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Abstract

The process of altering neural activity – neuromodulation – has long been used to treat patients 

with brain disorders and answer scientific questions. Deep brain stimulation in particular has 

provided clinical benefit to over 150,000 patients. However, our understanding of how 

neuromodulation impacts the brain is evolving. Instead of focusing on the local impact at the 

stimulation site itself, we are considering the remote impact on brainregions connected to the 

stimulation site. Brain connectivity information derived from advanced magnetic resonance 

imaging data can be used to identify these connections and better understand clinical and 

behavioral effectsof neuromodulation. In this article, we review studies combining 

neuromodulation and brain connectomics, highlighting opportunities where this approach may 

prove particularly valuable. We focus on deep brain stimulation, but show that the same principles 

can be applied to other forms of neuromodulation, such as transcranial magnetic stimulation and 

MRI-guided focused ultrasound. We outline future perspectives and provide testable hypotheses 

for future work.
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1. Introduction

The goal of this review is to provide an overview of the growing intersection between two 

fields: neuromodulation and brain connectomics. We highlight opportunities where this 

intersection may be leveraged to advance research and clinical care.

For the purpose of this review, we define neuromodulation as the process of altering neural 

activity using lesions, devices or electromagnetic energy to change human brain function. 

Neuromodulation includes invasive methods such as stereotactic lesions and deep brain 

stimulation (DBS) and noninvasive methods such as transcranial magnetic stimulation 

(TMS, Fig. 1).Neuromodulation can be reversible, as is the case with TMS or DBS, or 

irreversible, as is the case with brain lesions induced by neurosurgical ablation or MRI 

guided focused ultrasound (MRgFUS). Finally, neuromodulation can be used as a clinical 

treatment, to improve patient’s symptoms, or for scientific research, to better understand 

brain function.

In this review, we will touch on all forms of neuromodulation, but will focus on DBS as it is 

one of the most widely used clinical neuromodulation technologies with well-established 

therapeutic benefits. DBS leads to significant improvements of motor symptoms and quality 

of life inpatients with Parkinson’s Disease, Dystonia and Essential tial Tremor(Deuschl et 

al., 2006; Kupsch etal., 2006; Vitek et al., 2020).DBS is also FDA approved for the 

treatment of medication-refractory epilepsy (Salanova et al., 2015) and obsessive 

compulsive disorder (OCD, via humanitarian device exemption; (Anderson and Ahmed, 

2003; Baldermann et al., 2019b; Franzini et al., 2010; Nuttin et al.,2003)). Finally, DBS has 

shown some promise in Tourette’s Syndrome (Ackermans et al., 2011), Huntington’s 

Disease (Gruber et al., 2014), Major Depression (Mayberg et al., 2005), alcohol addiction 

(Müller et al., 2009), and other emerging indications (Fox et al.,2014; Lozano et al., 2019).

The idea that brain connectivity may be important for understanding DBS and 

neuromodulation more generally is an old concept. Neurosurgical lesioning was performed 

as early as 1890, often with the goalof disrupting information flow between connected brain 

regions or brain networks (Gabriel and Nashold, 1998). For instance, Talairach and Leksell 

began lesioning the anterior limb of the internal capsule in patients with psychiatric disease 

with the goal of disrupting limbic input tothe prefrontal cortex (Feldman and Goodrich, 

2001). Knight began lesioning white matter tracts below the caudate (subcaudate 

tractotomy) to disrupt the connection between orbitofrontal and limbic regions (W.S. 

Anderson, 2019).Some of the earliest studies of DBS adopted this same motivation, seeking 

to modulate the network of brain regions connected to the stimulation site (Montgomery and 

Gale, 2008).

Thus, the concept of using neuromodulation to target distributed brain networks is not new. 

What is new is our ability to visualize these networks in unprecedented detail and determine 

which networks are responsible for which symptoms. This ability was aided by two 

advancesin MRI technology: diffusion-weighted imaging based tractography (dMRI; to map 

structural connections, often expressed as streamline counts or average fractional anisotropy 

values (Jeurissen etal., 2019)) and resting-state functional magnetic resonance imaging (rs-
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fMRI; to map functional connections, of ten expressed as correlations between time series 

(Fox and Raichle, 2007a); Fig. 2). For the purpose of the present review, we will use the 

terms “structural connectivity” and “functional connectivity ”as a short-hand for describing 

findings derived from these techniques, respectively. When applying these measures to map 

connectivity between each region in the brain, a blueprint or wiring-diagram of the brain 

emerges, which we call the human connectome. The term connectome was coined by Olaf 

Sporns and Patric Hagmann in 2005 in close allegory to the human genome (Hagmann, 

2005; Sporns et al., 2005). Their idea was to map the regions of the brain and their 

interconnections and formally describe their relationships using defined mathematical 

concepts. Large-scale academic efforts, such as the Human Connectome Project were soon 

launched with the goal of collecting high-quality brain connectivity data across a large 

number of subjects using specialized MR hardware (Van Essen et al., 2012). In recent years, 

wiring diagrams of the average human brain have emerged in form of normative 
connectomes (Holmes et al., 2015; Marek et al., 2011; Nooner et al., 2012; Van Essen et al., 

2012; Yeo et al., 2011). These normative connectomes are robust, publicly available, and 

have proven useful for a range of clinical and scientific applications, including 

neuromodulation (Fox et al., 2014; Setsompop et al., 2013; Yeo et al., 2011). As such, much 

of this review focuses on the use of these normative connectomes. However, these same 

connectivity imaging techniques can also be used to construct wiring diagrams for 

individuals, which we refer to as individualized connectomes. Constructing a robust 

individualized connectome is currently difficult, requiring specialized expertise and long 

MRI scanning sessions that may be hard for patients to tolerate (Gordon et al., 2017; Jakab 

et al., 2016; Poldrack et al., 2015). However, as technology improves, individualized 

connectomes may complete ment or replace normative connectomes for understanding and 

guiding neuromodulation.

The value of the human connectome for guiding neuromodulation was recognized early on 

and referred to as “connectomic surgery” (Henderson, 2012). DBS was thought to work in 

part through modulation of remote brain regions connected to the site of stimulation 

(Montgomery and Gale, 2008). These remote effects of DBS on brain networks have been 

measured using a variety of techniques, including positron emission tomography, fMRI, 

magnetic encephalography, electroencephalography (EEG), local field potential recordings, 

and electrocorticography (Asanuma et al., 2006; Hirschmannetal., 2013; Neumann et al., 

2015; Oswalet al.,2016). The human connectome promised to help us understand where 

these remote effects were coming from and even predict the remote effects based on 

connectivity with the stimulation site. Now that we had mapped the connectome, we were 

poisedto apply the connectome to address clinical questions and improve clinical treatment.

2. We have the connectome, (how) do we use it?

One example of how the connectome has been used to address clinical questions is in 

mapping symptoms caused by focal brain damage(see Fox (2018) for a review). Brain 

lesions in different patients that leadto the same clinical symptom are often scattered across 

the brain. In such cases, the symptom fails to map to a single brain region. By usingthe 

normative connectome, we can test whether these heterogenous lesion locations map to a 

single connected brain network (Fox,2018). For instance, lesion locations that cause amnesia 
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occur in multiple different brain regions, but map to a single brain network defined by 

connectivity to the subiculum (Ferguson et al., 2019). Lesion locations associated with 

depression map to a brain network defined by connectivity tothe left dorsolateral prefrontal 

cortex (Padmanabhan et al., 2019). Lesion locations that result in tremor relief map to a 

single brain network defined by connectivity to the ventral intermediate nucleus of the 

thalamus (VIM) (Joutsa et al., 2018b). This same lesion network mapping approach has 

been applied to numerous other neurological and psychiatric symptoms (Fox, 2018). These 

studies used the normative connectome as an approximation of each patient’s individualized 

connectome at the time of the brain lesion. Despite methodological limitations (Cohen and 

Fox, 2020; Fox, 2018), the normative connectome has proven very useful in linking lesions 

in different locations causing the same symptom to a common neuroanatomic substrate.

Just as the normative connectome can lend insight into lesions causing a symptom, it can 

lend insight into DBS sites providing symptom relief. Identifying the “DBS site” is a bit 

more complicated than simply outlining a lesion, but tools are available to estimate the 

volume of tissue activated (VTA) by a DBS electrode set to specific electrical parameters 

(Dembek et al., 2017; Horn et al., 2019b; McIntyre et al., 2004). Once this DBS site is 

identified, one can use the normative connectcome nectome to identify the set of brain 

regions anatomically or functionally connected to the stimulation site. Connections that co-

vary with clinical improvement can then be identified. This concept was first used to identify 

connections that co-varied with improvement in Parkinson’s symptoms following DBS to 

the STN (Horn et al.,2017). Since this time, the same approach has been used to further 

investigate DBS-induced improvements in Parkinson’s Disease (Horn et al., 2017; Joutsa et 

al., 2018a), as well as Dystonia (Corp et al., 2019; Okromelidze et al., 2020), Essential 

Tremor (Al-Fatly et al.,2019), epilepsy (Middlebrooks et al., 2018a)and OCD (Baldermann 

et al., 2019b; Li et al., 2020)(Fig. 3).

Unlike patients with incidental brain lesions, DBS surgeries are planned, providing an 

opportunity to collect individualized connectome data in each patient prior to 

neuromodulation. As such, several studies have now used individualized connectome data 

instead of normative connectome data to identify connections associated with DBS response 

(Akram et al., 2018;2017; Middlebrooks et al., 2018b, 2018c; Vanegas Arroyave et al., 

2016). Table 1 gives a non-exhaustive overview about published connectomic DBS studies.

An important question is why we should bother using a connectome when seeking to 

understand and improve neuromodulation? Many studies havefoundclear relationships 

between DBS electrode locations and clinical improvement, without the need to add 

connectomic information. For instance, recent studies of STN-DBS for Parkinson’s Disease 

identified nearly the same optimal coordinate, including significant correlations between 

proximity to this coordinate and clinical improvement (Akram et al., 2017; Bot et al., 2018; 

Horn et al., 2019b; Nguyen et al., 2019). If such clear links between the local stimulation 

sites and clinical improvements exist, why should one bother with the human connectome? 

The remainder of this article focuses on answering this question.
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3. Eight opportunities of connectomic neuromodulation

We highlight eight opportunities of combining neuromodulation with connectomics and 

append testable hypotheses to each opportunity. These eight opportunities include using the 

connectome data to understand the clinical effects of neuromodulation (#1, 2, 3, 5), 

individualize treatment (#4, 6 and 7), and advance our understanding of brain function (#8).

3.1. Opportunity #1: using connectomics to explain and predict clinical improvement

As mentioned above, studies have begun to investigate the relationship between clinical 

improvement following DBS and connectivity between the active stimulation site and the 

rest of the brain (Akram et al., 2018; 2017; Al-Fatly et al., 2019; Baldermann et al., 2019b; 

Calabrese et al., 2015b; Fernandes et al., 2015; Horn et al., 2017; Irmen et al., 2019; Joutsa 

et al., 2018a; Li et al., 2020; Vanegas Arroyave et al., 2016).

In doing so, we may understand which brain networks are responsible for mediating 

treatment response to neuromodulation. In turn, this could lend insight into both 

pathological features of underlying diseases and the therapeutic mechanism of action of 

DBS. In Parkinson’s Disease (PD), structural connectivity between the DBS site and the 

SMA and (negative) functional connectivity between the DBS site and primary motor cortex 

(M1) was associated with symptom improvement (Horn et al., 2017). In essential tremor, 

proximity of the DBS site to the dentatothalamic tract explained clinical improvement better 

than proximity to the traditional DBS target in the VIM (Calabrese et al., 2015b). In both 

diseases, connectivity profiles were correlated with clinical improvement in independent 

DBS patients or cohorts (Al-Fatly et al., 2019;Horn et al., 2017). In OCD, connectivity with 

the DBS site was able to explain about 30% of variance in clinical improvement in a split-

half design (Baldermann et al., 2019b). A similar connectome-based approachhas been used 

to study clinical response to DBS in chronic pain (Fernandes et al., 2015), dystonia (Corp et 

al., 2019), depression (Choi et al., 2015; Riva-Posse et al.,2014), treatment-refractory 

epilepsy (Middlebrooks et al., 2018a) and Tourette’s Syndrome (Johnson et al., 2020). These 

studies established a direct–if correlational – link between clinical improvements and brain 

connectivity with the DBS site. We are now poised to test whether these connectivity 

profiles can predict clinical response in independent DBS cohorts in a prospective fashion, 

based solely on the location of the stimulation site and a map of the human connectome.

Testable hypothesis (#1): Connectivity between the neuromodulation site andother brain 

regions will prospectively predict improvement in clinical symptoms.

3.2. Opportunity #2: linking different DBS targets to the same network

Brain connectivity measures can help link different brain stimulation sites that are used to 

treat the same disease or symptom to a common neuroanatomical substrate. For instance, 

Obsessive-Compulsive Disorder (OCD) has been treated with DBS using two different 

neuroanatomical targets: the anterior limb of the internal capsule (ALIC) (Baldermann et 

al.,2019b) and the STN (Li et al., 2020). Using the connectome, one can identify 

connections associated with clinical improvement at each target, and test whether the same 

connections underlie clinical improvement at both targets. Using a normative dMRI-based 
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connectome, it was possible to identify common fiber tracts associated with clinical 

improvement across both DBS targets (Baldermannetal., 2019b; Li et al., 2020).In fact, 

tracts identified based on one target were associated with clinical improvement following 

DBS to the other target across multiple independent cohorts (Li et al., 2020)(Fig. 

4).Similarly, there is evidence to suggest that different DBS targets for depression are part of 

a single anatomically connected circuit (Coenen et al., 2019b; Dougherty and Rauch, 2007; 

Dougherty et al., 2015). Thus, by investigating connections associated with clinical 

improvement across different DBS targets, one may identify a common network underlying 

therapeutic response.

It is worth noting that although connectivity may identify a common neuroanatomical 

substrate across different stimulation sites underlying a common clinical effect, this does not 

preclude the possibility of different effects at the different sites. A good example is a clinical 

trial carried out by Tyagi et al. in which both the STN and ALIC regions were targeted in the 

same OCD patients (4 implanted electrodes) (Tyagi et al.,2019). Stimulating either target led 

to similar reductions in obsessive-compulsive symptoms – suggesting a common circuit (Li 

et al., 2020). However, the STN target preferentially improved cognitive inflexibility while 

the ALIC target preferentially improved co-morbid depressive symptoms. This speaks for 

the notion that networks are symptom-specific (not disease-specific) and while two DBS 

sites may share one network and impact on certain symptoms (such as obsessive-compulsive 

symptoms), they may differ in their impacton other networks or symptoms.

Testable hypothesis (#2): Different DBS sites effective for the same symptom will be 

connected to a common brain network.

3.3. Opportunity #3: symptom specific networks

Brain disorders include a range of heterogenous symptoms that likely mapto different brain 

networks. Connectomic neuromodulation may help identify these networks and lead to 

symptom-specific treatments. In Parkinson’s Disease, Akram and colleagues showed that 

structural connections between the STNDBS site and supplementary motor area were 

associated with improvement in bradykinesia and rigidity, while structural connections to 

M1 were associated with improvement in tremor (Akram et al., 2017). Interestingly, 

connectivity to M1 was also associated with improved tremor following DBS to the 

ventrointer mediate nucleus (VIM) of the thalamus in patients with essential tremor (Akram 

et al., 2018; Al-Fatly et al., 2019). This suggests that we may need to stimulate different 

networks to treat different symptoms, paving the way for personalized therapy. For instance, 

tremor-dominant PD-patients could be treated with a slightly different STN DBS target than 

patients with predominant bradykinesia and rigidity. This same approach is being used to 

identify symptom-specific targets for transcranial magnetic stimulation for the treatment of 

depression (Siddiqi et al., 2020; Weigand et al., 2018). Dysphoric symptoms such as sadness 

respond best to TMS to one network, while anxiosomatic symptoms such as sleep and 

sexual interest respond best to TMS to a different network (Siddiqi et al., 2020; Weigand et 

al., 2018).

For patients with multiple symptoms that may require modulation of multiple different 

symptom-specific networks, more than one neuromodulation target may be needed. For 

Horn and Fox Page 6

Neuroimage. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



example, one DBS trial used a parietal trajectory to target both the STN (for bradykinesia 

and rigidity) and the VIM/DRT (for tremor) (Reinacher et al., 2018). It is also possible to 

implant multiple electrodes targeting different networks and symptoms, such as GPi leads 

placed to control dyskinesias refractoryto STN DBS (Sriram et al.,2014).

Testable hypothesis (#3): Different connections with the neuromodulation site will be 

associated with improvement in different symptoms; different network targets will be needed 

to optimally improve different symptoms.

3.4. Opportunity #4: personalizing the connectome

In many of the aforementioned studies, network targets were identified using normative 

connectome data that was not derived from the individual patient (Al-Fatly et al., 2019; 

Baldermann etal., 2019b; Calabrese, 2016; Cash et al., 2019; Horn et al., 2017; Irmen et al., 

2020; Petersen et al., 2019; Weigand et al., 2018). Normative connectomes have been 

derived from several different sources including ultra high-resolution postmortem MRI data 

(Aggarwal et al., 2013; Calabrese et al., 2015b), data from specialized MRI hardware 

optimized for connectome nectome imaging (Holmes et al., 2015; Setsompop et al., 2013; 

Van Essen et al., 2012; Yeo et al., 2011), and even tract atlases derived using augmented 

reality environments (Petersen et al., 2019) or from histological datasets (Alho et al., 2019). 

Normative connectomes are generally built from large datasets of up to 1000 individuals 

(Al-Fatly et al., 2019; Baldermann et al., 2019b; Holmes et al., 2015; Horn et al., 2017; Li et 

al., 2020; van Essen and Ugurbil, 2012; Weigand et al., 2018) and can be age- and disease-

matched to patient cohorts of study (Ewert et al., 2018; Horn et al., 2017; Weigand et al., 

2018). A combination of normative connectomes with tract atlases from other sources 

mentioned aboveis a promising way to account for limitations of either method (Li et al., 

2020; Treu et al., 2020).

The benefit of using these normative connectome datasets is that they are generally higher in 

resolution and show better signal to noise than what can be acquired in individual patients 

using convention clinical MRI scanners. However, this approach ignores individual 

differences in connectivity that may be important in understanding neuromodulation effects 

(Akram et al., 2018; Fernandes et al., 2015; Lenglet et al., 2012; Petersen et al., 2017; van 

Hartevelt et al., 2014). An important opportunity is to move from normative connectome 

data to that from individual patients.

Many DBS studies have already used individualized connectivity data (Akram et al., 2018; 

2017; Baldermann et al., 2019b; Fernandes et al., 2015; Kahan et al., 2014; Middlebrooks et 

al., 2018b; Tyagi et al., 2019; van Hartevelt et al., 2014). However, using individualized 

connectomes is challenging due to poor signal-to-noise and test-retest reliability. This was 

demonstrated nicely in a study by Petersen and colleagues that acquired dMRI data from the 

same subject ten times. In each scan, the authors used either the same or different fiber 

tracking algorithms to identify the peak in the STN most strongly structurally connected to 

motor-/premotor cortices (Petersen et al., 2017). Average distances between peaks identified 

on different days using the same approach were 0.5–1 mm and distances between peaks 

identified using different algorithms were 1.4mm. In a similar study, Jakab and colleagues 

scanned subjects on different MRI scanners and concluded that the test-retest variability (in 
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surgically relevant bundles) caused by the MRI machine was similar or higher to the 

variability between subjects (Jakab et al., 2016).

Similar test-retest problems have been reported when using individualized functional 

connectivity to identify neuro modulation targets (Fox et al., 2013). Several methods have 

been introduced to improve the robustness of individualized functional connectomes (Fox et 

al.,2013; Kong et al., 2019; Wang et al., 2015), including simply collecting more functional 

connectivity data (Greene et al., 2019). One recent endeavor acquired 5 hours of rs-fMRI 

data per subject across 10 imaging sessions (Gordon et al.,2017). Acquiring such a vast 

amount of data for each patient undergoing DBS surgery faces obvious practical challenges. 

Still, a subsequent study used this dataset to learn more about DBS targets derived from 

individualized vs. normative connectome data (Greene et al., 2019).Namely, authors found 

that connectivity profiles of the VIM were consistent across individuals and related this to 

consistently high (>80%) DBS response rates in ET patients. In contrast, connectivity 

profiles of the GPi were more variable, which authors related to amore variable outcome of 

GPi DBS.

Recently, groups have begun to directly compare results using patient-specific vs. normative 

connectomes in DBS (Wang et al., 2020) or TMS (Cash et al., 2019). Both studies found no 

significant difference between the two connectomes in their ability to predict clinical 

outcomes, but noted a slight trend towards better prediction with individualized data.

Testable hypothesis (#4): Individualized connectomes will become more robust over time 

and will predict more variance in neuromodulation outcomes compared to normative 

connectomes.

3.5. Opportunity #5: mapping networks that lead to neuromodulation side-effects

Similar to mapping networks that lead to symptom improvements, it is possible to identify 

those that may lead to side-effects (second section of Table 1).On a local level, clinical 

experience has led to the heuristic that STN-DBS electrodes, if laterally placed, can lead to 

tetanic contractions and dysarthria, medially placed to paresthesia, ataxia, sweating and 

mydriasis, superiorly placed to freezing and akinesia and inferiorly placed to impulsivity and 

mania (Castrioto et al., 2013). Identifying connections and networks associated with such 

side-effects may helpus better understand their etiology and how they might be avoided. For 

instance, Al-Fatly et al. reported functional networks associated with the occurrence of 

ataxia and dysarthria in patients undergoing VIM-DBSfor ET (Al-Fatly et al., 2019). Here, 

occurrence of ataxia was associated with functional connectivity to a specific site in the 

vermis that had been previously associated with ataxia (Reich et al., 2016).

Irmen et al. demonstrated that in each of three PD cohorts undergoing STN-DBS at different 

centers, structural connectivity between DBS electrodes and the left prefrontal cortex was 

associated with the occurrence of depressive symptoms after surgery (Irmen et al., 2019). 

The finding was highly reproducible and allowed robust cross-predictions across cohorts. In 

OCD patients, weight change following DBS to the ALIC was associated with functional 

connectivity to the bed nucleusof the stria terminalis (Baldermann et al., 2019a). In a 

different report, stimulating electrodes that were connected to the periaqueductal grey and 
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amygdala induced panic attacks (Elias et al., 2019). Suprathreshold stimulation of a patient 

suffering from anorexia nervosa with electrodes to the subcallosal cingulate led to a 

generalized seizure, which was attributed to connectivity between the stimulation site and 

bilateral hippocampi, cingulate gyri, and temporal lobes (Boutet et al., 2019a). Finally, a 

case-report of DBS to the centromedian nucleus for treatment of drug-resistant epilepsy 

reported occurrence of aggressiveness by a stimulation site that was connected to prefrontal 

cortex-bound white matter tracts (Yan et al., 2019).

These studies hint at a powerful future: choosing a stimulation site based on connectivity to 

therapeutic networks while avoiding stimulation sites connected to side-effect networks 

(Vorwerk et al., 2019). For instance, in PD, a tremor-dominant patient could be optimally 

treated when stimulated at a coordinate that is maximally connected to a “tremor-network” 

but not connected to a network associated with side-effects such as depressive symptoms.

Testable hypothesis(#5): Different connections with the neuromodulation site will be 

associated with different neuromodulation side effects; avoiding these connections will help 

avoid side effects.

3.6. Opportunity #6: connectomics guiding DBS programming and neurosurgery

Once optimal connectivity profiles are established, these connectivity profiles might be used 

to guide DBS programming. Such work could lead to algorithms that automatically find 

optimal DBS programming parameters by maximizing impact on target networks while 

minimizing impact on side effect networks. For instance, one study evaluated an algorithm 

that would automatically find parameters that increased impact on the VIM while avoiding 

the internal capsule and ventralis caudalis dalis nucleus of the thalamus (Vorwerk et al., 

2019). While the capsule is a white-matter tract, the study still focused on local features 

rather than exploiting the connectome concept. First feasibility studies that automatically 

estimated DBS settings by maximizing connectivity overlap with a personalized set of 

network targets have been performed (Krishna et al., 2019).

Just as connectivity might be used to guide DBS programming, it could be used to guide 

DBS surgery. For example, some surgeons have already begun to use individualized dMRI 

data to target the dentatothalamic tract instead of the VIM in ET (Coenen et al., 2011; 2016) 

or target it in addition to the STN in PD patients with tremor (Coenen et al., 2016; Reinacher 

et al., 2018). In depression, surgeons have used individualized dMRI data to target the 

medial forebrain bundle (Coenen et al., 2009; Schlaepfer et al., 2013) or the intersection of 

forceps minor, cingulum bundle and uncinate fasciculus (Noecker et al., 2018; Choi et al., 

2015; Riva-Posse et al., 2017; 2014), the latter of which has led to improved open-label 

response rates(Riva-Posse et al., 2017). To the best of our knowledge, rs-fMRI has not yet 

been used to inform individual DBS targets in clinical practice – although the concept has 

been explored (Al-Fatly et al., 2019; Anderson et al., 2011; Greene et al., 2019) and used to 

guide TMS (Cole et al., 2020).

Similar to the above, connectivity may be used to guide neurosurgical ablations or 

therapeutic lesions. Although DBS has largely replaced lesions for many indications, new 

technologies that allow one to create lesions without surgical incision are gaining popularity. 
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In particular, MR-guided focused ultrasound (MRgFUS) uses acoustic soundwaves to create 

focal brain lesions. This method was first introduced in patients suffering from chronic 

neuropathic pain (Martin et al., 2009), has been FDA approved for treatment of essential 

tremor (Elias et al., 2016) and tremor-predominant Parkinson’s disease (Bond et al., 2017), 

and is being explored as a treatment for other disorders including psychiatric conditions. 

Since MRgFUS lesioning is guided by imaging rather than electrophysiology, it could 

benefit greatly from integration with imaging resources such as the human connectome. The 

normative structural connectome has already been used to investigate connections associated 

with side-effects following MRgFUS lesioning of the thalamus for Essential Tremor (Boutet 

et al., 2018) and connections associated with clinical benefit following MRgFUS lesioning 

of the anterior limb of the internal capsule for OCD or Major Depressive Disorder 

(Davidson et al., 2020).

It is worth noting that there should be a higher bar for using connectivity to guide DBS 

surgery or MRgFUS versus DBS programming (Coenen et al., 2019b). Once a nelectrode 

has been implanted, its location cannot be easily changed, and lesions from MRgFUS are 

irrversible. In contrast,DBS programming can be easily adjusted if a connectome-based 

hypothesis turns out to be wrong. The risk versus benefit of incorporating connectivity 

information into surgical planning should be carefully weighed by experienced physicians, 

with ongoing studies to determine the value of this information.

Testable hypothesis (#6): Connectome-based DBS programming will allow for faster 

optimization of DBS parameters and fewer side effects; connectome-based neurosurgery 

will inform new targets and surgical trajectories that improve clinical outcomes.

3.7. Opportunity #7: bridging invasive and noninvasive brain stimulation

Most of the aforementioned studies applied invasive (DBS) while others have applied 

noninvasive (TMS) strategies to modulate brain activity. In 2014, Fox and colleagues 

demonstrated that across 14 diseases, invasive and noninvasive neuromodulation sites used 

to treat the same symptoms are part of the same connected brain network (Fox et al., 

2014).This suggests that one might modulate the same network using either TMS 

(cortically) or DBS (subcortically) to improve the same symptom. For example, the most 

popular DBS target in PD (the STN) was functionally connected to the SMA and primary 

motor cortex, two TMS sites with beneficial effects on PD symptoms. Later, it was found 

that DBS sites that are the most connected to SMA and primary motor cortex resulted in 

better clinical improvement (Horn et al., 2017). Similarly, the most popular DBS target for 

depression (Broadman’s area 25 / subcallosal cingulate cortex) was functionally connected 

to the DLPFC, a TMS site with beneficial effects on depression (Fox et al., 2014; 2012). 

Later, it was found that TMS sites that are the most connected to BA25/SCC resulted in 

better clinical improvement (Cash et al., 2019;Weigand et al., 2018). Whether this concept 

holds true for other conditions reported in this 2014 paper such as addiction, Alzheimer’s 

disease, anorexia, dystonia, epilepsy, OCD, pain or Tourette’s Disease remains to be 

formally investigated.

Testable hypothesis (#7): Neuromodulation sites effective for the same symptom will be part 

of the same connected brain network across different neuromodulation modalities.
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3.8. Opportunity #8: a window to understand the brain

So far, our review has focused on clinical applications of how connectomics could improve 

neuromodulation treatment. However, the same concepts can be applied to advance systems 

and cognitive neuroscience. For example, it has recently become possible to acquire fMRI 

scans in patients while their DBS system is switched on. This allows for studies of remote 

changes on other brain regions, and on the functional connectome induced by DBS (Boutet 

et al., 2019b;Horn et al., 2019c; Jech et al., 2001; Kahan et al., 2014; Mueller et al., 2013). 

For example, STN-DBS appears to increase connectivity between the sensorimotor cortex 

and thalamus and decrease connectivity between the striatum and cerebellum (Horn et al., 

2019c; Kahan et al.,2014). These studies demonstrate how DBS could be used to modulate 

neural activity in awake humans and study the consequences to better understand the brain 

in general. This concept has been used to explore novel DBS targets and to gain better 

understanding of physiology and pathology (Saenger et al.,2017).

A second line of research again applied normative connectomes with DBS –but this time to 

address questions of cognitive neuroscience(third section in Table 1). For instance, Neumann 

et al. showed that specific connections of the DBS electrodes in the STN would lead to 

changes in movement velocity vs. reaction times in a motor task (Neumann et al., 2018). 

Similarly, functional connectivity between STN-DBS electrodes and a specific site in the 

ipsilateral cerebellum was associated with restoring motor learning in PD patients (de 

Almeida Marcelino et al., 2019).These studies show utility of the connectomic 

neuromodulation concept above and beyond addressing clinical questions.

Testable hypothesis (#8): Changes of the functional connectome under neuromodulation will 

lead to a better understanding of brain function.

4. Limitations of connectomic neuromodulation

Although connectomic neuromodulation bears many promising opportunities as outlined 

above, there are important limitations. First, MRI-based connectivity techniques (dMRI and 

rs-fcMRI) are not sensitive to the directionality of connectivity (e.g. inputs versus outputs), 

specific neuronal subtypes, local micro-circuits, or different neurotransmitters. As such, the 

same neuromodulation stimulus applied to different ent brain regions could lead to different 

results even if their MRI-based connectivity profiles were exactly the same. Second, all 

connectomic neuromodulation studies published to date are based on correlation, i.e. 

connectivity profiles with the stimulation site are identified that correlate with clinical 

outcome. Whether the identified connections, or modulation of connected brain regions, are 

causally linked to therapeutic outcome is uncertain. Similarly,it is hard to differentiate 

whether clinical effects are due to connectivity with the neuromodulation site or local effects 

of the neuromodulation site, as the two are intrinsically linked. For instance, moving a DBS 

electrode more anteromedial in the subthalamic nucleus will lead to a (nonlinear) shift of 

connectivity to more frontal regions. Segregating whether clinical results of such a shift 

result from modulating different functional zones of the STN or different networks 

connected to different STN subregions is difficult. Combining information from multiple 

different brain stimulation sites that are part of the same network may help resolve this 

ambiguity (Fox et al., 2014; Li et al., 2020).
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There are several limitations of dMRI, which is based on water different fusion and only 

approximates white matter or anatomical connectivity. As such, it is not perfectly suited to 

measure connectivity strength between two areas. Stream line counts and average fractional 

anisotropy values along connecting tracts have been used to estimate the degree of structural 

connectivity but both measures can be unreliable. On average every valid connection present 

in a typical single-subject diffusion MRI based tractogram is matched by four invalid (false 

positive) connections (Maier-Hein et al., 2017). Thus, when using tractography to identify 

“novel” connections (Hosp et al., 2019; Milardi et al., 2019; Quartarone et al., 2019), the 

chance of getting wrong answers is higher than of getting true answers (Maier-Hein et al., 

2017; Petersen et al., 2019). Moreover, myelinated long tracts are overrepresented and very 

short and thin bundles can be hardly reconstructed, if at all (Edlow et al., 2019; Horn et al., 

2019a; Petersen et al., 2019). However, these latter bundles (such as the ansa lenticularis, the 

lenticular fascicle, Edinger’s comb system or Wilson’s pencils in the striatum) may play a 

crucial role in mediating DBS effects (Horn et al., 2019a).

There are also many limitations of rs-fcMRI, which is based on slow fluctuations in blood 

flow and oxygenation. These fluctuations are only an indirect reflection of underlying neural 

activity, and can be contaminated by many non-neuronal sources of noise (Fox and Raichle, 

2007b; Murphy and Fox, 2017). Rs-fcMRI is also insensitive to brain oscillations occurring 

on faster time scales (Buzsáki, 2006), including beta oscillations that may play an important 

role in brain disorders such as PD (Kühn et al., 2006).

Normative connectomes share all limitations of diffusion-/functional MRI but come with an 

additional limitation in that they do not account for individual differences in brain 

connectivity. Individualized connectomes come with significant limitations in signal to noise 

and reproducibility. As such, connectomic DBS studies have explained a maximum of 30–

40% of variance in clinical improvement across independent datasets (e.g. R = 0.55–0.69 in 

(Baldermann et al., 2019b), also see Table 1).This variance compares favorably with other 

predictors of DBS outcomes in independent datasets, including L-dopa response (Horn et al., 

2017; Irmen et al., 2020), but may still fall short of clinical utility. Reasons why explained 

variance is not higher include limitations of the connectome, nectome, but also limitations of 

our clinical outcome measures and the fact that clinical outcomes are dependent on many 

factors besides the neuromodulation site including disease-subtype, specific symptoms, 

comorbidities, age, etc. For example, one PD patient in which we predicted a good DBS 

outcome based on their stimulation site and connectivity did much worse than expected in 

the setting of severe depression. Once the patient’s depression improved, their motor scores 

also improvedto match the connectome-based prediction (Horn et al., 2017).

5. Conclusions

Connectomic neuromodulation provides numerous opportunities to better understand and 

predict clinical outcomes, to personalize neuromodulation therapy, and to integrate findings 

across neuromodulation targets and modalities. Each opportunity allows for testable 

hypotheses towards improving neuromodulation treatment. However, there remain important 

limitations, and caution is warranted as novel imaging methods are incorporated into clinical 

practice – especially in the operating room. We see great potential in connectomic 
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neuromodulation, andwe look forward to ongoing research and clinical trials designed to test 

the value of this approach.
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Abbreviations

ALIC Anterior limb of the internal capsule

ANT Anterior nucleus of the thalamus

CM-Pf Centromedian nucleus and Parafascicular nucleus of the thalamus

DBS Deep Brain Stimulation

DR(T)T Dentatorubrothalamic tract

ET Essential Tremor

FATCAT Functional And Tractographic Connectivity Analysis Toolbox

FSL FMRIB Software library

GPi/GPe internal/external pallidum

ITP inferior thalamic peduncle

M1 Primary motor cortex

MADRS Montgomery– Åsberg Depression Rating Scale

MNI Montreal Neurological Institute

MRI Magnetic Resonance Imaging

NAcc Nucleus Accumbens

OCD Obsessive Compulsive Disorder

PET Positron Emmision Tomography

PD Parkinson’s Disease

PFC Prefrontal córtex

PLI Polarized Light Imaging

slMFB superolateral branch ofthe medial forebrain bundle (as defined by 

Coenen et al. 2009)

SN Substantia Nigra

Horn and Fox Page 13

Neuroimage. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



STN Subthalamic Nucleus

SMA Supplementary Motor Area

TORTOISE Tolerably Obsessive Registration and Tensor Optimization Indolent 

Software Ensemble

UPDRS Unified Parkinson’s Disease Rating Scale (part III refers to motor 

assessment)

VIM Ventral Intermediate Nucleus

VTA Volume of Tissue Activated

Y-BOCS Yale–Brown Obsessive Compulsive Scale

YGTSS Yale Global Tic Severity Scale
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Fig. 1. 
Methods used for clinical neuromodulation of the brain. List on the left shows recent device 

approvals issued by the U.S. Food and Drug Administration (FDA). HDE = Humanitarian 

device excemption. Various lesioning devices have been previously approved by the FDA for 

ablation of neural tissue (radiofrequency thermoablation, laser interstitial thermal therapy, 

sterotactic radiosurgery) with applications including thalamotomy for tremor, pallidotomy 

for Parkinson’s or dystonia, and cingulotomy for pain. Other technologies exist but have not 

been FDA approved for clinical neuromodulation of the brain (e.g. transcranial electrical 

current stimulation).
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Fig. 2. 
Noninvasive MRI based methods to estimate brain connectivity. Top: resting-state functional 

connectivity MRI (rs-fMRI) is based on spontaneous fluctuations in brain activity as indexed 

by the blood-oxygen-level-dependent (BOLD) signal. This signal is recorded from all voxels 

simultaneously, and voxels in which the fluctuations are correlated are considered 

functionally connected. Areas positively correlated to a seed region (right subthalamic 

nucleus, red box) are shown in hot colors, while regions negatively correlated 

(anticorrelated) to the seed region are shown in cool colors. Results based on a single subject 

are shown in the middle column (individualized connectome) while results based on 1000 

subjects are shown in the right column (normative connectome). Bottom: diffusion-weighted 

imaging (dMRI) measures water diffusion which is anisotropic in the brain. In general, 

diffusion is stronger along the direction of larger fiber bundles as opposed to orthogonal to 

them. Based on local diffusion properties of each voxel (which can be represented as 

orientation distribution functions), tractography algorithms can estimate the location of 

white-matter bundles to provide an estimate of structural connectivity. White matter bundles 

passing through the subthalamic nucleusare shown for a single subject in the middle column 

and for a group of 1000 subjects in the right column. Displayed data are from the human 

connectome andgenome superstruct projects (Holmes et al., 2015; van Essen and Ugurbil, 

2012).
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Fig. 3. 
Functional connections with deep brain stimulation (DBS) sites that are correlated with 

clinical improvement. Top: DBS electrode locations targeting the subthalamic nucleus 

(STN) in patient’s with Parkinson’s disease (left), the ventral intermediate nucleus of the 

thalamus (VIM) in patients with essential tremor (middle), and the anterior limb of the 

internal capsule (ALIC) in patients with OCD (right). Bottom: brain regions whose 

functional connectivity to DBS sitesis correlated with clinical improvement. Positive 

correlations are shown in warm colors and negative correlations are shown in cool colors. 

DBS data are from previous studies (Al-Fatly et al., 2019; Baldermann et al., 2019b; Horn et 

al.,2017) and electrodes are displayed with axial slices from the 100um 7T postmortem MRI 

template (Edlow et al., 2019). Ca: Caudate nucleus, Pu: Putamen, NAcc: Nucleus 

Accumbens, vPall: ventral Pallidum.
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Fig. 4. 
Filtering structural connectomes based on clinical improvement. (A) Active contact 

locations from 50 patients (four cohorts) that underwent DBS surgery for OCD to multiple 

different neuranatomical targets are shown as small spheres. The color of each sphere refers 

to the cohort (Li et al., 2020). Fiber tracts from a normative structural connectome were 

identified that traversed the stimulation site more frequently in patients with good clinical 

response (red) versus poor clinical response (blue). (B) The same method was applied to 

data from 51 patients that underwent STN-DBS for PD and identified the premotor 

hyperdirect pathway (red fibers) as being associated with better clinical response (Treu et al., 

2020).
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