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Abstract: Background: Globally, blaCTX-M-15 beta-lactamases are the most popular extended spectrum
beta-lactamase alleles that are widely distributed due its mobilisation by mobile genetic elements
in several compartments. We aimed to determine the conjugation frequencies and replicon types
associated with plasmids carrying blaCTX-M-15 gene from Extended Spectrum Beta-lactamase produc-
ing isolates in order to understand the dissemination of resistance genes in different compartments.
Material and methods: A total of 51 archived isolates carrying blaCTX-M-15 beta-lactamases were used
as donors in this study. Antibiotic susceptibility tests were performed as previously described for
both donors and transconjugants. Conjugation experiment was performed by a modified proto-
col of the plate mating experiment, and plasmid replicon types were screened among donor and
transconjugant isolates by multiplex Polymerase Chain Reaction in a set of three primer panels.
Results: The conjugation efficiency of plasmids carrying blaCTX-M-15 was 88.2% (45/51) with con-
jugation frequencies in the order of 10−1 to 10−9 and a 100% transfer efficiency observed among
E. coli of animal origin. Majority of donors (n = 21) and transconjugants (n = 14) plasmids were typed
as either Inc FIA or Inc FIB. Resistance to non-beta-lactam antibiotics was transferrable in 34/45
(75.6%) of events. Ciprofloxacin, tetracycline and sulphamethoxazole-trimethoprim resistance was
co-transferred in 29/34 (85.3%) such events. Gentamicin resistance was transferred in 17/34 (50%) of
events. Conclusions: Majority of plasmids carrying blaCTX-M-15 were conjugatively transferred by
IncF plasmids along with non-beta lactam resistance. There is a need for more research on plasmids
to understand how plasmids especially multi replicon plasmids interact and the effect of such inter-
action on conjugation. One Health approach is to be intensified to address antimicrobial resistance
which is a public health threat.

Keywords: conjugation; CTX-M-15; replicon; plasmid; non-beta lactam antibiotics; One Health

1. Introduction

The increasing trend of antimicrobial resistance is intensified by mobile genetic ele-
ments that harbour resistance genes [1]. The effect of these elements is extensively reported
among bacteria of the Enterobacteriaceae family where multi drug resistance (MDR) is
high. The CTX-M extended-spectrum beta-lactamases (ESBL) are the most successful
MDR determinants [2], with over 100 alleles in five distinct phylogenetic groups [3]. The
ecological success of CTX-M-ESBL attributes to the enzymes’ spread both clonally and
horizontally [3–5] in multiple hosts that include Acinetobacter spp., Enterobacter spp., E. coli,
P. aeruginosa, K. pneumoniae and P. mirabilis.

In natural environments, ESBL enzymes are chromosomally mediated by the selection
pressure induced by beta-lactamase-producing soil organisms [6,7] or the irrational use
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of third-generation cephalosporins [6,8], however as previously reviewed [9], plasmid-
mediated ESBL resulted from transposon-mediated insertion of different blaCTX-M genes
in bacteria chromosome. Specifically, the precursors of plasmid-mediated blaCTX-M-15 are
environmental Kluyvera spp. whose chromosomal CTX-M clusters are incorporated into the
chromosome of host bacteria by mobilising elements such as ISEcp1 or ISCR1. Moreover,
the location of ISEcp1 upstream blaCTX-M genes together with multiple inverted repeats
downstream the gene facilitates the expression and ongoing transposition of blaKLU genes
that result to various CTX-M enzymes, including plasmid-mediated blaCTX-M-15 [9,10].
The mobilisation potential of ISEcp1 for chromosome-linked multi-resistant determinants
in other members of enterobacteriaceae increases with the additional possession of ISCR1,
another mobile genetic element (MGE) embedded in a Class 1 integron that mobilises
unrelated CTX-M groups in similar or different species.

As vectors and carriers of AMR genes, plasmids are responsible for the intracellular
accumulation and intercellular transfer of these genes by the process of conjugation [11].
In such cases, high conjugation rates ensure the stable long-term persistence of plas-
mids and associated AMR genes in minimal fitness costs even in the absence of selection
pressure [12–14]. A multidrug resistance phenomenon is observed when these plasmids are
associated with other MGE possessing different resistance determinants and code for adap-
tive traits such as virulence or metal resistance genes among host bacteria strains [15,16].

The globally disseminated O25: H4-ST131 E. coli clone producing CTX-M-15 is by
conjugative IncF plasmids that are frequently recovered from hospital and community
settings [17]. In Tanzania, the prevalence of bacteria producing ESBL ranges between
25 and 50 percent [18], with blaCTX-M-15 as the predominant allele in both community [19]
and hospital settings [20]. The gene is also observed among companion and domestic
animals and the environment combined with quinolone and aminoglycoside resistance
genes [21,22]. Therefore, as demonstrated by its discovery in a novel Enterobacter spp. [23]
and location in multiple plasmid types such as IncF, IncY and IncHI1, there is a possibility
of an extensive variation in the epidemiology of blaCTX-M-15 carrying plasmids in Tanzania.

The presence of blaCTX-M-15 gene in multiple E.coli clones of human, animal and the
environment of Tanzania [24], and limited information on the persistence of the gene’s
alleles in any compartments can lead to the acquisition, transmission and evolution of
new resistant strains even among non-conjugative bacteria. Since plasmids facilitate
the spread of AMR genes in different compartments efforts to understand their spread
and establishment in these settings is unquestionable. This study has improved our
understanding of the importance of IncF plasmids in disseminating multidrug-resistant
determinants among human, animal and environmental settings. It has further highlighted
the importance of collaborative One Health based efforts that focus on animal and human
health as critical when addressing the global threat.

2. Results
2.1. Isolates Characteristics

Escherichia coli was the only species isolated in both human and animals. The environ-
ment included isolates from soil and fresh water fish and comprised of E. coli, K. pneumoniae,
C. braakii and E. cloacae species (Table 1).

2.2. Conjugation Efficiency of blaCTX-M-15 Gene among Isolates of Human, Animals and
the Environment

Among 51 blaCTX-M-15 positive donor isolates, 45 (88.2%) transferred plasmids by
conjugation with a transfer rate (transconjugants per donor cells) ranging from 4.8 × 10−1

to 1.5 × 10−9 as observed from a human and environment isolate, respectively (Table 2).
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Table 1. Bacteria species distributed among donor isolates of human, animal and environment.

Sample
Origin Sample Type Frequency

n% Species Species n
(%) Total n (%)

Human Human 22 (43.14) E. coli 22 (43.1) 22 (43.14)
Goat 1 (1.96) E. coli 1 (1.96)

Animal Pig 3 (5.88) E. coli 3 (5.88)
Dog 6 (11.76) E. coli 6 (11.76) 12 (23.52)

Chicken 2 (3.92) E. coli 2 (3.92)
Environment Soil 6 (11.76) E. coli 6 (11.76)

E. coli 2 (3.92)
Fish 11 (21.57) K. pneumoniae 3 (5.88) 17 (33.32)

C. braakii 2 (3.92)
E. cloacae 4 (7.84)

Total (n) 51 (100) 51 (100)

Table 2. Conjugation efficiency of human, animal and environment donor isolates.

Sample ID Source Species Conjugation Frequency

CN1 Fish E. cloacae 8.2 × 10−5

CN2 Fish E. cloacae 2.3 × 10−4

CN3 Fish E. cloacae 5.2 × 10−5

CN4 Fish E. cloacae NIL
CN5 Fish C. braakii 7.5 × 10−6

CN6 Fish E. coli 7.6 × 10−3

CN7 Fish E. coli NIL
CN8 Fish K. pneumoniae 2.0 × 10−5

CN9 Fish K. pneumoniae 4.2 × 10−4

CN10 Fish K. pneumoniae 3.3 × 10−5

CN11 Fish C. braakii 9.4 × 10−4

CN12 Pig E. coli 4.7 × 10−5

CN13 Pig E. coli 2.6 × 10−6

CN14 Pig E. coli 9.8 × 10−5

CN15 Local chicken E. coli 4.7 × 10−5

CN16 Local chicken E. coli 8.4 × 10−7

CN17 Goat E. coli 4.1 × 10−6

CN18 Dog E. coli 2.1 × 10−5

CN19 Dog E. coli 1.2 × 10−7

CN20 Dog E. coli 5.0 × 10−5

CN21 Dog E. coli 1.1 × 10−6

CN22 Dog E. coli 6.0 × 10−4

CN23 Dog E. coli 9.6 × 10−6

CN24 Environment E. coli 1.5 × 10−9

CN25 Environment E. coli 2.6 × 10−7

CN26 Environment E. coli 3.5 × 10−6

CN27 Environment E. coli 2.9 × 10−7

CN28 Environment E. coli 6.1 × 10−6

CN29 Environment E. coli 7.2 × 10−3

CN30 Human E. coli 1.0 × 10−3

CN31 Human E. coli 4.7 × 10−4

CN32 Human E. coli 2.1 × 10−4

CN33 Human E. coli 4.0 × 10−5

CN34 Human E. coli 5.4 × 10−5

CN35 Human E. coli 4.8 × 10−1

CN36 Human E. coli 1.7 × 10−4

CN37 Human E. coli 3.5 × 10−7

CN38 Human E. coli 8.1 × 10−5

CN39 Human E. coli 1.2 × 10−5
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Table 2. Cont.

Sample ID Source Species Conjugation Frequency

CN40 Human E. coli 2.7 × 10−5

CN41 Human E. coli 2.4 × 10−7

CN42 Human E. coli NIL
CN43 Human E. coli 5.5 × 10−6

CN44 Human E. coli 4.4 × 10−6

CN45 Human E. coli 2.9 × 10−6

CN46 Human E. coli NIL
CN47 Human E. coli 2.1 × 10−5

CN48 Human E. coli 1.2 × 10−4

CN49 Human E. coli 1.1 × 10−7

CN50 Human E. coli NIL
CN51 Human E. coli NIL

NIL: no conjugation.

2.3. Transferrable Resistance of Non-Beta-Lactam Phenotype among Isolates of Human, Animal
and the Environment

Table 3 and Figure 1 presents a summary of non-beta lactam resistant phenotypes
transferred along the blaCTX-M-15 gene. A total of 45 plasmids successful transferred
the gene to transconjugants. Non-beta-lactam resistance phenotypes were observed in
34/45(75.6%) transconjugants. Donor resistance to ciprofloxacin (CIP), tetracycline (TE)
and trimethoprim-sulphamethoxazole (SXT) was observed in 46/51 (90.2%), 47/51 (92.2%)
and 48/51 (94.1%) of events, respectively, and was co-transferred in 29/34 (85.3%) of such
events. Gentamicin was the least transferred with a frequency of 17/34 (50.0%).

Table 3. Antibiotic resistance phenotypes of donors and transconjugants of human animals and
the environment.

Sample No. Source Species Donor’s Non-B-lactam
Resistance Phenotype

CN1 Fish E. cloacae SXT *, CIP *,CN *,TE *
CN2 Fish E. cloacae CIP, SXT, CN, TE
CN3 Fish E. cloacae CIP *, SXT *, TE *, CN*
CN4 Fish E. cloacae CIP, CN, TE, SXT
CN5 Fish C. braakii CIP *, SXT *, CN *, TE *
CN6 Fish E. coli CIP, SXT, CN, TE
CN7 Fish E. coli CIP, TE
CN8 Fish K. pneumoniae CIP *, SXT *, CN *, TE *
CN9 Fish K. pneumoniae CIP *, SXT *, CN *, TE *
CN10 Fish K. pneumoniae CIP, SXT, CN, TE
CN11 Fish C. braakii CIP, SXT, CN, TE *
CN12 Pig E. coli CIP *, SXT *, TE *
CN13 Pig E. coli TE, CIP, CN
CN14 Pig E. coli CIP *, SXT *, TE *, CN *
CN15 Local chicken E. coli CIP, SXT, CN, TE
CN16 Local chicken E. coli CIP, SXT, CN, TE
CN17 Goat E. coli SXT, TE *, CN, CIP *
CN18 Dog E. coli SXT
CN19 Dog E. coli SXT *, CIP *, TE, CN
CN20 Dog E. coli CIP *, SXT *, TE *
CN21 Dog E. coli CIP *, SXT *, TE *, CN *
CN22 Dog E. coli CIP *, CN *, TE *, SXT *
CN23 Dog E. coli SXT, TE, CN, CIP
CN24 Environment E. coli SXT *, CIP *, TE *
CN25 Environment E. coli SXT, TE, CIP
CN26 Environment E. coli CIP *, SXT *, TE*
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Table 3. Cont.

Sample No. Source Species Donor’s Non-B-lactam
Resistance Phenotype

CN27 Environment E. coli CIP *
CN28 Environment E. coli CIP *, SXT *, CN *, TE *
CN29 Environment E. coli CN, CIP *, SXT *, TE *
CN30 Human E. coli TE *, CIP *, CN, SXT *
CN31 Human E. coli CIP *, SXT *
CN32 Human E. coli SXT *, CIP *
CN33 Human E. coli TE *, CN *, CIP *, SXT *
CN34 Human E. coli SXT *, TE *, CN *, CIP
CN35 Human E. coli CIP *, CN *, SXT *, TE *
CN36 Human E. coli CIP *, CN *, SXT *, TE *
CN37 Human E. coli CIP *, CN *, SXT *, TE *
CN38 Human E. coli SXT *, TE *, CIP*, CN *
CN39 Human E. coli SXT, TE, CIP *, CN *
CN40 Human E. coli SXT *, TE *
CN41 Human E. coli SXT, TE *, CIP *, CN
CN42 Human E. coli SXT, CIP, CN, TE
CN43 Human E. coli CN *, CIP *, SXT *, TE *
CN44 Human E. coli SXT, TE, CIP
CN45 Human E. coli SXT, TE, CIP, CN
CN46 Human E. coli TE, SXT
CN47 Human E. coli SXT *, TE *, CIP, CN
CN48 Human E. coli SXT *, TE *, CIP, CN
CN49 Human E. coli CIP *, CN *, SXT *, TE *
CN50 Human E. coli SXT, TE
CN51 Human E. coli CN, CIP, SXT, TE

* Transferable resistance; SXT: Trimethoprim-sulphamethoxazole, CIP: Ciprofloxacin, TE: tetracycline,
CN: Gentamicin.
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2.4. Replicon Types of Plasmids Carrying blaCTX-M-15

Common replicon types were FIA (n = 11) and FIB (n = 27) that occurred as single
transferrable replicons in 14 events. Inc A/C and Y replicons were minor, and each was
typed once. Of all the 14 typed transconjugant plasmids, 7 replicons were observed in both
donors and transconjugants, while 20/27 donor replicons were not observed in respective
transconjugants (Table 4), (Figure 2).

Table 4. Replicon types of plasmids carrying blaCTX-M-15 among donors and transconjugants.

Sample Source Conjugation
Efficiency

Conjugation
Range

Donor’s Plasmid
Replicon

Transconjugant
Replicon Type

Human 1.2 × 10−4 FIB FIA
Human 8.1 × 10−5 FIA, FIB FIB

Dog 5.0 × 10−5 FIB FIB
Human 5.4 × 10−5 10−6–10−3 FIB FIB
Human 2.1 × 10−4 FIB FIB

Environment 7.2 × 10−3 FIB FIB
Dog 1.1 × 10−6 FIB FIB

Human 1.7 × 10−4 FIB FIB
Dog 9.6 × 10−6 no rep FIB
Dog 2.1 × 10−5 no rep FIB

Human 1.2 × 10−5 10−7–10−4 no rep FIB
Human 4.7 × 10−4 no rep FIB

Environment 2.9 × 10−7 no rep FIB
Fish 2.3 × 10−4 no rep FIB
Fish NIL FIA, Y NA

Human NIL no rep NA
Human NIL 0 no rep NA
Human NIL no rep NA
Human NIL no rep NA

Fish NIL no rep NA
Fish 4.2 × 10−4 A/C, FIA no rep
Pig 2.6 × 10−6 FIA no rep

Human 5.5 × 10−6 FIA no rep
Dog 6.0 × 10−4 FIA no rep
Pig 9.8 × 10−5 FIA no rep

Human 2.9 × 10−6 FIA no rep
Human 4.0 × 10−5 FIA no rep
Human 4.8 × 10−1 10−9–10−1 FIA no rep

Dog 1.2 × 10−7 FIB no rep
Human 3.5 × 10−7 FIB no rep

Environment 1.5 × 10−9 FIB no rep
Environment 2.6 × 10−7 FIB no rep

Human 4.4 × 10−6 FIB no rep
Environment 3.5 × 10−6 FIB no rep

Human 2.1 × 10−5 FIB no rep
Fish 7.5 × 10−6 no rep no rep
Fish 9.4 × 10−4 no rep no rep

Human 2.7 × 10−5 no rep no rep
Local chicken 4.7 × 10−5 no rep no rep

Pig 4.7 × 10−5 no rep no rep
Human 2.4 × 10−7 no rep no rep

Fish 3.3 × 10−5 no rep no rep
Fish 2.0 × 10−5 10−7–10−3 no rep no rep
Fish 7.6 × 10−3 no rep no rep

Human 1.1 × 10−7 no rep no rep
Fish 5.2 × 10−5 no rep no rep
Goat 4.1 × 10−6 no rep no rep

Environment 6.1 × 10−6 no rep no rep
Local chicken 8.4 × 10−7 no rep no rep

Human 1.0 × 10−3 no rep no rep
Fish 8.2 × 10−5 no rep no rep

NIL: no conjugation, NA: no transconjugants, no rep: no typable replicon.
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2.5. Transfer Success of blaCTX-M-15 among Escherichia coli Isolates

Table 5 shows the percentage transfer of blaCTX-M-15 among E. coli donor isolates. Out
of 42 E. coli donors, 37 (88.1%) successfully transferred the gene, accounting for an 82.1% of
all transconjugants. All E. coli originating from animals transferred the gene successfully.

Table 5. Transfer success of blaCTX-M-15 among E. coli isolates of human, animals and the environment.

Source E. coli Donors
n

E. coli Transconjugants
n (%)

Human 22 18 (81.8)
Animal 12 12 (100.0)

Environment 8 7 (87.5)
Total 42 37(88.1)

3. Discussion

In this study, we aimed to determine conjugation frequencies and type plasmids car-
rying the blaCTX-M-15 gene from human, animal and environment ESBL producing isolates.
The study is epidemiologically important in understanding the pattern and possibly predict
the flow of AMR from different sources. As presented in (Table 1), Escherichia coli was the
dominant bacteria species from all sourced samples. The successful colonisation of E. coli in
human and animal gastrointestinal tract (GIT) have been reported previously [25], the GIT
can serve as exchange hotspots and reservoirs of antimicrobial resistance genes. Likewise,
Escherichia coli and Klebsiella pneumoniae are frequently isolated in infections associated
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with CTX-M-15 in hospitals [26] and the community, including households [27], aquatic
environment [28] and the soil [29].

The transfer efficiency of blaCTX-M-15 among isolates in this study was higher (88%)
[Table 2], than that reported by Zurfluh and colleagues [30], where a 38.3% efficiency was
observed, however, despite the varying frequencies of transfer, the reported efficiency is
slightly lower than that previously reported (100%) for randomly selected hospital origi-
nating isolates [20]. It is reported that high conjugation rates above thresholds compensate
fitness costs and establish a long-term persistence of plasmids in multiple hosts [13,31,32]
through maintaining successive generations of bacteria with adaptive traits. Therefore,
the high transfer efficiency is a fitness advantage that improves the persistence and dis-
semination potential of blaCTX-M-15 ESBL in human, animal and the environment interface.
Moreover, transfer failure for some isolates- CN4, CN7, CN42, CN46, CN50 and CN51,
could possibly be due to the gene’s integration in the chromosome [33] or transposition
events that prevent plasmid mobility.

As summarised in Table 3 and Figure 1, transferable multidrug resistance phenotypes
were also observed. The conjugative spread of blaCTX-M-15 gene by IncF plasmids along
with tetracycline, aminoglycoside and quinolones have been reported [34]. These plasmids
harbor several combinations of resistance determinants and transfer them to human,
animals and environment isolates through the ecological interaction of bacteria in these
settings. Moreover, the genetic environment of blaCTX-M-15 is dominated by multiple
antibiotic resistance genes such as aac (6′)-lb-cr, tet (A, B), qnrS, qnr and sul genes [35–37],
whose phenotypic expression denotes the existing selection pressure for these antibiotics.
Such selection can increase their transfer rate and possibly account for the high co-transfer
of non-beta lactam antibiotics observed in this study.

We also observed single replicon IncF plasmids as common vectors of blaCTXM-15,
(Table 4), (Figure 2). Replicon typing of plasmids carrying antimicrobial resistance genes is
important for detecting, tracing or monitoring the spread of antimicrobial resistance. These
observations are in line with findings in the same setting [20] and elsewhere [30,38] where
multireplicon FIA and FIB plasmids were reported to carry multiple resistance genes in-
cluding blaCTX-M-15. As in previous studies, IncY plasmids and Inc A/C carrying blaCTX-M-15
in association with quinolone and aminoglycoside genes were also reported [22], [39,40].
Together these findings support the diverse nature of plasmids adapted to spread and
maintain blaCTXM-15 gene.

The absence of donor replicons in respective transconjugants might have resulted
from conjugation failure, multi-replicons (undetected by the method used) that destabilise
and prevent the transfer of some resident replicons [41], and prior plasmid dependent
mutations (which do not occur in transconjugants) that may have altered backbone genes
of donor plasmids and obscure the detection of existing replicons [32,39,41]. In addition,
and as a shortcoming, the PBRT technique used in detecting plasmid replicons can give
false-negative results when replicon sequences go undetected by the primer sets used,
target replicon sequences undergo mutation through transpositional alterations and the
unknown existence of new replicons in such plasmid [42].

Lastly, we observed that all animal originating E. coli isolates transferred blaCTX-M-15
to respective transconjugants (Table 5), (Figure 3). These findings were also supported by
a recent review [34], that human and animal originating E.coli are adapted to disseminate
ESBL genes by IncF plasmids. The colonisation and infection of animals by E. coli max-
imises microbial interactions between non-pathogenic and pathogenic commensal E.coli
in either companion or food-producing animals and facilitate the exchange of materials
between them through conjugation. In addition, the increasing use of antibiotics in animals
could select and transfer resistant pathogenic bacteria from animals to human and the
environment with huge cost implications. Since AMR is a public health threat, the highest
transfer rate observed in animal originating E. coli calls for integrated efforts to address
AMR with experts from veterinary, human and ecological fields. It further implies that
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animals may serve as dual targets for studies focusing on the horizontal transfer and
evolution of antimicrobial resistance.
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Figure 3. Transfer success of blaCTX-M-15 among E. coli isolates of human, animals and the environment.

4. Materials and Methods
4.1. Study Isolates

All isolates used as donors in this study were obtained from the Catholic University
of Health and Allied Sciences (CUHAS) in Mwanza Tanzania. A total of 51 blaCTX-M-15
positive isolates were purposively selected and activated overnight in Luria Bertani (LB)
broth at 37 ◦C ready for use in conjugation and PBRT techniques.

Among the 51 isolates, twenty-two blaCTX-M-15 positive isolates were obtained from
a study that reported the magnitude of fecal carriage and diversity of ESBL genotypes
among human residing in rural communities of Mwanza Tanzania [19], 12 other blaCTX-M-15
positive isolates were from a study that reported the fecal carriage of ESBL among com-
panion and domestic farm animals that included pigs, chicken, dogs and goats [21]. The
remaining 17 environmental isolates were obtained from a study that investigated the
presence of blaCTX-M-15 from muddy soils and gut contents of freshwater fish from Lake
Victoria in Mwanza Tanzania [22].

4.2. Antibiotic Susceptibility Testing

Susceptibility testing of all donor isolates and the resulting transconjugants was
performed by the disk diffusion method on Mueller Hinton agar as recommended by
the Clinical and Laboratory Standard Institute [43]. Antibiotics tested were tetracycline
(30 µg), gentamicin (30 µg), ciprofloxacin (5 µg) and trimethoprim/sulphamethoxazole
(1.25/23.75 µg) (Hi-media, India).
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4.3. Conjugation Experiment

A total of 51 known blaCTX-M-15 positive isolates and Escherichia coli J53 ((F−, met, pro,
Azr)-a mutant strain of E. coli [44] obtained from the Institute of Medical Microbiology,
Giessen, Germany, were used as donors and recipient strain, respectively. As previously
described [20], we performed conjugation experiments with some modifications. Shortly,
the recipient strain was prepared by streaking Escherichia coli J53 in Luria Bertani (LB)
plates supplemented with 100 µg/mL NaN3 (LB++), while donor strains were selected in
LB plates supplemented with 2 µg/mL cefotaxime only (LB+). From these, fresh overnight
donor and recipient strains were prepared by picking single colonies emulsified in 10 mL
LB broth and incubated overnight at 37 ◦C in a 150 rpm shaking incubator. After exactly
12 h, equal volumes (500 µL) of donor and recipient strains were immediately mixed in
1.5 mL eppendorf tubes previously labeled transconjugant (Tc) while 1000 µL of donor
strain were added in fresh tubes of similar volume-to be separately selected on LB+ and
LB++ plates as respective controls. All tubes were incubated at 37 ◦C for 15 min, vortexed
briefly, centrifuged at 12,000 g for 2 min and the pellet re-suspended in fresh 1000 µL
LB broth. Finally, 0.1 mL of 10-1 to 10-4 transconjugant cultures were double selected on
LB plates supplemented with 100 µg/mL NaN3 and 2 µg/mL cefotaxime. Conjugation
efficiency was reported as transconjugants per donor cells, with the denominator obtained
from an initial volume of 100 µL.

4.4. Genomic Extraction of Donor and Transconjugants DNA

Donor and transconjugant genomic DNA was extracted using a previously described
chelex protocol with slight modifications [45]. First, 5 µL of proteinase K (10 mg/mL) were
added into tubes containing 100 µL fresh LB emulsified colonies. In the same tubes, 300 µL
of chelex buffer (Qiagen GmbH, Hilden, Germany) was added consecutively. The mixture
was incubated for 3 hr at 55 ◦C before adding 85 µL of 5 M NaCl and vortexed for 15 s to
precipitate proteins. The supernatant was centrifuged at 13,000× g for 10 min followed
by the addition of 300 µL of 100% cold ethanol and a 5 min centrifugation at 13,000× g
that precipitated and pelleted the DNA. Lastly, the pellet was rinsed by pouring off the
remaining fluid, adding 500 µL of 70% ethanol, centrifuging at 13,000× g for 5 min and
leaving the pellet to air dry at 55 ◦C for 10 min. The DNA was then re-suspended in 50 µL
nuclease-free water. Nanodrop (Thermo Scientific, Wilmington, DE) was used to check the
quantity of the DNA, while the quality was confirmed by electrophoresis in 1.5% (w/v)
agarose gel using TAE buffer. The obtained DNA samples were used in typing plasmid
replicons or stored at −20 ◦C.

4.5. PCR Based Replicon Typing

Targeted genes were amplified by a simplified version of the previously described
PBRT technique [42]. Shortly, the eight Polymerase Chain Reaction (PCR) panels illus-
trated by Caratolli and colleagues [46], were reduced to three [42], (Table 6). PCR was
performed using a readily reconstituted master mix according to manufacturer’s instruc-
tions (New England BioLabs, Inc. Beverly, MA) under the following conditions; 5 min
at 94 ◦C; 30 cycles of 30 s at 94 ◦C, 30 s at 60 ◦C and 90 s at 72 ◦C; then a final extension
of 5 min at 72 ◦C. Amplicons were visualised on 1.5% tris-acetate EDTA agarose gels
alongside a 100 bp DNA ladder (New England BioLabs, Inc. Beverly, MA). The sample
was considered positive for replicon gene (s) if an amplicon of the expected band size
was observed.
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Table 6. Primers used in PCR based replicon typing of donor and transconjugant plasmids.

Primer Panel/Target Direction Primer Sequence Annealing Temp (◦C) Amplicon
Size (bp)

Panel 1
B/O F 5′-gcggtccggaaagccagaaaac-3′ 60 159

R 5′-tctgcgttccgccaagttcga-3′

FIC F 5′-gtgaactggcagatgaggaagg-3′ 60 262
R 5′-ttctcctcgtcgccaaactagat-3′

A/C F 5′-gagaaccaaagacaaagacctgga3′ 60 465
R 5′-acgacaaacctgaattgcctcctt-3′

P F 5′ctatggccctgcaaacgcgccagaaa3′ 60 534
R 5′-tcacgcgccagggcgcagcc-3′

T F 5′-ttggcctgtttgtgcctaaaccat-3′ 60 750
R 5′-cgttgattacacttagctttggac-3′

Panel 2
K/B F 5′-gcggtccggaaagccagaaaac-3′ 60 160

R 5′-tctttcacgagcccgccaaa-3
W F 5′-cctaagaacaacaaagcccccg-3′ 60 242

R 5′-ggtgcgcggcatagaaccgt-3′

FIIS F 5′-ctgtcgtaagctgatggc-3′ 60 270
R 5′-ctctgccacaaacttcagc-3′

FIA F 5′-ccatgctggttctagagaaggtg-3′ 60 462
R 5′-gtatatccttactggcttccgcag-3′

FIB F 5′-ggagttctgacacacgattttctg-3′ 60 702
5′-ctcccgtcgcttcagggcatt-3′

Y F 5′-aattcaaacaacactgtgcagcctg-3′ 60 765
R 5′-gcgagaatggacgattacaaaacttt-3′

Panel 3
I1 F 5′-cgaaagccggacggcagaa-3′ 60 139

R 5′-tcgtcgttccgccaagttcgt-3′

FrepB F 5′-tgatcgtttaaggaattttg-3′ 60 270
R 5′-gaagatcagtcacaccatcc-3′

X F 5′-aaccttagaggctatttaagttgctgat-3′ 60 376
R 5′-tgagagtcaatttttatctcatgttttagc3′

HI1 F 5′-ggagcgatggattacttcagtac-3′ 60 471
R 5′-tgccgtttcacctcgtgagta-3′

N F 5′-gtctaacgagcttaccgaag-3′ 60 559
R 5′-gtttcaactctgccaagttc-3′

HI2 F 5′-tttctcctgagtcacctgttaacac-3′ 60 644
R 5′-ggctcactaccgttgtcatcct-3′

L/M F 5′-ggatgaaaactatcagcatctgaag-3′ 60 785
R 5′-ctgcaggggcgattctttagg-3′

5. Conclusions

Majority of plasmids carrying blaCTX-M-15 were conjugatively transferred by IncF plas-
mids along with non-beta lactam resistance. The heterogeneous nature of these plasmids
continuously maintains and reserves the blaCTX-M-15 gene in these settings. The 100% trans-
fer efficiency among E. coli of animal origin is of concern since the networked interaction of
animals with human and their environment continuously exchange and reserve resistance
determinants in this interface. Therefore, there is a need for more research to understand
the interaction and spread of mobile elements circulating in animals, One Health approach
is to be intensified to further address AMR as a public health threat.
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