splicing happens in the I-band region of the
protein, either by including or removing additional Ig-
domains that change the overall contour length of the protein,
or by altering the length of the elastic PEVK element, named
after its proline (P), glutamate (E), valine (V) and lysine (K)
rich content, which modulates titin compliance (Figure 1C)
(Bang et al. 2001a; Gautel et al. 1996; Linke et al. 1999).
The I-band portion of titin also contains two major signaling
hubs, the N2A and N2Bregions, which in addition to tuning
cellular signaling pathways also influence passive muscle
mechanics.

Signaling and biomechanical functions
of titin’s N2A region

The N2A region of titin is found in both cardiac and skeletal
muscles (Figures 1B and 2A). This region of titin is located
just N-terminal of titin’s large, disordered PEVK region,
named for its high percentage of proline (P), glutamate (E),
valine (V) and lysine (K) residues. Three Ig-domains, I81–
I83, separate the N2A and PEVK regions (Bang et al.
2001a). While long thought of as another flexible and largely
disordered linker surrounded by Ig-domains, it recently
emerged that the N2A region contains more structural ele-
ments than previously anticipated. Biochemical and biophys-
ical analyses of a purified N2A fragment indicated that the
N2A unique sequence (N2Aus) contains a core of interacting
α-helices with unusual structural and thermal stability

Fig. 1 A Electron micrograph of cardiac muscle (top panel) identifying
regions of the sarcomere (I-band and A-band) as well as structural cross-
linkers (Z-disc and M-band) also presented in the schematic overview
(middle panel) and in the sarcomeric unit (bottom panel). Identity of
filament systems (titin, myosin and actin filament) and important
crosslinker proteins (sarcomeric α-actinin and myomesin) are shown. B
Schematics of skeletal and cardiac titin N2A (top panel) and N2BA splice

isoforms (bottom panel), respectively (not to scale). The N2A region,
present in both cardiac and skeletal titin, and the cardiac specific N2B
region are highlighted, as are known binding partners. C Changes to
passive force development by titin depending on I-band splicing of skel-
etal muscle titin N2A isoform (top panel) or cardiac N2B and N2BA
isoforms (bottom panel)
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surrounded by disordered elements. The N2Aus region as-
sumes an overall elongated monomeric conformation
(Tiffany et al. 2017; Zhou et al. 2016). Further structural anal-
ysis of the extended N2A element suggested additional stabi-
lizing interactions with the C-terminal Ig-domain 81 (I81)
through its uncommon BC-loop (Zhou et al. 2016). Ig-
domains I81–I83 in ti t in form an atypical set of
immunoglobulin-like domains, which are distinct from other
Ig-domains in titin (Stronczek et al. 2021). Atomic force mi-
croscopy studies revealed that the N2A region acts as an en-
tropic spring element, whose unfolding force/persistence
length but not contour length is actively modulated by one
of its interaction partners: Ankrd1 (Lanzicher et al. 2020).

Several phosphorylation sites have beenmapped to theN2Aus

linker and the surrounding Ig-domains, which are targets of
cAMP-dependent protein kinase (PKA) (Adams et al. 2019;
Lanzicher et al. 2020) and cGMP-dependent protein kinase
(PKG) (Kruger et al. 2009). One of the phosphorylation sites,
S9895 in NP_001254479.2, is located at the interface between
N2Aus and I81 (Adams et al. 2019; Lanzicher et al. 2020).
Despite the location, this phosphorylation site does not affect
the biomechanical properties of this area in titin; instead, S9895
phosphorylation may modulate binding of titin-associated pro-
teins and strain-dependent signaling (Lanzicher et al. 2020).
PKA-mediated phosphorylation of the N2Aus S9895 can be
quenched by binding to Ankrd1 (Lanzicher et al. 2020; Lun
et al. 2014), suggesting blockage of kinase access to titin.

The N2A region has been reported to bind calcium, which
might facilitate its binding to actin (Dutta et al. 2018). However,
this is a debated subject with experimental support for both,
calcium-mediated actin binding and no direct interaction to the
thin filament. Although contested, binding of N2A to the thin
filament would have a dramatic impact on titin compliance and
forces acting on I-band domains and elements, as proximal titin
domains closer to the Z-disc may be protected from stretch-
induced damage, while distal domains up to the A/I-junction
(including the flexible PEVK element) will experience enhanced
stretch (Figure 2B) (Nishikawa et al. 2020a). This model was
proposed by Krysta Powers and Gudrun Schappacher-Tilp et al.
and further refined by Kiisa Nishikawa et al., who demonstrated
thin filament binding to I83 (Dutta et al. 2018; Kelly et al. 2021;
Kelly et al. 2020; Powers et al. 2016; Powers et al. 2014;
Schappacher-Tilp et al. 2015). However, results demonstrating
or disputing association of N2A with actin appear to depend on
the construct studied and/or presence/absence of calcium.
Constructs spanning I80–I83 (Dutta et al. 2018; Nishikawa
et al. 2020a) and I80–I81 (van der Pijl et al. 2021) have been
shown to interact with actin in a calcium-dependent manner,
whereas constructs encompassing just N2Aus, N2Aus-I81, I80–
I82 and I81–I83 do not appear to interact with actin, independent
of calcium (Linke et al. 1997; Stronczek et al. 2021; Zhou et al.
2021). Additionally, it remains unclear if this mechanism of I83
binding to the thin filament is present in vivo, as actin interaction

with proteins may sometimes be non-specific due to the high
abundance of the protein. The unspecific binding of abundant
muscle proteins, such as actin ormyosin heavy chain is a point of
concern for many studies. It is also important to consider that
folding of proteins heterologously expressed in bacteria can be
heterogeneous and lacks many of the posttranslational modifica-
tions found in eukaryotes, giving rise to subpopulations of pro-
teins with improper functions and binding properties that might
confound results (Palomares et al. 2004; van der Lee et al. 2014).
Thus, studies with recombinant titin fragments are challenging,
and the interpretation of the results requires careful
considerations.

Adding to this already complex problem of titin N2A as-
sociation with the thin filaments is the recent finding that
Ankrd1 crosslinks titin N2A to F-actin (Figure 2C) (van der
Pijl et al. 2021; Zhou et al. 2021). This trimeric protein com-
plex would result in similar effects on passive muscle mechan-
ics as the direct binding of N2A-I83 to F-actin: protecting
proximal titin domains in favor of imposing increased stretch
on the PEVK element and Ig-domains (including I83) up to
the A/I junction (Figure 2D). Data from Ankrd knockout
models that show longer sarcomere lengths, more compliant
muscles and greater susceptibility for injuries following ec-
centric exercise are supportive of the biological relevance for
the trimeric Ankrd/titin-N2A/F-actin complex (van der Pijl
et al. 2021; Zhou et al. 2021). Further analysis of mice with
muscular dystrophy with myositis (MDM mice) that have a
naturally occurring mutation in I83 (Garvey et al. 2002) may
provide additional insight into the biological relevance of the
Ankrd1-mediated actin locking mechanism, specifically when
crossed with Ankrd knockout mice. Published data demon-
strate increased expression and localization of Ankrd1 (and
Ankrd2) to the sarcomeres in MDM mouse muscles
(Mohamed et al. 2013; Witt et al. 2004).

An intriguing side effect of both, formation of either the
trimeric Ankrd/titin-N2A/F-actin complex or the direct linkage
of I83 to F-actin, is the possibility that biomechanical signaling
at the N2B region in cardiac titin may be affected. Similar to
the proximal Ig-domains, the N2B region is also located to-
wards titin’s N-terminus relative to the Ankrd binding site or
I83. Hence, cross-linkage of titin to the thin filament at the
N2A region should also protect the N2B region from stretch,
potentially modifying biomechanical signaling and passive
force exerted from this part of titin. However, further experi-
ments that interrogate the potential biomechanical cross-talk
between the N2B and N2A regions in titin are needed.

Titin N2A binding to modifying enzymes,
chaperones and proteases

The N2A signalosome is an expanding signaling hub for pro-
teins involved in stability, proteolysis, control over muscle
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growth and muscle mechanics (Figure 2A). Various chaper-
one proteins bind along the extensible I-band region of titin,
including the N2A region. Small heat shock proteins, Hsp27
(Hspb1) and αB-crystallin increase titin-based passive tension
and have been linked to various myopathies (Kotter et al.
2014b; Unger et al. 2017). The methyltransferases SET and
MYND domain containing 1 and 2 (Smyd1 and Smyd2, re-
spectively) are highly expressed in cross-striated muscles, and
Smyd2 has been shown to bind to the N2A region (Donlin
et al. 2012; Voelkel et al. 2013). Both enzymes methylate
histones and non-histone proteins, such as p53 or Hsp90.
Complex formation between titin, Smyd2 and Hsp90 was
demonstrated to be dependent on Hsp90 methylation
(Donlin et al. 2012) and is thought to protect titin’s I-band
region from oxidative damage and to maintain sarcomere or-
ganization (Donlin et al. 2012; Munkanatta Godage et al.
2018; Voelkel et al. 2013). Loss of function studies suggest
that Smyd1 (also called Bop) is required for cardiomyogenesis
and sarcomere assembly in skeletal and cardiac muscles
(Gottlieb et al. 2002). This role for Smyd1 is evolutionary
conserved, as muscle formation and function were also affect-
ed in morpholino-targeted Xenopus laevis animals
(Kawamura et al. 2008). In contrast to critical roles for
Smyd1 in cross-striated muscles, Smyd2 is dispensable for
heart development (Diehl et al. 2010). However, Smyd2 ac-
tivity was shown to be important for titin stability and skeletal
muscle function, as its deficiency in zebrafish resulted in se-
verely impaired mobility and contracted tails (Donlin et al.
2012).

The Ca2+-dependent protease family members calpain 1
and calpain 3 (also called p94) bind both to titin. Calpain 1
binds near the Z-disc at I4 (Coulis et al. 2008) and the N2A

region (Raynaud et al. 2005), with its binding affinity regulat-
ed by calcium. At high calcium levels, calpain 1 is bound to
titin in the inactive form where it is thought to form a reservoir
until it is activated, possibly in response to mechanosensing
responses or damage of titin domains. The skeletal muscle
specific calpain 3 binds to titin N2A through its is2 domain,
and there are indications that the binding is possibly mediated
by phosphorylation at S629 (Ojima et al. 2014). The binding
to titin is also thought to maintain calpain 3 in its inactive
form. Besides interacting with I82–I83 in the N2A region
(Hayashi et al. 2008; Ojima et al. 2007), calpain 3 also asso-
ciates with the I80-N2Aus and the PEVK regions (Hayashi
et al. 2008), as well as with M-band titin (Sorimachi et al.
1996). Calpain 3 has been shown to translocate from the M-
band to the N2A region in a load-dependent manner (Ojima
et al. 2010; Ojima et al. 2007). This sensing response in sar-
comeres is thought to trigger calpain 3 autolytic activity and
initiate downstream functions (Nishikawa et al. 2020b).
Mutations in the calpain 3 binding sites in/close to N2A can
result in muscular dystrophy, such as seen in theMDMmouse
(Garvey et al. 2002). In the N2A signalosome, calpain 3 also
interacts/proteolytically cleaves members of the muscle anky-
rin repeat (Ankrd) protein family (Laure et al. 2010; Ojima
et al. 2010).

Muscle ankyrin repeat proteins (Marps)
—masters of titin-based signaling
and titin-based muscle compliance

The Ankrd protein family contains three members: Ankrd1
(Marp1, Carp1, C-193), Ankrd2 (Marp2, Arrp [ankyrin repeat
protein with pest motif and proline-rich region], Carp2) and
Ankrd23 (Marp3, Darp [diabetes-related ankyrin repeat pro-
tein], Carp3). All family members are structurally similar and
consist of an N-terminal coiled-coil domain that allows for
homodimerization and heterodimerization of Ankrd1,
Ankrd2 and Ankrd23 (Lun et al. 2014; Witt et al. 2005),
followed by a centrally located unstructured linker that con-
tains a nuclear localization sequence, and a series of ankyrin-
repeats towards the C-terminus that facilitate binding to vari-
ous proteins (Chu et al. 1995; Miller et al. 2003). Ankrd1 and
Ankrd2 also contain several putative proline (P), glutamic
acid (E), serine (S), threonine (T)-rich (PEST) sequences that
target the proteins for degradation (Chu et al. 1995; Lun et al.
2014). All Ankrd members are involved in hypertrophic and
atrophic signaling pathways in the heart, and there is a grow-
ing body of literature showing effects of these proteins also in
skeletal muscle. Ankrd protein interaction with N2A was first
described by Miller and coworkers (Miller et al. 2003), who
showed that all members of this protein family bind to the
N2Aus region through their respective second ankyrin repeat,
and to a lesser extent with their N-terminal sequences.

�Fig. 2 A Schematic representation of titin N2A region domain structure
(top), encompassing Ig-domain 80 (I80) to Ig-domain 83 (I83). The titin
N2Aus linker and PEVK element are shown (P = phosphorylation).
Location of binding site(s) within titin for each interaction partner, their
roles and linkage to other proteins are also depicted (bottom panel; TFs =
transcription factors). The described functional roles for each protein are
visualized by circles colorized for each category, with small white circles
indicating lack of evidence, and larger circles representing strong exper-
imental support. B Influence of direct titin I83 binding to F-actin (right
panel) on I-band titin in unstretched and stretched muscle. Linkage of titin
I83 to actin leads to increased stretch of distal I-band domains and
the PEVK element, protecting proximal Ig-domains from unfolding and
preventing stretch of the N2B region (in cardiac titin isoforms). C
Schematic representation of the Ankrd-dimer linking to adjacent titin
filaments at the N2Aus region, and of the Ankrd1/titin/F-actin trimeric
complex that ‘locks’ titin to the actin filament. Structures shown in the
representation are adapted from RCSB accession 7AHS (Stronczek et al.
2021), 7NIP (Zhou et al. 2021) and 3J8A (von der Ecken et al. 2015). D
Effect of Ankrd binding to I-band titin alone (left panel) or in complex
with F-actin (right panel) in unstretched (top panel) and stretched muscle
(bottom panel). Formation of the trimeric Ankrd1/titin/F-Actin complex
leads to increased stretch of distal I-band domains and PEVK element,
protecting proximal Ig-domains from unfolding and preventing stretch of
the N2B region (in cardiac titin isoforms)
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Subsequently, it was suggested that full-length Ankrd proteins
may crosslink adjacent titin proteins (Figure 2C) by forming
antiparallel homodimers or heterodimers (Lun et al. 2014),
and the binding site in N2Awas refined to include the adjacent
I81 in addition to N2Aus alone (Zhou et al. 2016). Cleavage by
calpain 3 was demonstrated to cut Ankrd1 and Ankrd2 in or
near their coiled-coil region, forming a mechanism for
disrupting Ankrd dimerization (Hayashi et al. 2008).
Cleavage of Ankrd1 appears to reinforce binding of the pro-
tein to titin N2A (Laure et al. 2010). All Ankrd proteins dis-
play muscle specific expression under baseline conditions
(Miller et al. 2003; Wette et al. 2017), with Ankrd1 being
primarily detected in the heart and at very low levels in skel-
etal muscle, Ankrd2 being present mostly in slow-twitch skel-
etal muscle fibers and exhibiting low expression in the heart
and fast-twitch fibers and Ankrd23 having low-level expres-
sion in striated muscle.

Ankrd1 functions in cross-striated muscles

Ankrd1 is the best studied member of the Ankrd protein fam-
ily. Investigations of Ankrd1 functions have been primarily
focused on the heart where the protein is thought to regulate
signaling and transcription (Ling et al. 2017). Ankrd1 expres-
sion is regulated through Gata4 and Nkx2.5 (Chen et al. 2012;
Kuo et al. 1999; Zou et al. 1997). Once formed, Ankrd1 com-
plexes with Gata4-Erk1/2 to induce phosphorylation of the
transcription factor. This in turn stimulates the nuclear locali-
zation of Gata4, which further activates the hypertrophic gene
program (Zhong et al. 2015). Other transcription factors that
have been shown to utilize Ankrd1 as transcriptional co-
activator or -repressor include Yb-1 (Zou et al. 1997),
nucleolin (Almodovar-Garcia et al. 2014), p53 (Kojic et al.
2010) or NF-κB (Liu et al. 2015). NF-κB p65 DNA-binding
activity is decreased during Ankrd1 overexpression, a mech-
anism that has been linked to reduced cell survival and is tied
to calpain 3 activity (Laure et al. 2010; Mohamed and Boriek
2012). Calpain-3 cleaved Ankrd1 negatively modulates
NF-κB p65 DNA-binding activity (Laure et al. 2010).
Ankrd1 also binds to the N-terminus of myopalladin (Bang
et al. 2001b), a protein that was also shown to localize to the
Z-disc via its interaction with sarcomeric α-actinin (Bang
et al. 2001b; Huby et al. 2014).

Loss of Ankrd1 in mice is well-tolerated, as is deletion of
the other individual Ankrd family members, or a combination
of all in Ankrd1/Ankrd2/Ankrd23 triple knockout mice (Bang
et al. 2014; Barash et al. 2007). While most physiological and
morphological parameters in cardiac and skeletal muscles
were unchanged, triple Ankrd knockouts showed a subtle
but noticeable increase in sarcomere length and muscle com-
pliance. These changes were accompanied by greater muscle
injury following eccentric contraction exercise, again

indicative of protective functions of Ankrd proteins (Barash
et al. 2007).

Ankrd1 levels are increased in many myopathy types, sug-
gesting the use of the protein as a biomarker (Ling et al. 2017).
However, it is contested if elevated cardiac Ankrd1 levels
alone promote the development of cardiomyopathy, as two
independent studies using transgenic Ankrd1 mice gave op-
posing results: one finding no overt physiological abnormality
of transgenic mice, while the other showed diastolic dysfunc-
tion (by shifting the titin isoforms ratio towards the stiffer N2B
version) and progressive heart failure (Piroddi et al. 2020;
Song et al. 2012). However, crossbreeding Ankrd1 knockouts
to muscle lim protein (MLP/Csrp3) knockout mice gave a
major clue to the role of Ankrd1 in the heart. While MLP
knockouts develop dilated cardiomyopathy (Arber et al.
1997), MLP/Ankrd1 double knockout mice display normal
cardiac morphology and systolic function (Lange et al.
2016). Further analysis revealed that the elevated Ankrd1
levels in MLP knockouts promote the activation of protein
kinase C α (PKCα), which underlies the etiology of DCM
in these mice (Braz et al. 2004; Hambleton et al. 2006).
Intriguingly, Ankrd1 translocated from the N2A region to
the intercalated disc, a pathological hallmark that was also
seen in cardiac biopsies of DCM patients (Lange et al.
2016). It remains unclear how this translocation is regulated,
but data from 2D-gel electrophoresis experiments indicate a
role in the posttranslational modification of Ankrd1 (Lange
et al. 2016).

Many functions for Ankrd1 in skeletal muscle remain to be
further explored and discovered. Similar to the heart, Ankrd1
is upregulated in skeletal muscle upon cellular stress (Buck
et al. 2014; Kojic et al. 2004; Laure et al. 2009; Liu et al. 2015;
van der Pijl et al. 2018; van der Pijl et al. 2020; van der Pijl
et al. 2021; Witt et al. 2004), and the protein seems to play a
role in atrophic signaling through NF-κB (Liu et al. 2015) and
fiber type switching through p21 (Waf1/Cip1) (Laure et al.
2009).

Two other recent studies established a novel role for
Ankrd1 in the regulation of muscle compliance: by
crosslinking titin to the thin filaments in skeletal muscle at
the level of the N2A region (Figure 2B) (van der Pijl et al.
2021; Zhou et al. 2021). Besides altered titin association to
filamentous actin (Dutta et al. 2018; Kelly et al. 2021; Kulke
et al. 2001; Linke et al. 2002; Nagy et al. 2004; Nishikawa
et al. 2020a; Nishikawa et al. 2020b), variation of its splice
isoforms and changed posttranslational modifications at the
N2Bus3 and PEVK regions (reviewed in Hidalgo and
Granzier (2013) Kruger and Linke (2009) and Linke and
Hamdani (2014)), this crosslinking mechanism offers yet an-
other avenue to modulate titin-based muscle stiffness in an
hitherto unprecedented fashion. The formation of the trimeric
Ankrd1, titin and F-actin protein complex is mediated by the
C-terminal ankyrin repeats in Ankrd1, although it is unclear
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how the locking mechanism is regulated and what role the
Ankrd1 N-terminus plays. While Ankrd1 binding to titin is
independent of a mapped PKA phosphorylation site located in
the N2Aus region (Adams et al. 2019; Lanzicher et al. 2020),
extensive posttranslational modifications of Ankrd1 and/or
titin by PKA and other protein kinases may play a role in
complex establishment and dissociation (Lun et al. 2014).
Further experiments are needed to characterize the molecular
and biomechanical properties of this complex and determine
its role for the heart.

More studies are also needed to solidify the link between
Ankrd1 and muscle signaling and maintenance in skeletal mus-
cle. One possible mechanism might involve the heat-shock pro-
teins Hsp90, Hsp27 or αB-crystallin, which have been shown to
also associate with the titin N2A region (Donlin et al. 2012;
Kotter et al. 2014b; Unger et al. 2017; Voelkel et al. 2013) and
were linked to sarcomere stability and control over muscle
growth (Huey et al. 2010; Senf et al. 2013).

Roles of Ankrd2 for skeletal and cardiac muscles

Ankrd2 (also known as Arrp [ankyrin repeat protein with
pest motif and proline-rich region]) is the more prominent-
ly expressed Ankrd protein family member in skeletal mus-
cle (Miller et al. 2003; Wette et al. 2017). Like Ankrd1,
Ankrd2 can interact with many transcription factors such
as Ap-1, Mef2C or p53 (Belgrano et al. 2011; Kojic et al.
2004) (reviewed in Cenni et al. (2019)). In response to
oxidative stress, Ankrd2 can be phosphorylated at S99 by
Akt2, which prompts binding of Ankrd2 to NF-κB p50.
This inhibits p50 in a manner similar to Inhibitor of κB
(IκB) and suppresses NF-κB driven gene transcription
and myogenesis (Bean et al. 2014; Cenni et al. 2011).
Ankrd2 also associated with Tcap (Kojic et al. 2004) and
LIM domain-binding 3 (Ldb3; Zasp; Cypher) in the Z-disc
to regulate PKCα or mTOR activity (Martinelli et al. 2014;
Pathak et al. 2021). Similar to Ankrd1, Ankrd2 can be
cleaved by calpains 1 and 2 (Piatkov et al. 2014) and likely
by calpain 3 (Cenni et al. 2019; Ojima et al. 2010), which
removes the coiled-coil domain, possibly resulting in a
more stable Ankrd2 fragment (Piatkov et al. 2014). Also
similar to Ankrd1, Ankrd2 binds to titin’s N2A region
(Lun et al. 2014; Miller et al. 2003), suggesting redundant
or similar roles for Ankrd family members. Indeed, loss of
Ankrd2 in MLP knockout mice also delayed DCM devel-
opment (Lange et al. 2016). While this ‘rescue’ of the MLP
knockout phenotype is less complete compared to MLP/
Ankrd1 double knockouts, it substantiates functional re-
dundancy between Ankrd family members in vivo.
However, it remains to be seen if the formation of the
trimeric complex with titin and filamentous actin, and the
subsequent regulation of muscle compliance demonstrated
for Ankrd1 extends to the other Ankrd family members.

Ankrd23—the mysterious third member of the
muscle ankyrin repeat protein family

Ankrd23 (also known as Darp [diabetes-related ankyrin repeat
protein]) is the least understood member of the Ankrd protein
family. Several studies indicated that this Ankrd family mem-
ber might be involved in metabolic signaling (Ikeda et al.
2003; Shimoda et al. 2015) and the regulation of skeletal mus-
cle differentiation (Wang et al. 2017). Ankrd23 interacts with
both titin N2A and myopalladin, and displays similar to other
Ankrd family members stretch-induced redistribution from its
sarcomeric localization, albeit preferentially to the intercalated
discs (Miller et al. 2003).

Myopalladin, a crucial protein for muscle
health

Besides binding to the N2Aus region of titin, Myopalladin is also
found at the Z-disc, where it was shown to interact with muscle
specific α-actinin isoforms Actn2 and Actn3 (Bang et al. 2001b)
as well as nebulin (Ma and Wang 2002; Witt et al. 2006). The
role of Myopalladin for the maintenance of Z-disc structure is
underscored by the loss-of-function phenotype, which displayed
Z-disc damage with exercise, and Z-disc widening with age.
Knockout mice were smaller, had more atrophied muscles (mea-
sured as reduced cross-sectional area) and displayed decreased
exercise capacity (Filomena et al. 2020). Mechanistically, dele-
tion of Myopalladin resulted in reduced serum response factor
(Srf) activity that was caused by loss of Myopalladin interaction
with Myocardin-related transcription factor A (Mrtf-A). The
skeletal muscle phenotype could be rescued in Myopalladin
knockout myoblasts by transduction of a constitutively active
Srf, which promoted muscle growth and increased myotube
widths.

Binding of Myopalladin to Ankrd1 is mediated by the
Myopalladin N-terminus. Overexpression of the N-terminus
in cardiac myocytes resulted in marked disruption of Z-disc
and M-band architecture as well as thin filament disorganiza-
tion (Bang et al. 2001b). Underscoring the importance for
Myopalladin in cross-striated muscles is the fact that a number
of pathological mutations are associated with several types of
skeletal and cardiac myopathies, including hypertrophic, di-
lated or restrictive cardiomyopathy as well as nemaline my-
opathy (reviewed in Wadmore et al. (2021)).

Titin’s N2B region as a metabolic and cellular
signaling hub that modulates passive titin
mechanics

Another flexible linker within the I-band of titin is the N2B
region (Linke et al. 1999). This region is found in all cardiac
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titin isoforms: the ‘smaller’ 2.97 MDa N2B and the larger 3.3
MDa N2BA titin splice variants (Freiburg et al. 2000). Similar
to N2A, the N2B region is located N-terminal to titin’s PEVK
element, but in closer proximity to the Z-disc (Freiburg et al.
2000; Gautel et al. 1996; Labeit and Kolmerer 1995; Linke
et al. 1999). Flanking the N2B region are Ig-domains I23 and
I26, with Ig-domains I24 and I25 separating three individual
N2B unique sequences (Figure 3A). C-terminal of the tandem
arrangement of I23-N2Bus1-I24-N2Bus2-I25-N2Bus3-I26 is
the constitutive I27 domain, which marks the beginning of a
heavily varied Ig-domain segment in titin that originates from
alternative splicing and exon skipping events (Freiburg et al.
2000).

Expression of the N2B region in cardiac cells has been
shown to disrupt thin-filament structure, while a similar ex-
periment using the N2A region did not show this effect.
Further investigation revealed that the Ig-domains N-terminal
to the N2B region mediate the disruption of actin filaments,
while leaving thick filaments unaffected (Linke et al. 1999).
Analysis of binding between N2Bus3 and actin revealed no
direct association of this region in titin to the thin filaments
(Yamasaki et al. 2001).

The N2B region contains sites for several types of post-
translational modifications that are able to modulate passive
force development and titin stiffness (Figure 3B) (Borbely
et al. 2009; Fukuda et al. 2005; Hamdani et al. 2013a; Lee
et al. 2010; Nedrud et al. 2011). Among the protein kinases
shown to modify this region of titin are cAMP-dependent
protein kinase (PKA) (Fukuda et al. 2005; Kruger and Linke
2006; Yamasaki et al. 2002), extracellular signal-regulated
kinase-2 (Erk2) (Raskin et al. 2012), calcium/calmodulin-
dependent kinase 2 (CaMKII) (Hamdani et al. 2013b) and
cGMP-dependent protein kinase (PKG) (Kruger et al. 2009).
Intriguingly, one mapped phosphorylation site within N2Bus3,
S4139 in NP_003310.4, was targeted by both, PKA and PKG.
PKG also modifies proximal Ig-domains I24-I25. Reports in-
dicate that the phosphorylation state of titin at the N2Bus3

sequence may be modulated by several of its interaction part-
ners (Krysiak et al. 2018; Raskin et al. 2012). Besides phos-
phorylation, the N2B region may also be subject to cysteine
cross-linking caused by prevailing oxidative conditions, such
as found in heart failure patients (Beckendorf and Linke 2015;
Grieve and Shah 2003; Grutzner et al. 2009). Common among
most identified posttranslational modifications in the N2B re-
gion is the ability to modulate passive titin mechanics.
Phosphorylation of the unique sequence N2Bus3 resulted in
decreased passive stiffness (Fukuda et al. 2005; Kruger et al.
2009; Kruger and Linke 2006; Raskin et al. 2012; Yamasaki
et al. 2002), while formation of disulfide bridges by cysteine
residues led to increased titin-based stiffness (Grutzner et al.
2009; Nedrud et al. 2011).

The importance of the N2B unique sequence for muscle
development and physiology is underscored by pathological

mutations (Itoh-Satoh et al. 2002; Matsumoto et al. 2005) and
vertebrate knockout models (Nedrud et al. 2011; Radke et al.
2007; Xu et al. 2002). Excision of exon 49 of the mouse titin
gene, which leads to an absence of the N2B region, resulted in
mice that were viable, albeit displaying smaller heart sizes
with diastolic dysfunction (Radke et al. 2007). Notably, the
expression levels of some but not all of the known binding
partners for titin N2B were affected by the deletion. The phe-
notype in the N2B knockout model can be ameliorated by
reduction of RNA binding motif protein 20 (Rbm20) protein
levels (Hinze et al. 2016). Rbm20 is a trans-acting splicing
factor highly expressed in striated muscles, especially in the
heart (Brauch et al. 2009). Mutations in Rbm20 have been
observed in at least 2–3% of familial dilated cardiomyopathy
(DCM) cases (Brauch et al. 2009; Kayvanpour et al. 2017;
Refaat et al. 2012). While the most frequently investigated
target for Rbm20’s modulation of mRNA splicing is titin itself
(Guo et al. 2012), over 30 genes involved in striated muscle
and muscle fiber homeostasis have been shown to be a target
of Rbm20, including the N2B interacting four-and-a-half LIM
domain proteins FHL1 and FHL2 (Hinze et al. 2016;
Hutchinson et al. 2015; Lennermann et al. 2020).

Mutant zebrafish that have a deletion of the N2B region
resulted in a more severe phenotype. Mutants exhibited dilat-
ed cardiomyopathy with poor contractility caused by
disrupted sarcomerogenesis (Xu et al. 2002). Notably,
morpholino guided ablation of the N2B region phenocopied
the cardiac phenotype of the mutant zebrafish.

While the N2B region of titin exerts biomechanical effects
on cardiac stiffness, it also acts as a signaling hub, by offering
binding sites to multiple interaction partners. Binding partners
include proteins of the four-and-a-half LIM (FHL) protein
family (Krysiak et al. 2018; Lange et al. 2002; Sheikh et al.
2008), the chaperones Hsp90 (Krysiak et al. 2018) and αB-
crystallin (Bullard et al. 2004), as well as protein phosphatase
5 (PP5) (Krysiak et al. 2018).

N2B association with chaperones
and modifying enzymes

The chaperones αB-crystallin and Hsp90 are members of the
heat shock protein family.αB-crystallin is highly expressed in
the lens but can also be found in striated muscles (Bhat and
Nagineni 1989), where its localization to myofibrils increases
during stress (Golenhofen et al. 1999). Further analysis of the
myofibrillar localization revealed that αB-crystallin binds
several regions within titin, including N2Bus3 and the adjacent
Ig-domains I26 and I27 (Bullard et al. 2004). The authors
speculated that association of αB-crystallin to N2Bus3 and
the adjacent Ig-domains indicates vulnerability of these
regions/domains to misfolding under physiological condi-
tions. However, association of the chaperone to titin under
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normal physiological conditions may also serve as anchoring
point to form a reservoir of the rather abundant αB-crystallin,
which makes up 3–5% of soluble protein in cardiac muscle
(Horwitz 2000). Indeed, the exclusive association of the chap-
erone with the N2B region became more diffuse and extended
towards the Z-disk upon unphysiological stretching of the
sarcomeres (Bullard et al. 2004), indicating association of
αB-crystallin with unfolded proximal Ig-domains in titin that

are known to be less stable (Li et al. 2002; Watanabe et al.
2002). Atomic force microscopy measurements of αB-
crystallin action on isolated stretched Ig-domains showed a
stabilizing effect in the presence of this chaperone (Bullard
et al. 2004). Some of the kinases that phosphorylate N2Bus3

and adjacent Ig-domains modify also αB-crystallin, which
partially correlates with increased myofibrillar localization of
the protein (Golenhofen et al. 1999). Binding of Hsp90 to the

Fig. 3. A Schematics of the titin
N2B region, spanning Ig-domains
Ig23 (I23) to Ig27 (I27), with po-
sitions of the N2Bus3 region and
PEVK element highlighted.
Location of binding site(s) within
titin for each interaction partner,
their roles and linkage to other
proteins are also depicted (bottom
panel; TFs = transcription fac-
tors). The described functional
roles for each protein are visual-
ized by circles colorized for each
category, with small white circles
indicating lack of evidence, and
larger circles representing strong
experimental support. B
Representative diagram of the ef-
fect that titin modifications have
on the passive force development
during sarcomere stretch. C
Structure of Lim domains ½-1 of
FHL2. Coordination of Zinc ions
into specialized Zinc-fingers by
side-chains in FHL2 is highlight-
ed in the representation. Structure
adapted from RCSB accession
2MIU. D Characterized FHL1
splice isoforms and domain lay-
out. NLS nuclear localization
signal, NES nuclear export signal.
Figure adapted from
Domenighetti et al. (2014)
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N2B region may also be mediated by the phosphorylation
state of titin, as hypophosphorylated N2B resulted in stronger
I-band localization of this chaperone (Krysiak et al. 2018). In
addition to N2B, Hsp90 can also associate with Erk2, whose
localization to the titin I-band is in turn mediated by FHL
proteins (Raskin et al. 2012; Sheikh et al. 2008).

Binding of PP5 to the N2Bus3 was mapped to the catalytic
domain in the phosphatase, with amino acids 205-211 being
critical fort the interaction (Krysiak et al. 2018). The binding is
increased upon phosphorylation of N2Bus3, specifically when
mediated by PKA. Association of the phosphatase with N2Bus

led to dephosphorylation of titin, with Erk2-sites proving par-
ticularly vulnerable to the phosphatase. Transgenic mice that
overexpress PP5 display hypophosphorylation of N2Bus3 and
increased passive tension. PP5 also binds to FHL1, another
known binding partner of N2Bus3, without altering FHL
localization.

FHL proteins and protein kinases
as regulators for titin-based signaling
and stiffness

The best characterized interaction partners for N2Bus3 are
members of the four-and-a-half LIM domain protein (FHL)
family. Three separate protein homologues, FHL1 (Slim1),
FHL2 (DRAL, Slim3) and FHL3 (Slim2), were early on char-
acterized to be highly expressed in cross-striated muscles,
with FHL1 and FHL2 being enriched in the heart, while
FHL1 and FHL3 are more abundant in skeletal muscles
(Chu et al. 2000b; Fimia et al. 2000; Lee et al. 1998b;
Morgan and Madgwick 1996; Samson et al. 2004). FHL1
exhibits baseline expression levels in many tissues and be-
comes specifically upregulated in the heart of many cardio-
myopathy models, including MHC403+/ mice (Christodoulou
et al. 2014),MLP knockouts (Chu et al. 2000b), Gαq and Gsα
transgenic mice (Gaussin et al. 2003; Sheikh et al. 2008), as
well as in cardiomyopathy patients (Christodoulou et al.
2014). Common among all members of the family is the do-
main layout, consisting of four-and-a-half LIM domains
(named after the first proteins identified to exhibit this fold:
LIN-11, Isl-1 and MEC-3). The LIM-domain, a modular
protein-binding and protein-dimerization interface, is found
in multiple proteins with diverse biological functions. The
motif is characterized by a tandem-Zinc finger structure
(Figure 3C), with the Zn2+-ions being coordinated by a mix
of cysteine, histidine and/or an aspartic acid residues using the
following conserved sequence: Cys-X2-Cys-X16–23-His-X2-
Cys-X2-Cys-X2-Cys-X16–21-Cys-X2-Cys/His/Asp
(Feuerstein et al. 1994; Kadrmas and Beckerle 2004). All of
the FHL proteins were shown to homo and/or heterodimerize
(Fimia et al. 2000; Gao et al. 2008; Lange et al. 2002; Li et al.
2001).

FHL1 and its function for skeletal and cardiac muscles

While ubiquitously expressed and interacting with a host of
proteins involved in cell structure, signaling and homeostasis,
FHL1 is particularly enriched in striated muscles where it
plays an important role in scaffolding or bridging cytoskeletal
and cell signaling complexes, and helps regulate gene tran-
scription (Lukash et al. 2020; Shathasivam et al. 2010; Wei
and Zhang 2020). FHL family members can exhibit extensive
splicing and may display splice isoform-dependent functional
diversity. The three major splice isoforms in FHL1 count
among the best characterized: FHL1A (also known as
Slim1, KyoT1), FHL1B (Slimmer, KyoT3 or transcript vari-
ant 1) and FHL1C (KyoT2 or transcript variant 4) are all
composed of a half LIM followed by four, three and two full
LIM domains, respectively (Figure 3D) (Brown et al. 1999;
Chu et al. 2000b; Taniguchi et al. 1998). Analysis of alterna-
tive start-site detection by 5′RNA-seq using RNA from car-
diomyopathy patients and rodent models revealed further that
FHL1A exists in two variants, a transcript that is expressed
basally in healthy hearts (transcript 3, bFHL1), and a slightly
larger version of FHL1A (transcript 2, iFHL1) that bears 48
additional nucleotides or 16 extra amino acids at the N termi-
nus of the protein, whose expression was highly induced in all
investigated cardiomyopathy types (Christodoulou et al.
2014; Domenighetti et al. 2014). This alternate FHL1A is
the most abundant isoform expressed in skeletal muscles,
where it is suggested to play an essential role in myoblast
fusion, muscle fiber formation, myofibrillar organization and
contractile function (Cowling et al. 2008; Domenighetti et al.
2014; Loughna et al. 2000; Robinson et al. 2003). Differential
splicing of the FHL1 gene (eight exons, located on the X
chromosome in both humans and rodents) also leads to the
presence of a nuclear-addressing sequence and/or RPB-J-
binding domain in the C terminus of the FHL1B and
FHL1C isoforms, promoting their nuclear localization.
While predominantly sarcomeric (e.g. Z-disk in skeletal mus-
cles, I-band in the heart), FHL1 isoforms have also been
shown localize to the sarcolemma and mitochondria in mature
skeletal muscle fibers, to focal adhesions in myoblasts and the
nucleus in satellite cells (Cottle et al. 2009; Domenighetti et al.
2014; McGrath et al. 2006). The sarcomeric localizations may
be dependent on the presence/absence of the cardiac specific
titin N2B splice isoform (Blandin et al. 2013; Raskin et al.
2012; Sheikh et al. 2008), or FHL1 interaction with other
sarcomeric proteins, such as myosin-binding protein C
(Blandin et al. 2013; McGrath et al. 2006) or MLP (Csrp3)
(Blandin et al. 2013).

Over the past 10+ years, FHL1 has been identified as the
causative gene mutated in at least six distinct myopathies af-
fecting skeletal and cardiac muscles with a widely variable
clinical manifestation in affected patients. The most observed
are reducing body myopathy (RBM), Emery-Dreifuss
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muscular dystrophy (EDMD), X-linked myopathy character-
ized by postural muscle atrophy (XMPMA) and scapulopero-
neal myopathy (SPM) (reviewed in Cowling et al. (2011)).
RBM is the most severe of the FHL1-linked myopathies.
Various sporadic or inherited missense mutations that most
commonly disrupt the 2nd LIM domain of FHL1 induce the
formation of aggresome-like cell inclusions in RBM. These
aggresomes incorporate both mutant and wild-type FHL1, as
well as other proteins (e.g. desmin, ubiquitin, actin, dystro-
phin, myosin heavy chains) trapped in a gain-of-function
and dominant-negative manner. The age of onset ranges from
infancy to childhood, and in some cases adult onset is ob-
served. At the severe end of the spectrum, early onset sporadic
cases of RBM often present with motor delay in the first years
of life, with rapid decline of skeletal muscle function leading
to loss of ambulation before puberty and progression to respi-
ratory failure and death. Cardiac involvement is less common
in RBM, but dilated cardiomyopathy and heart failure have
been observed in severe cases (Schessl et al. 2010; Schessl
et al. 2011; Schreckenbach et al. 2013). A cardiac phenotype
often manifests as hypertrophic or dilated cardiomyopathy
and is the most serious symptom in FHL1-induced EDMD
patients. It can precede joint contractures and muscle weak-
ness and lead to progressive abnormalities in the cardiac con-
duction system resulting in heart block and sudden death
(Puckelwartz andMcNally 2011). FHL1 genemutations iden-
tified in EDMD patients include point mutations, insertions
and deletions that lead to reduced FHL1 levels in most pa-
tients. This finding suggests that loss of normal protein func-
tion via reduced FHL1 protein expression and impaired bind-
ing of interaction partners may be important in disease patho-
genesis. Most of the EDMD-linked mutations in FHL1 are
located in the most distal exons (5–8) of the gene and differ-
entially affect expression and splicing of the three main FHL1
isoforms (Gueneau et al. 2009; Tiffin et al. 2013; Ziat et al.
2016). Collectively, these clinical studies define mutations
disrupting LIM domains in FHL1 proteins as a novel, but
important cause of human striated muscle disease. In addition,
these mutations are commonly associated with a widely vari-
able clinical presentation in affected patients. This variability
may relate to the multifaceted roles of FHL1 isoforms in stri-
ated muscles, including their ability to function as molecular
adaptor and scaffolding proteins within the sarcomere in con-
junction with their regulation of cell signaling within the cy-
tosol and gene transcription within the nucleus.

In physiological conditions, baseline FHL1 levels are sig-
nificantly lower in the heart when compared to skeletal mus-
cles (Chu et al. 2000b; Domenighetti et al. 2014). However,
FHL1 expression is increased in idiopathic pulmonary arterial
hypertension patients, in patients with LV hypertrophy and
hypertrophic cardiomyopathy (Hwang et al. 1989; Lim et al.
2001), as well as in mice with agonist, pressure or volume-
overload cardiac hypertrophy (Chu et al. 2000b; Gaussin et al.

2003; Hutchinson et al. 2015). FHL1 is also upregulated in
mouse models of cardiomyopathy induced by myosin heavy
chain missense mutations (MHC403/+) (Christodoulou et al.
2014), MLP deletion (Chu et al. 2000b), in Gαq and Gsα
transgenic mice (Gaussin et al. 2003; Sheikh et al. 2008) as
well as mice that overexpress β-adrenergic receptors (Gaussin
et al. 2003). Elevated FHL1-levels in Gsα transgenic mice are
reduced by pharmacological inhibition of β-adrenergic recep-
tors (Gaussin et al. 2003), suggesting activation of G-protein
coupled receptor (GPCR) signaling as one of the main drivers
for FHL1 expression. FHL1 knockout mice provided intrigu-
ing mechanistic insights into FHL1 expression in hearts. Loss
of FHL1 in Gαq transgenic mice has been demonstrated to
rescue the cardiomyopathy phenotype (Sheikh et al. 2008).
However, in α-myosin heavy chain R403Q missense muta-
tion mice (MHC403/+), another mouse model for hypertrophic
cardiomyopathy with elevated levels of FHL1, ablation of the
gene had opposing effects and exacerbated the cardiomyopa-
thy phenotype (Christodoulou et al. 2014). Intriguingly, FHL1
may also modulate GPCR signaling by binding to Pleckstrin
homology and RhoGEF domain containing G2 (Plekhg2)
(Sato et al. 2016), a Rho family-specific guanine nucleotide
exchange factor that is known to associate with small G-
proteins Gβɣ and Gsα (Sugiyama et al. 2017). While
Plekhg2 is known to be expressed in heart or skeletal muscles
(Nishikawa et al. 2021), its role in modulating FHL1-
dependent signaling in cross-striated muscles has not been
further investigated. The linkage of FHL1 gene activity to
GPCR signaling suggests a positive feedback loop that may
be modulated by actions of FHL1 itself. Indeed, it has been
demonstrated that myocardial overexpression of FHL1 could
be induced by transcription of the FHL1A isoform encoded by
the alternate upstream start-site (Christodoulou et al. 2014)
and/or through modulation of FHL1B levels (Hinze et al.
2016).

Since its discovery in 1998 (Lee et al. 1998a), FHL1 has
emerged as an important regulator of passive/diastolic tension
in stress-induced left ventricular (LV) cardiac hypertrophy. In
particular, studies performed in FHL1 knockout mice have
shown that FHL1 is part of a biomechanical stress sensor
complex that scaffolds mitogen-activated protein kinase
(Mapk) components (Erk2, Raf1, Mek2) to the sarcomeric
titin N2Bus3 spring element, regulating diastolic function and
cardiac stress responses through N2Bus3 phosphorylation and
Mapk signaling (Raskin et al. 2012; Sheikh et al. 2008). A
recent study demonstrated that protein phosphatase 5 (PP5) is
also a key element of this N2Bus3 and FHL1 stress-sensing
signalosome, modulating muscle compliance by dephosphor-
ylating the N2Bus3 region (Krysiak et al. 2018). A human
mutation in titin (N2Bus3 S3799Y) that affects FHL2 binding
also significantly impacted Mapk/Erk2-mediated titin N2Bus3

phosphorylation (Itoh-Satoh et al. 2002; Matsumoto et al.
2005; Raskin et al. 2012). Our data indicate that the N2Bus3
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S3799Ymutation similarly affects FHL1 association with titin
(Figure 4E) (Lange 2005). Summarily, these studies provide
clinical relevance for the function of the FHL1/PP5/Mapk-
containing signalosome for N2Bus3 phosphorylation and the
development of human cardiomyopathy.

FHL1 was also found to be upregulated in a titin PEVK
knockout mouse model that developed cardiac hypertrophy
and increased passive tension (Granzier et al. 2009), strength-
ening the importance for an interaction between titin’s molec-
ular spring elements and FHL1 during regulation of LV
passive/diastolic tension. Intriguingly, these FHL1-
dependent mechanisms, which have been extensively investi-
gated in the left ventricle (LV), may not be involved in stress-

induced maladaptive remodeling of the right ventricle (RV)
(Veith et al. 2020). The reasons for these differences between
the RV and LV remain unclear.

FHL2 and its role in the heart

FHL2 was initially identified as downregulated gene in a
rhabdosarcoma cell line but was subsequently found to be
highly expressed in the heart where it exhibits a sarcomeric
localization (Chan et al. 1998; Genini et al. 1997; Scholl et al.
2000). Later studies revealed two binding sites for FHL2with-
in titin: a predominant interaction site within the N2Bus3 re-
gion of I-band titin, and another weaker association to the is2

Fig. 4. A–B Localization (A) and expression levels (B) of endogenous
FHL2 (green in the overlay in (A)) in neonatal rodent cardiomyocyte
cultures treated with Wnt-conditioned medium, 10 mM LiCl or vehicle
treated controls. Arrows in (A) indicate increased nuclear localization of
FHL2. Sarcomeric counterstain in (A) was sarcomeric α-actinin (red in
the overlay), while cardiac actin served as loading control in (B). Dvl-1
expression levels indicated activation of Wnt signaling. Scalebar = 10
μm.CAnalysis of HA-tagged androgen receptor (AR, red in the overlay)
and GFP-tagged FHL2 localization (green in the overlay) in transfected
rat cardiomyocyte cultures, treated with 0.5 nM of AR agonist androstan,

1 μM AR antagonist flutamide or vehicle controls. Titin-M8 served as
sarcomeric counterstain (blue in the overlay). Scalebar = 10 μm. D
Analysis of Flag-tagged FHL3 localization (green in the overlay) in
transfected neonatal rodent cardiomyocyte cultures. Titin-M8 served as
sarcomeric counterstain (red in the overlay). Scalebar = 10 μm. E
Analysis of wildtype and SY-mutant titin N2B binding to FHL1 or
FHL2 in co-immunoprecipitation assays shows loss of FHL interaction
with mutant titin. Sup supernatant. All figures were adapted from Lange
(2005) with permission of the author
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sequence located at the sarcomeric M-band (Lange et al.
2002). Pathological mutations in the N2Bus3 region of titin
that have been associated with the development of hypertro-
phic cardiomyopathy were shown to affect binding of FHL2
(Itoh-Satoh et al. 2002; Matsumoto et al. 2005) and FHL1
(Figure 4E). Besides titin, FHL2 was shown to interact with
other sarcomeric proteins, such as slow myosin binding
protein-C (MyBP-C) (McGrath et al. 2006), the thin filament
capping protein (Huttlin et al. 2015), and components of the
cardiac intercalated disc, such as plakoglobin (Luck et al.
2020; Rolland et al. 2014) and β-catenin (Wei et al. 2003).
Pathway enrichment analysis for the over 200 known binding
partners for FHL2 catalogued in the protein interaction data-
base BioGrid (Stark et al. 2006) suggests roles for FHL2 in
cancer (diseases in signal transduction and second messen-
gers); Smad, Notch and Wnt signaling; and functions for the
protein in regulating transcription factor activity that are also
supported by its shuttling to the nucleus in many cell-types
(Genini et al. 1997; Huang et al. 2019; Labalette et al. 2004;
Scholl et al. 2000; Wei et al. 2003). Shuttling of FHL2 be-
tween its sarcomeric localization and the nucleus as well as
FHL2 protein levels may be modulated by some of these
cellular signaling pathways. An example is the canonical
Wnt/β-catenin signaling pathway, which altered FHL2 local-
ization and levels in neonatal mouse cardiomyocyte cultures
treated with Wnt-conditioned medium or 10 mM LiCl
(Figure 4A–B) (Lange 2005). A possible link between
FHL2 and β-catenin signaling in the heart may also be sup-
ported by poor postnatal viability of FHL2/β-catenin double
knockouts (Table 1, data kindly provided by Alain Hirschy,
Evelyne Perriard and Jean-Claude Perriard (Hirschy 2005)),
compared to cardiac specific β-catenin knockouts (Hirschy
et al. 2010) or FHL2 knockout mice alone (Chu et al. 2000a).

For the heart, FHL2 is thought to serve as a linker protein
that was shown to mediate the binding of metabolic enzymes
(Lange et al. 2002) and extracellular signal-regulated kinase 2
(Erk2) to the I-band of the sarcomere (Purcell et al. 2004).
Intriguingly, only activated Erk2 is bound by FHL2, which
in addition prevents translocation of the kinase to the nucleus
and activation of its transcriptional activity. FHL2 may also

serve as a sarcomeric anchor for other binding partners in-
volved in cellular signaling pathways. One such example is
the androgen receptor, whose binding to FHL2 and role as
tissue-specific co-activator have been known for some time
(Muller et al. 2000). Analyzing the subcellular localizations of
HA-tagged androgen receptor and GFP-tagged FHL2 in
transfected neonatal rat cardiomyocytes cells revealed sarco-
meric colocalization of both proteins in untreated and antago-
nist treated cells (Figure 4C) (Lange 2005). Activation of the
androgen receptor by the agonist androstan resulted in shut-
tling of androgen receptor to the nucleus. Of note: some nu-
clear staining of FHL2 was present in all treatment conditions,
suggesting two pools of FHL2, a sarcomere-bound fraction
that could serve as anchor for multiple binding partners, and
a nuclear pool that may assist in transcriptional gene-regula-
tion. Indeed, overexpression of FHL2 in isolated
cardiomyocytes was shown to reduce cardiac hypertrophy
due to Mek1, Gata4 and phenylephrine stimulation (Purcell
et al. 2004). Nevertheless, while FHL2 knockouts displayed
greater cardiac hypertrophy following catecholamine stimula-
tion (Kong et al. 2001), global loss of the protein is well
tolerated, and the hypertrophic response following
transverse-aortic constriction (TAC) was indistinguishable
from that of controls (Chu et al. 2000a).

Enigmatic roles of FHL3

Despite its high expression levels in skeletal muscle (Lee et al.
1998b), FHL3 functions remain more enigmatic compared to
FHL1 and FHL2. FHL3 mRNA was found to be upregulated
during skeletal muscle differentiation and regeneration (Han
et al. 2019; Meeson et al. 2007), suggesting roles for this FHL
protein in muscle formation. Moreover, mRNA levels of
FHL3 were found to be reciprocally regulated to that of
FHL1, the other FHL family member expressed in skeletal
muscles: FHL3 expression peaked early during differentia-
tion, while FHL1 displayed increased expression in more ma-
ture myotubes (Morgan and Madgwick 1999). In undifferen-
tiated myoblasts, FHL3 localizes to the nucleus and actin
stress fibers, partially due to its binding to actin filaments

Table 1 Mendelian ratios of conditional β-catenin and FHL2 global knockout crossings. Table adapted from Hirschy (2005) with permission of the
author

Crossing of conditional cardiac specific β-catenin knockouts (Hirschy et al. 2010) in a global FHL2 knockout background
(Chu et al. 2000a). Please note, only cre-positive wildtype and double knockout animals are counted.

Age P0 P21

Genotype FHL2 knockout
β-catenin wildtype

FHL2 knockout
β-catenin knockout

FHL2 knockout
β-catenin wildtype

FHL2 knockout
β-catenin knockout

Expected ratios 50% 50% 50% 50%

Number of animals and % 25 (52%) 23 (48%) 24 (71%) 7 (29%)
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(Coghill et al. 2003; Sun et al. 2020). This localization chang-
es in mature muscles, where FHL3 is found at the Z-disk,
presumably by binding to sarcomeric α-actinin (Coghill
et al. 2003). Analysis of FHL3 roles during differentiation
indicated further that the protein regulates myosin heavy chain
isoform expression by modulating MyoD and pCreb tran-
scriptional activity (Cottle et al. 2007; Zhang et al. 2016).
Similar to other FHL proteins, FHL3 interacts with Hif1α
and modulates this hypoxic signaling pathway (Lin et al.
2012).

For the heart, FHL3 was found to be significantly
deregulated in ischemic and dilated cardiomyopathy
(Molina-Navarro et al. 2014). However, the relevance of this
finding is unclear as the protein is generally thought to be
extremely low in the heart (Lee et al. 1998b). Nevertheless,
FHL3 also localizes to the sarcomeric I-band in transfected
cardiomyocytes, suggesting either direct binding to titin
N2Bus3 or indirect association to titin through heterodimer
formation with FHL1 and/or FHL2 (Figure 4D) (Lange
2005). To date, in vivo functions for FHL3 have not been
further explored, as no knockout or transgenic animals are
available.

Functional redundancy of FHL protein action?

The lack of a baseline cardiac phenotype particularly in FHL2
knockout mice (Chu et al. 2000a), but also in FHL1 knockouts
(Sheikh et al. 2008) is surprising given the number of binding
partners and their implied significance for the hypertrophic
response of the heart. However, functional redundancy be-
tween FHL1 and FHL2 may play a more profound role than
previously anticipated. Common among known binding part-
ners for FHL1, FHL2 and/or FHL3 are titin (Lange et al. 2002;
Matsumoto et al. 2005; Sheikh et al. 2008), MyBP-C
(McGrath et al. 2006), actin and sarcomeric α-actinin
(Coghill et al. 2003; Sun et al. 2020), as well as several key
proteins involved in cellular signaling pathways, such as
Hif1α (Hubbi et al. 2012; Lin et al. 2012), α- and β-
subunits of the integrin receptor (Samson et al. 2004), Erk2
(Purcell et al. 2004), Smad2/3/4 (Ding et al. 2009) or the
serum response factor (Srf) (Philippar et al. 2004). Both,
FHL1 and FHL2 expression and function are also known to
be linked to β-adrenergic GPCR signaling in hearts (Gaussin
et al. 2003; Kong et al. 2001; Sato et al. 2016; Sheikh et al.
2008). In addition, FHL proteins are known to form homo-
and heterodimers (Fimia et al. 2000; Gao et al. 2008; Lange
et al. 2002; Li et al. 2001), suggesting combinatorial function-
ality of their biological roles that may depend on the expres-
sion level of each of the FHL protein at any given time in
cardiac and skeletal muscles. Intriguingly, the redundancy
may also be reflected in the finding that loss of FHL1 or
FHL2 in the heart does not result in a measurable cardiac
phenotype at baseline. FHL1 was also not upregulated upon

loss of FHL2 at baseline (Chu et al. 2000a); however, it be-
comes the predominant FHL protein induced by TAC and in a
model of dilated cardiomyopathy (Chu et al. 2000b). In con-
trast to the heart, loss of FHL1 in the skeletal muscles, where
no expression of FHL2 on the protein level can be detected in
slow and fast-twitch muscles (Kong et al. 2001; Lange et al.
2002), was associated with the development of myophaties in
both, mice and humans. While skeletal muscle also express
FHL3, their differential developmental expression profile
(Morgan and Madgwick 1999) may contribute to a lack of
functional redundancy that compensates for the loss of
FHL1. Ultimately generation of double and/or triple knockout
models may shed some light into functional overlap and
redundance between FHL proteins. Mendelian ratios of global
knockout mice at weaning suggest that FHL1/FHL2 double
knockouts are lost during development (Table 2). However,
exact timepoints and reasons for the lack of double knockouts
remain to be discovered.

Besides serving as a sarcomeric anchor for Mapk
signaling-associated kinases, FHL1 was also characterized to
modulate phosphorylation sites within N2Bus3 (Raskin et al.
2012), potentially altering titin-based cardiac stiffness.
Presence of FHL1 in Erk2 kinase assays resulted in signifi-
cantly reduced N2B phosphorylation by Erk2, suggesting
blockage of access to the serine/threonine residues in titin.
This finding is contested as FHL1 knockout hearts display
reduced phosphorylation of titin at S3991 compared to
wildtype hearts (Krysiak et al. 2018). However, Krysiak
et al. have not taken into consideration effects of FHL2 when
interpreting their results. While wildtype hearts have both
FHL proteins present that compete for binding to titin, loss
of FHL1 results in the exclusive association of FHL2 to the
N2Bus3 element in titin. Binding of FHL2 to titin and/or
Erk2 may account for the altered titin phosphorylation ob-
served in FHL1 knockout hearts, although it remains to be
determined if FHL2 plays similar roles in blocking access to
the same phosphorylation site(s) as FHL1. Another interpre-
tation of the results presented by Krysiak and coauthors could
be that FHL2 blocks titin phosphorylation at S3991 more
efficiently than FHL1. Further experimental evidence is need-
ed to fully understand the role that FHL proteins exert on
Erk2-based titin phosphorylation and the resulting change in
cardiac stiffness.

Intriguingly, FHL proteins may not only modulate passive
muscle mechanics, but could also function as mechanosensors
in many cell types, including cross-striated muscles. A recent
manuscript by Sun and co-authors indicated that while all
FHL proteins associate with thin filaments, binding of FHL2
and FHL3 (and to a lesser extend FHL1) to F-actin is greatly
enhanced in the presence of mechanical force (Sun et al.
2020). While this mechanism may play a role in controlling
the nuclear shuttling and co-transcriptional activity of FHL
proteins in non-muscle cells (Nakazawa et al. 2016; Sun
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et al. 2020), it remains to be demonstrated for cross-striated
muscles.

Another function of FHL proteins that may be somewhat
conserved between FHL1 and FHL2 is their association with
metabolic enzymes. FHL2 has been suggested to tether phos-
phofructokinase, adenylate kinase and muscle creatine kinase
to the sarcomeric I-band in cardiomyocytes (Lange et al.
2002), and to bind to pyruvate dehydrogenase (Pdhb)
(Huttlin et al. 2015). Loss of FHL2 in mice leads to reduced
weight gain by diet-induced obesity, higher energy expendi-
ture, browning of white adipose tissue and enhanced glucose
uptake and consumption of the heart (Clemente-Olivo et al.
2021). Analysis of mRNA expression in the heart suggests
significant modulation of the X nuclear receptor (Lxr)/retinoid
X receptor (Rxr), Mapk and Erk signaling and glucose metab-
olism pathways.

FHL1 was shown to interact with Eno1, another enzyme of
the glycolysis pathway (Blandin et al. 2013). The protein also
localizes to mitochondria in skeletal muscle, and its loss re-
sulted in morphological abnormalities (Domenighetti et al.
2014).

Redundancy between FHL family members may however
also be limited to certain biological roles of these proteins.
While seldomly investigated, some studies find differential
binding of FHL proteins to interaction partners. A prominent
example is the modulation of GPCR signaling by FHL1A and
FHL1B via their interaction partner Plekhg2, which does not
extend to FHL1C and other members of the FHL protein
family (Nishikawa et al. 2019). Another example is FHL2

binding to sphingosine kinase-1, which is not shared by
FHL1 or FHL3 (Sun et al. 2006).

Additional studies are required to fully evaluate commu-
nality and specificity in FHL protein function.

Beyond the N2A and N2B regions: the titin
PEVK element and the A/I junction

The elastic PEVK region

Titin’s PEVK-element is encoded by 114 of titin’s 363 exons
(Bang et al. 2001a). This region in titin functions as a large,
disordered, entropic spring (Linke et al. 2002). Splicing of
titin and length regulation of the PEVK element is under con-
trol of the RNA splice factor Rbm20 (Li et al. 2013; Li et al.
2012; Methawasin et al. 2014). The PEVK element consists of
two repeating motifs called PPAK (proline, proline, alanine,
lysine) and PolyE (Glutamic acid), encompassing ~75% and
~25% of this region in titin, respectively (Duan et al. 2006).
The PPAK motif is formed by short 26–28 positively charged
amino acid repeats that are estimated to fold mostly into α-
helices and disordered regions (Duan et al. 2006). PolyE mo-
tifs consist of ~45% glutamic acid, providing a negative
charge to the PPAK repeats, and are considered fully disor-
dered in structure (Duan et al. 2006). Some secondary struc-
ture has been ascribed to the PEVK region, but current studies
disagree on the stability of said structure in vivo (Gutierrez-
Cruz et al. 2001; Ma and Wang 2002; Ma and Wang 2003).

Table 2 Mendelian ratios of FHL1 and/or FHL2 global knockout crossings

FHL1. FHL1 global knockout (Sheikh et al. 2008). Breeding of wildtype males with heterozygous
FHL1 females. Please note, FHL1 is X-linked.

Genotype Wildtype (both males and females) Heterozygous (females only) Hemizygous (males only)

Expected ratios 50% 25% 25%

Number of animals and percent of genotyped
animals at weaning stage (P21)

91 (55.5%) 35 (21.3%) 38 (23.2%)

FHL2. FHL2 global knockout (Chu et al. 2000a). Crossing of heterozygous males and females.

Genotype Wildtype Heterozygous Homozygous

Expected ratios 25% 50% 25%

Number of animals and percent of genotyped
animals at weaning stage (P21)

26 (22.6%) 60 (52.2%) 29 (25.2%)

FHL1/2 double knockouts. Crossing of FHL1 (y/+); FHL2 (−/−) males with FHL1 (+/−); FHL2 (−/−)
females. Please note that the breeding was performed using a FHL2 homozygous knockout
background that showed no changes to viability or fertility (Chu et al. 2000a).

Genotype FHL2 knockout, FHL1 Wildtype
(both males and females)

FHL2 knockout , FHL1
Heterozygous (females only)

FHL2 knockout , FHL1
Hemizygous (males only)

Expected ratios 50% 25% 25%

Number of animals and percent of genotyped
animals at weaning stage (P21)

29 (69.1%) 9 (21.4%) 4 (9.5%)
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The alternating arrangement of the positively charged PPAK
and negatively charged PolyE motifs is thought to contribute
to the elastic nature of the PEVK region (Greaser 2001; Huber
et al. 2012; Linke et al. 1998; Yamasaki et al. 2001).

PEVK interacting proteins

PEVK interactions with F-actin, partly mediated through cal-
cium, form another mechanism for increasing passive tension
(Figure 3A) (Bianco et al. 2007; Chung et al. 2011; Nagy et al.
2004). The PEVK region can also be phosphorylated by
PKCα (Hidalgo et al. 2009) and calcium/calmodulin-
dependent kinase 2 (CaMK-IIδ) (Hamdani et al. 2013b;
Hidalgo et al. 2013) at S11878 and S12022 (N2B isoform,
SwissProt: Q8WZ42). Phosphorylation at these serine resi-
dues inc reases s t i f fnes s o f the PEVK elemen t
(Figure 3B) (Anderson et al. 2010; Hamdani et al. 2013b;
Hidalgo et al. 2009; Hidalgo et al. 2013), which can be re-
versed by protein phosphatase 1 (PP1) (Hidalgo et al. 2009).

Beyond actin, there are few proteins whose binding has
been mapped to the PEVK element. The S100-family of pro-
teins known for binding calcium (Donato et al. 2013) interacts
with titin PEVK (Yamasaki et al. 2001). S100A1 seems to
inhibit the interaction between actin and the PEVK region
(Yamasaki et al. 2001) and may provide a mechanism for
modulating titin stiffness. Additionally, S100A1 can disrupt
the interaction of nebulin’s SH3-domain with the PEVK re-
gion (Gutierrez-Cruz et al. 2001). The role of nebulin-PEVK
interaction is unknown, but it has been suggested to aid
nebulin localization to the thin filament (Ma and Wang
2002). Lastly, calpain 3 can bind in the PEVK region where
it is thought to form a reservoir for proteolytic cleavage of titin
(Ojima et al. 2014). Signaling in the PEVK region is not very
well understood, but the recent publication of two PEVK de-
letion models: TtnΔEx112-158 (Brynnel et al. 2018) and
TtnΔEx219-225 (Granzier et al. 2009; van der Pijl et al.
2020), showed hypertrophic remodeling in skeletal muscles.
Whether these models represent propagat ion of
mechanosignaling from the N2A and/or N2B regions or un-
tapped mechanosensing hotspots in the PEVK region remains
to be studied.

Titin’s A/I junction

The A/I junction of titin (Figure 1D) is structurally similar to
both the D-zone and C-zone of A-band titin. Although it com-
prises Ig- and Fn3-domains, this region of titin does not follow
the Ig-(Fn3)2-Ig-(Fn3)3 repeat of the D-zone or the Ig-(Fn3)2-
Ig-(Fn3)3-Ig-(Fn3)3 repeats of the C-zone (Labeit and
Kolmerer 1995), and importantly, it does not bind to the thick
(myosin) filaments (Bennett and Gautel 1996; Granzier et al.
2014; Muhle-Goll et al. 2001) or myosin binding protein C
(MyBP-C) (Bennett et al. 1986; Freiburg and Gautel 1996;

Luther et al. 2008). The A/I junction has been proposed to
form a stop signal for thick filament polymerization, thereby
regulating its length (Bennett and Gautel 1996; Whiting et al.
1989). However, a titin deletionmodel (TtnΔIAjxn) for the A/
I junction showed that thick filament lengths were unaffected.
This suggested that myosin filament length regulationmay not
be directly controlled by this region in titin (Granzier et al.
2014). On the other hand, regulation in thick filament lengths
and MyBP-C localization was found in a C1/2-zone deletion
mouse model (Tonino et al. 2019; Tonino et al. 2017). This
mouse model showed that thick filaments shortened (Tonino
et al. 2017) and number of C-stripes decreased (Tonino et al.
2019) when the C1 and C2 modules were deleted from titin.
An alternative hypothesis for the function of the A/I junction
proposes that this region forms a dimerization sequence for
titin (Al-Khayat et al. 2013). It was shown that tryptic frag-
ments of titin’s distal Ig-repeat segment and A/I junction form
oligomers (Houmeida et al. 2008). This supports packing of
titin into a single multimeric titin filament before fusing with
the thick filament, possibly facilitating the organization of the
thick filament into the D-zone and C-zone. This hypothesis
would also provide a function for the developmental titin
‘cronos’ isoform, with its promoter region in the distal Ig-
repeat, which encodes the A-band and M-band regions of titin
(Bull et al. 2016; Zaunbrecher et al. 2019; Zou et al. 2015).
Thus, the A/I junction does not appear to directly contribute to
titin mechanosensing but may perform more structural roles.
Studies on the TtnΔIAjxn mouse model indicate that the pas-
sive stiffness of the I-band region of titin is important in the
development of diastolic dysfunction (Slater et al. 2017) by
increasing the extension of the PEVK and N2B regions during
sarcomere stretch (Granzier et al. 2014). Interestingly, the
N2B interacting protein FHL2 was upregulated in the
TtnΔIAjxn mouse (Granzier et al. 2014), supporting that the
increased stiffness activates titin mechanosensing in the I-
band.

The emerging therapeutic potential
of modulating titin I-band splicing
and phosphorylation as well
as titin-associated proteins

Changing titin stiffness in disease was shown to alter both
N2A and N2B-based signaling (Granzier et al. 2009; Guo
et al. 2013; Guo et al. 2018; van der Pijl et al. 2018). Hence,
the modulation of titin binding partners as well as titin phos-
phorylation and isoform ratios are attractive targets for novel
therapeutic strategies in the treatment of various
cardiomyopathies.

Rbm20, a master regulator for titin I-band splicing, has
been shown to provide relief from diastolic heart failure in
genetic mouse models (Bull et al. 2016; Hinze et al. 2016;
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Methawasin et al. 2014). Rbm20 was also able to reverse a
heart failure with preserved ejection fraction (HFpEF) like
mode l i n m i c e i n d u c e d b y t r a n s v e r s e a o r t i c
constriction (TAC) in combination with deoxycorticosterone
acetate (DOCA) treatment (Bull et al. 2016). Rbm20 deletion
also seemed to rescue mechanically ventilated rats from de-
veloping diaphragm weakness (Lindqvist et al. 2018).
However, modulation of Rbm20 levels or activity may not
be the ‘silver bullet’ for diseases whose underlying pathology
can be alleviated by titin length regulation, as the splice factor
also processes mRNAs of other muscle genes, such as the
ryanodine receptor (RyR), myomesin, nexilin, obscurin or
troponin (Maatz et al. 2014). Newer strategies that aim to alter
Rbm20 phosphorylation (Murayama et al. 2018) or search for
small molecules that selectively modulate Rbm20 targeting
(Liss et al. 2018) could decrease unintended off-target effects.

Another promising approach to reverse heart failure in
TAC-DOCA mice has been the use of metformin (Slater
et al. 2019). This small molecule drug is widely used to treat
diabetes by regulating glucose metabolism via AMP-activated
protein kinase (AMPK)-dependent and AMPK-independent
mechanisms (reviewed in Rena et al. (2017)). Metformin ad-
ministration in mice improved diastolic dysfunction, mainly
by increasing PKA phosphorylation at the N2B region of titin
(Slater et al. 2019).

Several studies and a clinical trial investigated the use of
phosphodiesterase inhibitor sildenafil to treat diastolic dys-
function in an animal model of HFpEF and in HFpEF patients.
Sildenafil inhibits the activity of phosphodiesterase-5 (Pde-5)
(reviewed in Andersson (2018)), which increases nitric oxide
levels and cGMP-PKG signaling, ultimately resulting in in-
creased phosphorylation at the N2B region of titin (Bishu et al.
2011; Kruger et al. 2009). While the drug showed effective-
ness in a dog model of the disease (Bishu et al. 2011), a
randomized clinical trial failed to elicit changes to the clinical
outcome in patients (Redfield et al. 2013).

An elegant study by Anna-Eliane Hopf and Christian
Andresen et al. deciphered changes to titin phosphorylation
mediated by the insulin pathway (Hopf et al. 2018). The au-
thors linked increased passive tension in diabetic human and
rodent hearts to hyperphosphorylation of the PEVK element
(at S11878, UniProtKB: Q8WZ42) and hypophosphorylation
of the N2B region (at S4099, UniProtKB: Q8WZ42) in titin.
The pathological alterations to kinase activity seen in a rodent
model of diabetes could be reversed by treatment with the
cardioactive growth-factor neuregulin-1, which successfully
increased cGMP-PKG and Erk1/2 activity. The resulting in-
crease in titin phosphorylation at the N2B region (at S4010 via
increased Erk1/2 activity, UniProtKB: Q8WZ42) and con-
comitant decrease of titin PEVK phosphorylation (at S11878
through decreased PKCα activity) lowered passive tension
and reduced end diastolic pressures in treated animals.

While altering titin phosphorylation and splicing are
established therapeutic routes of great interest, modulating
levels and/or localization of titin binding partners of the FHL
andAnkrd protein family may emerge as a novel avenue for the
treatment of cardiomyopathies. Indeed, reducing Ankrd1 pro-
tein levels has been demonstrated to prevent development of
dilated cardiomyopathy in mice (Lange et al. 2016). A recent
study found that Ankrd1mRNA levels could be downregulated
by inhibiting miR-455-3p (Ueta et al. 2020), a miRNA that was
linked to worsened hypertrophic remodeling in mice that
underwent pressure overload by transverse aortic constriction
(TAC) (Wu et al. 2015). However, it is unclear if the mouse
version of miR-455 targets Ankrd1 mRNA, as the sequences
show poor evolutionary conservation between mice and
humans. Similarly, several studies investigate the modulation
of FHL proteins as novel therapeutic strategies, either through
the use of miRNA or shRNA that target FHL2 (mostly as a
cancer therapy (Brun et al. 2013; Huang et al. 2019)), or
through FHL1 overexpression (to treat muscular dystrophy
(D'Arcy et al. 2014)). However, experimental animal models
that study the loss of FHL proteins indicate positive (Sheikh
et al. 2008) and negative effects (Christodoulou et al. 2014;
Domenighetti et al. 2014; Kong et al. 2001), largely dependent
on the type of cross-striated muscle (cardiac vs. skeletal mus-
cles) or the underlying pathology. Experiments using FHL1
knockout mice crossed into two models for hypertrophic car-
diomyopathy serve as an example, whereby the underlying
pathology plays a major role on the effect of FHL1 removal.
Loss of FHL1 is advantageous in cardiomyopathy caused by
Gαq overexpression (Sheikh et al. 2008), but deleterious in the
MHC403/+ model of hypertrophic cardiomyopathy
(Christodoulou et al. 2014). Participation of FHL proteins in
several independent hypertrophy pathways may be the primary
reason for the divergent outcomes.

To complicate things further, FHL1 is known to display a
ubiquitous expression pattern (Fimia et al. 2000), with multi-
ple splice variants expressed under baseline conditions in
many tissues at baseline or in disease (Christodoulou et al.
2014; Domenighetti et al. 2014). While targeting of specific
splice variants in FHL1 (Christodoulou et al. 2014) may pres-
ent a possible therapeutic avenue, there is only sparse evi-
dence for the effectiveness of this approach.

Further research will be needed to fully understand the
regulation of titin splicing and posttranslational modifications
in health and disease, and how to harness small molecules and
other interventions for therapeutic purposes in humans. The
use of titin-associated proteins as therapeutic targets remains
in its infancy, as their biology has not been fully understood.
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