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Deep learning (DL) algorithms have achieved important successes in data analysis tasks, thanks to their capability of 
revealing complex patterns in data. With the advance of new sensors, data storage, and processing hardware, DL algo-
rithms start dominating various fields including neuropsychiatry. There are many types of DL algorithms for different 
data types from survey data to functional magnetic resonance imaging scans. Because of limitations in diagnosing, esti-
mating prognosis and treatment response of neuropsychiatric disorders; DL algorithms are becoming promising 
approaches. In this review, we aim to summarize the most common DL algorithms and their applications in neuro-
psychiatry and also provide an overview to guide the researchers in choosing the proper DL architecture for their 
research.
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INTRODUCTION

During the past few decades diagnosing neuropsychiatric 
disorders, finding etiology and predicting prognosis has 
been dragging considerable attention. Various psychiatric 
disorders such as bipolar, schizophrenia spectrum, anxi-
ety, addiction, etc. exhibit common pathological features 
in terms of genetic, behavioral, and neuroimaging pat-
terns which causes a challenge in diagnosis and prognosis 
[1]. At the point where the classical research methods are 
inefficient, machine learning algorithms in particular 
deep learning (DL), provide promising solutions with their 
complex, nonlinear nature. Their success in revealing 
complex patterns under data has a remarkable impact on 
prediction, classification and data analysis. Moreover, 

their flexibility, adaptation, and learning capability sourc-
ing from millions of parameters make DL algorithms es-
sential in big data analysis [2]. 

Conventional machine learning techniques (shallow 
learners) require distinguishing features for successful 
classification. This brings a nontrivial challenge espe-
cially when there is a common pattern between different 
groups in data. In contrast, DL algorithms do not require 
explicitly extracted features since they can extract their 
own from raw data. While their feature extraction capa-
bility brings a demand for more training data, it increases 
their flexibility to learn complex and distinguishing pat-
terns between different classes in data [3].

Considering all of the above-mentioned advantages, 
DL algorithms are essential tools in classification of neu-
ropsychiatric disorders and foreseeing their prognosis. 
Therefore, DL algorithms start to lead the research prog-
ress in neuropsychiatry.

In this review, we summarized different types of DL al-
gorithms and their applications in the diagnosis of neuro-
psychiatric disorders. Firstly, we defined the basics and 
modified types of networks. Then we discussed the appli-
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Fig. 1. The diagram shows deep learning is a subfield of machine 
learning, which is a subfield of artificial intelligence.

cations of DL algorithms on the most common neuro-
psychiatric disorders. Finally, we elaborate on their limi-
tations and discuss possible future directions. Although 
there are many types of DL algorithms, in this review, we 
limit our attention to the types that are commonly used in 
the diagnosis of the most common neuropsychiatric 
disorders.

DEEP LEARNING CONCEPTS 
AND ARCHITECTURES

“Artificial intelligence” (AI) was exposed in the 1950s 
and refers to the ability of machines to perform some op-
erations as skillfully as humans. Data mining is the appli-
cation of algorithms used to reveal similar motifs with sim-
ilar sequences in the data. “Machine learning” emerged in 
the 1980s and has become more popular with the use of 
data mining. “Deep learning” started to be used in the 
2010s and it is known as a custom type of machine 
learning. It is a learning model that performs calculations 
used in machine learning over many layers at once, dis-
covers the features that are needed to be hand-crafted in 
conventional machine learning, and reveals highly com-
plex patterns inside the data. Figure 1 shows the relation-
ship between these different AI disciplines [3].

To understand the underlying concept of DL, the basics 
of machine learning algorithms must be understood. 
Machine learning algorithms are described as algorithms 

that learn the intrinsic pattern of data and generally cate-
gorized into three classes namely, supervised, unsuper-
vised and semi-supervised learning. In supervised learn-
ing, there is a corresponding label to specify the target for 
every input. For example, an image classification algo-
rithm is fed using images with labels from different catego-
ries (a structural magnetic resonance imaging [sMRI] of a 
subject with schizophrenia spectrum and healthy control, 
etc.). The algorithm learns the underlying structure of data 
according to given labels and produces an output score 
that corresponds to the target label [3]. In unsupervised 
learning, the algorithm learns the intrinsic structure of the 
data without providing any labels. These algorithms can 
be used to cluster similar examples in the data and these 
algorithms are helpful to identify the anomalies in the da-
taset [4]. Semi-supervised learning can be considered as 
halfway between supervised and unsupervised learning. 
In this learning, the algorithm is fed with some labeled ex-
amples in addition to unlabeled data [5]. Usually, this 
learning is used to improve the accuracy of a classifier 
with additional unlabeled data, commonly used in fields 
such as natural language processing, computer vision, 
etc. The process of exploring the intrinsic pattern of data is 
called training. In this process, using training data (split 
from the whole data), the algorithm is trained and some 
error metrics (training error, the difference between real 
and calculated output for train data) are calculated 
through the parameter optimization step. After training, 
the algorithm produces an output for unseen data, 
so-called test data (rest of the data after training data split), 
and its performance is validated. In the testing part, some 
error metrics can be also calculated which are named as 
testing or generalization error (the difference between real 
and calculated output for test data). This error is described 
as the difference between expected and produced output. 
Briefly, the performance of an algorithm can be de-
termined by two important measures: training and test 
errors. These important factors address the two major 
problems in machine learning: under fitting and over 
fitting. Under fitting happens when the complexity of the 
algorithm is not adequate to represent the intrinsic struc-
ture of the data. There could be several reasons for this: If 
the model is not strong enough, over-regulated, or has not 
been trained long enough. This means that the network 
does not learn relevant patterns in training data. In con-
trast, over fitting happens when the complexity of the 
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Fig. 2. (A) Perceptron, the smallest part of the artificial neural network (ANN) model, is defined by the linear function y = W.x + b. In biological 
neural networks, information from the axon is collected by the dendrites and processed by the cell body to generate electrical pulses and chemical 
signals. Communication between two different neurons is achieved by means of neurotransmitters in the synapses between the axons and dendrites 
of two adjacent neurons when the neuron meets the threshold level. Similarly, in ANNs, each input, xi, is weighted by wi according to its 
contribution to obtain the final output, f (y). The output unit is obtained by passing the weighted sum of the inputs through an activation function. 
(B) ANN architecture with multiple layers. It has 1 input layer (the first layer), 3 hidden layers (in between layers), and finally 1 output layer (the last 
layer) with 1 output units.

learning algorithm is high and the data that is provided for 
training is small. While it is often possible to achieve high 
accuracy in the training set, what is really desired is to de-
velop models that generalize well to a test set (or data they 
havenʼt seen before). But overfitting prevents this. Over fit-
ting can be tackled by incorporating more data whereas 
under fitting can be solved by increasing the complexity 
of the algorithm such as adding more hidden layers [6]. 
The user-defined design parameters such as the number 
of hidden layers, number of neurons in each layer, and 
types of activation functions are called hyper-parameters. 
These parameters should be tuned carefully on a vali-
dation set that is different from the training and test data to 
reach optimum performance.

A human brain has billions of neurons. Neurons are in-
terconnected nerve cells that are involved in the process-
ing and transmitting of chemical and electrical signals. An 
artificial neuron is the most fundamental unit of a DL algo-
rithm that mimics certain neuron parts, such as dendrite, 
cell body, and an axon, using simplified mathematical 
models. A perceptron (the predecessors of artificial neu-
rons) is a neuron unit and shown in Figure 2A. The con-
cept of perceptron was first introduced in 1958 by psy-
chologist Frank Rosenblatt and further refined and ana-
lyzed by Minsky and Papert in 1969 [7]. The task of each 
neuron is taking its input, multiplying it by its weight, and 
passing the sum from activation function to other neurons. 
The neural network learns how to classify an input by ad-
justing its weight according to previous examples. By 

combining these neurons, artificial neural networks (ANNs) 
are constructed. The aim of training in ANNs is to find the 
weight values that eventually predict correct labels of the 
samples provided to the network. Reaching the optimum 
weight values of the network means that the samples can 
make generalizations about the event represented by the 
samples.

DL and neuroscience have recently been intertwined. 
Neuroscience can help to validate already existing DL 
techniques and provide rich inspiration for new types of 
algorithms and architectures. Also, some new techniques 
developed with DL algorithms can be used in neuro-
science to help to understand neuropsychiatric disorders 
[8].

In the first part of the review, we outline the underlying 
concepts of DL and we provide brief description of the 
most common DL architectures used in the field of neuro-
psychiatry, including ANNs, convolutional neural net-
works (CNNs), recurrent neural networks (RNNs) and 
generative adversarial networks (GANs).

Artificial Neural Networks
One important drawback of perceptrons is their limited 

number of layers which confines the complexity of the 
classifier. Furthermore, although linear classifiers provide 
sufficient performance for many tasks, not all data is line-
arly separable which makes nonlinear classification a 
necessity. To alleviate these problems, ANNs with high-level 
representation with error propagation has been proposed 
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Fig. 3. Convolutional neural network (CNN). A CNN contains two basic parts: feature extraction and classification. The feature extraction part 
consists of successive convolutional and pooling layers. A convolutional layer applies convolutional filters called a kernel to the image for exploring
low and high-level structures. These structures are obtained by shifting these kernels, so called convolution, in the image with a set of weights. After 
multiplying the elements of these kernels with the corresponding receiving field elements, a feature map is obtained. These maps are passed through
nonlinear activation function (e.g., a rectified linear unit). The task of pooling layer is to reduce the feature map size and the total number of 
parameters to be optimized in the network. It works by gathering similar information in the neighborhood of the receptive field and find a 
representative value (e.g., maximum or average) within this local region. Flatten layer converts matrices from the convolution layers into a 
one-dimensional array for the next layer. Fully connected layer computes the final outputs using back propagation and gradient descent as for 
standard artificial neural networks.

by Rumelhart et al. [9]. ANN consists of several neurons 
in input, output, and multiple hidden layers. Having mul-
tiple hidden layers increases the complexity of the classi-
fier and enables revealing complex patterns inside data. 
Furthermore, each neuron applies an activation function 
such as a sigmoid function to the weighted combination 
of its inputs to establish nonlinearity. Figure 2B shows an 
example of an ANN architecture with three hidden layers. 
The number of hidden layers and neurons in each layer 
are important hyper-parameters that are set by the pro-
grammer and affect the overall complexity of the classifier.

The learning stage consists of two parts: a forward pass 
and back propagation. In the forward pass, an error is cal-
culated with the recent weights. In literature, there are 
several methods to find optimal solutions to minimize the 
error term. One of them and arguably the most common 
method is known as Stochastic Gradient Descent (SGD). 
In SGD, the gradient of the error term is calculated and the 
parameters are updated to minimize the error using the 
training data. This process occurs in the back propagation 
step which constitutes the main learning process [10]. 
ANNs are good for general purpose, classification tasks in 
neuropsychiatry using data from electroencephalogram 
(EEG), functional near-infrared spectroscopy (fNIRS), ge-
netic and psychiatric survey data, etc., due to fast train-
ability, easy implementation, and smaller data set require-

ment compare to other methods [11].

Convolutional Neural Networks 
CNNs are specialized ANNs that apply convolutional 

kernels in at least one of its layers. CNNs were originally 
inspired by the primate visual system and explore spatial 
invariances in the data [2]. A basic CNN architecture is 
shown in Figure 3.

Various methods have been proposed to improve the 
performance of CNNs, such as the use of different activa-
tion and loss functions, parameter optimization, regulari-
zation and restructuring of processing units. In the design 
of new CNN architectures, these components are increas-
ingly combined in more complex and interconnected 
ways and even replaced by other more convenient pro-
cesses. Numerous CNNs have been implemented since 
the late 1980s to the present day. The first CNN archi-
tecture was introduced by Lecun et al. [12]. 

CNN networks can automatically extract patterns from 
images using filters (kernels) and they need relatively less 
pre-processing time in comparison to other handcrafted 
features [13]. In general, medical imaging systems pro-
duce three-dimensional (3D) images (MRI, computed to-
mography [CT]). 3D CNN architectures have been pro-
posed to process these images. In two-dimensional (2D) 
CNNs, features are computed only from a 2D space (such 
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Fig. 4. Recurrent neural network: Given architecture has an input 
layer X, hidden layer S and output layer ŷ. In the network, Xt, ŷt, and 
St define the current input, output and states respectively. U and W 
are the weights of the relevant layer and V is the output function. St is 
calculated using the information from previous state as: St = f (UXt + 
WSt-1) and, ŷt is calculated as: ŷt = V(St).

Fig. 5. The metaphor used by Ian Goodfellow to explain the genera-
tive adversarial networks (GANs) model. GANs consists of two dif-
ferent network structures; generator and discriminator networks. While
the discriminator network creates new data from a sample database, 
the discriminator network tries to distinguish between real and fake 
samples by looking at the data produced by the generator with some 
noise.

as X-Ray or 2D ultrasound images), whereas in 3D CNNs, 
they are computed from a 3D volume. New 3D CNN ar-
chitectures have recently been proposed and implemented 
in neuroimaging tasks which are indispensable methods 
for studying neuropsychiatric disorders, and have yielded 
very promising results compared to other methods. The 
applications of the above-mentioned algorithms of neuro-
psychiatry will be discussed in the next section.

Recurrent Neural Networks 
Since the 1990ʼs RNNs have become an important re-

search area. This network is designed to learn sequential 
or time-dependent patterns in data. In comparison to a 
standard feed-forward neural network, an RNN archi-
tecture also uses connections to form directed cycles. In 
Figure 4, a simple RNN structure is presented. 

In an ordinary feed-forward network, previous pre-
dictions are not used for predicting the output. In RNN, 
however, decisions are made using the previous results 
due to recurrent connections. Until now, many variants of 
RNNs have been proposed by researchers. Elman [13] 
and Jordan [14] networks, known as simple recurrent net-
works, can be considered as the first publications in the 
historical development of RNNs. 

In RNNs, recurrent connections make minor changes in 
architecture that raise a dynamic system with many new 
behaviors. Training of these architectures is difficult than 
previously-discussed. However, once trained, RNNs can 
be run forward in time to produce predictions of future 
outcomes or states. RNNs are widely used in longitudinal 
studies where observing temporal variations of a signal 

are crucial such as fNIRS and EEG-related tasks. 

Generative Adversarial Networks 
Goodfellow et al. [15] proposed GANs in 2014. GANs 

consists of two opposing neural networks (generator and 
discriminator) that learn to create a new data set with the 
same statistics of the input data and discriminate between 
the real and the generated data in the training stage. 
Generator stands for producer network, while discrim-
inator stands for distinctive network. The purpose of the 
generator is to fit a suitable curve for the distribution of re-
al data and generate new samples. The discriminator is 
fed with fake and real images, and it produces binary out-
put as fake (0) or real (1) [15]. Goodfellow explains the 
GANs briefly that while the generator is a ‘counterfeiterʼ 
team that tries to make tables similar to real ones, the dis-
criminator is like a detective team that tries to understand 
fake or real ones. The metaphor used by Ian Goodfellow 
to explain the GANs model is shown in Figure 5.

In adversarial models, the generator’s parameters are 
not directly updated using components from the training 
data but the gradient components flowing from the dis-
criminator, which provides considerable statistical ad-
vantage [15]. GANs can transfer the raw inputs to outputs 
or serve as a post-processing step to filter images, adversa-
rial training can be used to supply structure consistency 
and the generator and discriminator parts can be used as a 
feature extractor or the discriminator part can be used di-
rectly as a classifier [16]. Due to mentioned properties, 
GANs are specifically used for segmentation, re-
construction and classification tasks for different imaging 
modalities.
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Table 1. Studies using ANN in neuropsychiatry

Reference Method Year Modality Application Result

Vyškovský et al. 2016 [17] ANN 2016 MRI Schizophrenia classification Overall accuracy = 68%
Jafri and Calhoun 2006 [16] ANN 2006 fMRI Schizophrenia classification Accuracy = 76%
Fonseca et al. 2018 [18] ANN 2018 Array collection data Classification of bipolar and 

schizophrenia disorders
Accuracy = 90%

Lins et al. 2017 [19] ANN 2017 Array collection data Classification of mild cognitive 
impairment and dementia

Sensitivity = 98% and 
Specificity = 96%

Narzisi et al. 2015 [20] ANN 2015 Array collection data Classification of children with 
a positive response to TAU

Accuracy = 89.24%

ANN, artificial neural network; MRI, magnetic resonance imaging, fMRI, functional MRI; TAU, treatment as usual.

Fig. 6. Flow diagram for study selection (modified from Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement).
ANNs, artificial neural networks; CNNs, convolutional neural networks; RNNs, recurrent neural networks; GANs, generative adversarial networks.

APPLICATION OF 
DEEP LEARNING ALGORITHMS TO 
NEUROPSYCHIATRIC DISORDERS

To identify previous practices of DL in neuropsychiatric 
studies of psychiatric or neurological disorders, our 
search was carried out on 31st January 2020 in various 
search databases (PubMed, IEEE Xplore, and Web of 
Science) using the following search terms: (“deep learn-
ing” OR “deep architecture” OR “artificial neural network” 
OR “convolutional neural network” OR “recurrent neural 
network” OR “generative adversarial network”) AND 
(neuropsychiatry OR psychiatry OR “psychiatric dis-
ease”). A total of 289 articles were reached in the first 
search and duplicates were excluded. As a next step, we 
selected studies that focus on DL models for neuro-
psychiatric research and provided cross-references; this 
identified a total of 32 articles that were relevant to our 
review. We organized these studies according to the types 

of DL architectures such as ANNs, CNNs, RNNs, and 
GANs. The strategy that we follow for choosing related ar-
ticles in this survey is represented in the flow-chart given 
in Figure 6. These studies are summarized in Tables 1−4 
which provides the following information: general type of 
architecture, type of data used as input (modality), diag-
nostic groups being investigated, and results as various 
performance metrics.

ANNs for Classification of Neuropsychiatric Disorders
Studies using ANN in neuropsychiatry are shown in 

Table 1. Vyškovský et al. [17] used ANN for Schizophrenia 
spectrum disorder (SZ) classification from MRI scans of 
104 subjects. They compared its performance with sup-
port vector machine (SVM) classifier and achieved accu-
racies up to 68% using it together with SVM. Functional 
magnetic resonance imaging (fMRI) scans were also used 
for the same task by Jafri and Calhoun [16] achieving 
around 76% classification accuracy. In a different study 
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Table 2. Studies using CNN in neuropsychiatry

Reference Method Year Modality Application Result

Gupta et al. 
2013 [22] 

Simple CNN + 
Sparse Automatic 
Encoder

2013 sMRI Classification of MCI 
and AD

Accuracy = 94.7% for NC vs. AD 
Accuracy = 86.4% for NC vs. MCI 
Accuracy = 88.1% for AD vs. MCI

Payan and 
Montana 
2015 [23]

3D CNN 2015 3D MRI Classification of MCI 
and AD

Accuracy = 95.4% for NC vs. AD 
Accuracy = 92.1% for NC vs. MCI
Accuracy = 86.8% for AD vs. MCI

Hosseini-asl 
et al. 2018 
[24]

3D CNN with pre- 
trained 3D con-
volution auto-
matic encoder

2018 3D sMRI Classification of MCI 
and AD

Accuracy = 99.3% for NC vs. AD 
Accuracy = 94.2% for NC vs. MCI
Accuracy = 100% for AD vs. MCI

Wang et al. 
2018 [25]

CNN 2018 sMRI Classification of AD Accuracy = 97.65% 
Sensitivity = 97.96%
Specificity = 97.35% for NC vs. AD

Duc et al. 
2020 [26]

3D CNN 2020 fMRI Classification of AD Accuracy = 85.27% for NC vs. AD

Sarraf and 
Ghassem 
2016 [27] 

LeNet and 
GoogleNet

2016 sMRI and fMRI Classification of AD Accuracy = 94.32% for NC vs. AD with the fMRI
Accuracy = 97.88% for NC vs. AD with the sMRI 

Spasov et al. 
2018 [28]

3D CNN 2018 sMRI, genetic mea-
sures (APOe4) and 
clinical assessment

Classification of AD Accuracy = 99% for NC vs. AD
Sensitivity = 98% for NC vs. AD
Specificity = 100% for NC vs. AD

Liu et al. 
2020 [29]

ResNet and 
3D DenseNet

2020 sMRI Classification of MCI 
and AD

Accuracy = 88.9% 
AUC = 92.5% for AD vs. NC 
Accuracy = 76.2% 
AUC = 77.5% for MCI vs NC

Farooq et al. 
2017 [30]

GoogleNet and 
ResNet

2017 sMRI Classification of AD, 
EMCI, and LMCI

Accuracy = 98.88% for GoogleNet 
Accuracy = 98.01% for ResNet-18 
Accuracy = 98.14% for ResNet-152

Korolev et al. 
2017 [31]

Plain 3D CNN 
(VoxCNN) and 
ResNet with six 
VoxRes blocks

2017 3D sMRI Classification of AD, 
EMCI, and LMCI

Accuray (VoxCNN) = 79% for NC vs. AD
Accuray (VoxCNN) = 63% for NC vs. LMCI
Accuray (ResNet) = 54% for AD vs. EMCI
Accuray (ResNet) = 80% for NC vs. AD
Accuray (ResNet) = 61% for NC vs. LMCI 
Accuray (ResNet) = 56% for AD vs. EMCI

Senanayake 
et al. 2018 
[32]

ResNet, DenseNet, 
and GoogleNet

2018 3D MR volumes and 
neuropsychological 
measure based 
feature vectors

Classification of MCI 
and AD

Accuracy = 79% for NC vs. AD
Accuracy = 74% for NC vs. MCI
Accuracy = 77% for AD vs. MCI

Zou et al. 
2017 [33]

3D CNN 2017 Resting-state fMRI 
signals

Classification of ADHD Accuracy = 65.67%

Zou et al. 
2017 [34]

Multi-modality 3D 
CNN

2017  fMRI and sMRI Classification of ADHD Accuracy = 69.15%

Chen et al. 
2019 [35]

3D CNN and 2D 
CNN

2019 A new form of 
representation of 
multi channel EEG 
data

Detection of personalized 
spatial-frequency ab-
normality in EEGs from 
children with ADHD

Accuracy = 90.29% ± 0.58%
AUC = 0.96 ± 0.01

Campese et al. 
2019 [36]

SVM, 2D CNN, 
and three different 
3D architectures 
(VNet, UNet, and 
LeNet)

2019 2D and 3D sMRI Classification of SZ 
and BP

AUC score: 86.30 ± 9.35 using VNet + SVM for 
Dataset A

AUC score: 71.63 ± 12.87 using VNet for 
Dataset B for binary classification of SZ vs. NC

AUC score: 66.43 ± 12.15 using UNet for 
Dataset A

AUC score: 75.52 ± 13.71 using UNet for 
Dataset B for binary classification of BP vs. NC

Choi et al. 
2017 [37]

3D CNN
(PD Net)

2017 FP-CIT SPECT Classification of PD Accuracy = 96% for the PPMI dataset
Accuracy = 98.8% for the SNUH dataset

CNN, convolutional neural network; 3D, three-dimensional; 2D, two-dimensional; ResNet, residual networks; DenseNet, densely connected 
networks; MRI, magnetic resonance imaging; fMRI, functional MRI; sMRI, structural MRI; EEG, electroencephalography; FP-CIT, dopamine-trans-
porterscintigrafie; SPECT, single photon emission computerized tomography; MCI, mild cognitive impairment; AD, Alzheimer’s disease; 
EMCI/LMCI, early/late mild cognitive impairment; ADHD, attention deficit and hyperactivity disorder; SZ, spectrum disorder; BP, bipolar disorder; 
PD, Parkinson’s disease; NC, normal cognitive; AUC, area under the curve; SVM, support vector machine; PPMI, Parkinsons progression markers 
initiative; SNUH, Seoul National University Hospital.
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Table 3. Studies using RNN in neuropsychiatry

Reference Method Year Modality Application Result

Petrosian et al. 
2000 [38] 

RNN 2000 EEG Prediction of epileptic 
seizures

Existence of preictal stage in some minutes reported as 
feasible to predict seizure

Petrosian et al. 
2001 [39] 

RNN 2001 EEG Early prediction of AD Sensitivity = 80% 
Specificity = 100%

Wang et al. 
2018 [40] 

LSTM 2018 Array collection 
data

AD progression 
prediction

Accuracy = 99% ± 0.0043

Dakka et al. 
2017 [41]

LSTM 2017 4D fMRI Learning invariant 
markers of 
schizophrenia disorder

Average accuracy using LSTM = 66.4%
Average accuracy using R-CNN = 64.9%
Average accuracy using SVM = 57.9%

Kumar et al. 
2019 [42]

RNN 2019 CT, MRI, and PET Classification of 
dementia, AD, and 
autism disorders

Dementia Accuracy = 82.8%
AD Accuracy = 72.2%
Autism Accuracy = 78.2%

BRNN Dementia Accuracy = 95.3%
AD Accuracy = 89.6%
Autism Accuracy = 91.9%

Talathi 2017 
[43]

GRU 2017 EEG Early epileptic seizure 
detection

Accuracy = 99.6%

Che et al. 2017 
[44]

GRU 2017 Parkinson’s pro-
gression markers 
initiative (PPMI) 
challenge dataset

Personalized predic-
tions of Parkinson’s 
disease

Personalized LR RMSE = 0.658
Personalized SVM RMSE = 0.695
Multiclass LR RMSE = 0.719
Multiclass SVM RMSE = 0.742
LSTM RMSE = 0.785
KNN RMSE = 0.957

Yao et al. 2019 
[45]

IndRNN 2019 EEG Classification of 
epileptic seizure

IndRNN Average accuracy = 87% ± 0.03
LSTM Average accuracy = 84.4% ± 0.02
CNN Average accuracy = 82.9% ± 0.02

RNN, recurrent neural network; LSTM, long-short term memory; BRNN, bidirectional RNN; GRU, gated recurrent unit; IndRNN, independent RNN; 
EEG, electroencephalography; 4D, four-dimensional; MRI, magnetic resonance imaging; fMRI, functional MRI; CT, computed tomography; PET, 
positron emission tomography; AD, Alzheimer’s disease; CNN, convolutional neural network; RCNN, recurrent CNN; SVM, support vector machine; 
LR, logistic regression; KNN, K nearest neighbors; RMSE, root mean square error.

Table 4. Studies using RNN in neuropsychiatry

Reference Method Year Modality Application Result

Truong et al. 2018 [46] DCGAN 2018 EEG Seizure prediction AUC = 80%
Wei et al. 2018 [47] cGAN 2018 Multimodal 

MRI
Predicting myelin 

content
Dice index between ground truth and 

prediction = 0.83
Palazzo et al. 2017 

[48]
LSTM and 

cGAN
2017 EEG Reading the mind Maximum test accuracy = 83.9% for the 

LSTM-based
EEG feature encoder
Inception scores is 5.07 and inception 

classification accuracy is 0.43 for overall

RNN, recurrent neural network; DCGAN, deep convolutional generative adversarial network; cGAN, conditional generative adversarial network; 
EEG, electroencephalography; MRI, magnetic resonance imaging; AUC, area under the curve; LSTM, long-short term memory.

[18], bipolar disorder (BP) and SZ were classified from 
normal controls using array collection data of Stanley 
Neuropathology Consortium databank. They excluded 
patients over 65 years old and achieved an accuracy of 
around 90%. ANN’s have also been used for mild cogni-
tive impairment (MCI) and Alzheimer’s disease (AD) clas-
sification [19]. They used a dataset of cognitive tests 

(Mini-Mental State Examination, Semantic Verbal Fluency 
Test, Clinical Dementia Rating and Ascertaining Dementia) 
from 151 individuals of which 126 having a diagnosis of 
either dementia of Alzheimer type (n: 56) or MCI (n: 70) 
and achieved an accuracy higher than 90% with a sensi-
tivity and specificity of 98% and 96%, respectively. 
Narzisi et al. [20] used ANN to explore the variables in-
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volved in the positive response to treatment as usual 
(TAU) in autism, and classified children with a positive re-
sponse to TAU (reduction in Autism Diagnostic Observa-
tion Schedule; Child Behavior Checklist and Parenting 
Stress Index scores) with 85−90% of global accuracy.

In neuropsychiatry, methods called network-based sta-
tistics (NBS) are also used as an alternative to ANN to 
identify functional or structural connection differences in 
the data. NBS was first presented by Zalesky et al. [21] 
along with a case-control study that identifies discon-
nected subnets in chronic SZ patients with resting-state 
functional MRI data. It was mentioned in this study that 
the neuroimaging data of NBS can play an important role 
in network analysis.

CNNs for Classification of Neuropsychiatric Disorders 
The most frequent use of CNNs in these areas draw at-

tention for AD and MCI however, CNNs have been also 
used in the classification of diseases such as attention-deficit/ 
hyperactivity disorder (ADHD), SZ, BP, and Parkinsonʼs 
disease (PD). Studies using CNNs to classify these diseases 
from healthy individuals have used a range of neuro-
imaging modalities including sMRI, fMRI, resting-state 
fMRI (rs-fMRI), single-photon emission computed tomog-
raphy (SPECT) and a combination of different modalities 
or clinical assessments.

Studies using CNN in neuropsychiatry are shown in 
Table 2. In one of the early studies, Gupta et al. [22] 
trained a sparse automatic encoder to learn features from 
natural images, then applied it to sMRI data via a CNN. 
This method outperforms all previous methods in which 
learned features were extracted from the Alzheimer’s dis-
ease neuroimaging initiative (ADNI) dataset. A few years 
later, Payan and Montana [23] found comparable classi-
fication accuracies using features that were learned from 
3D sMRI images instead of 2D. This could potentially be 
explained by the fact that 3D brain images contain more 
useful patterns for classification. By further expanding 3D 
CNN, Hosseini et al. [24] proposed to predict AD with a 
deep 3D-CNN that learns the general characteristics of 
AD biomarkers and could adapt to different domain data 
sets. There are other researches [25-29] that use subtypes 
of CNN for the classification of AD or MCI vs. normal cog-
nitive (NC) profile. Recent studies have shown that the 
functional organization of the brain is dynamic. It can be 
deduced from the study by Sarraf and Ghassem [27] that 

sMRI can be useful to identify patients with MCI and AD.
Some studies classify the ADNI dataset into four differ-

ent classes as AD, early (E-MCI) and late (L-MCI) stages of 
MCI, and NC. One of these studies is the deep CNN for 
multi-class classification developed by Farooq et al. [30] 
using structural MRI images. This framework was con-
structed using both of the two state-of-the-art CNN mod-
els; namely GoogleNet and ResNet. With the presented 
framework, GoogleNet achieved the highest accuracy. 
Korolev et al. [31] compared two separate network archi-
tectures that classify images from the ADNI data set into 
the above-mentioned four different classes. One of them 
is the plain 3D CNN model, and the other is a ResNet 
architecture. They reported that the networks learned to 
accurately classify AD subjects from the NC, but had diffi-
culty distinguishing them from E-MCI and L-MCI. 
Senanayake et al. [32] inspired by the concepts under-
lying the ResNet, DenseNet, and GoogleNet archi-
tectures, developed a model to classify MRI scans of sub-
jects diagnosed with AD, MCI, and NC. 

Zou et al. [33] introduced a new 3D CNN architecture 
to automatically diagnose ADHD using rs-fMRI signals for 
assisting psychiatrists to diagnose ADHD. They reported 
that their architecture provided better performance 
(65.67%) in the ADHD dataset than other studies in the 
literature. In their later work, Zou et al. [34] have sug-
gested combining low-level imaging attributes from both 
fMRI and sMRI data. With this new architecture, they in-
crease the accuracy of the ADHD dataset to 69.15%. 
Although CNNs have been generally studied on images 
obtained from different modalities, they have also been 
used on non-image data by converting the data into 
images. For example, Chen et al. [35] have converted EEG 
data into 2D topographic maps by applying an azimuthal 
equation projection in their studies to identify EEG abnor-
malities of ADHD children with precise spatial frequency 
resolution. Later, they applied 3D CNN algorithm on their 
data and obtained reasonably high performance (accuracy 
90.29 ± 0.58% and area under curve value 0.96 ± 0.01).

Campese et al. [36] considered and compared shallow 
machine learning models, 2D CNN, and three different 
3D CNN architectures (VNet, UNet, and LeNet) for the 
classification of psychiatric disorders, such as SZ and BP. 
According to their experimental results, 3D CNN models 
were the most successful. It was concluded that working 
on the whole 3D structure of the brain improves overall 



 Overview of Deep Learning in Neuropsychiatry 215

performances, and spatial information about the position 
of each voxel is important and could be used to further 
improve the performance. 

Choi et al. [37] aimed to develop an automated SPECT 
interpretation system based on DL for objective diagnosis. 
Their primary goal was to create a more accurate inter-
pretation system to refine the imaging diagnosis of PD 
with SPECT. They trained the model using a 3D CNN ar-
chitecture, namely PD Net and tested it on Parkinsonʼs 
progression markers initiative (PPMI) and Seoul National 
University Hospital (SNUH) datasets. They trained their 
system to classify PD patients with normal controls. In the 
PPMI dataset, the accuracy values for rater 1 and rater 2 
were 90.7% and 84%, respectively, while the accuracy 
for PD Net was 96% and 98.8% for the SNUH dataset. 

RNNs for Classification of Neuropsychiatric Disorders 
RNNs are known as one of the most powerful types of 

DL algorithms designed to learn underlying patterns of 
time series data. This power of RNNs, made them favor-
able tools to use them for diagnosis, prediction and deci-
sion support purposes.

Until today, RNNs have been widely used in many bio-
medical applications. An important part of these studies 
was presented in the fields of neuropsychiatric disorders 
and these studies are briefly overviewed in the following 
sections and Table 3.

In 2000 and 2001, two different studies were presented 
by Petrosian et al. [38,39]. Rather than using extracted fu-
tures, they used raw EEG signals with RNNs for the first 
time. In the first study, they predict epileptic seizures from 
intracranial and extracranial EEG recordings using a sim-
ple RNN network. They reported that the presence of the 
preictal stage in EEG signals could indicate upcoming epi-
leptic seizures. In the latter study, their aim was early rec-
ognition of AD with a simple RNN network. Under the 
eyes-closed condition, they reported 80% sensitivity and 
100% specificity. For AD, another study was conducted 
based on long-short term memory (L-STM) to predict the 
progression of AD [40]. Using the ability to learn 
long-term dependencies of L-STMs, Dakka et al. [41] pre-
sented a comparative study on SZ. In the study, the classi-
fication performance of SVM, Region-based Convolutional 
Neural Networks (R-CNN), and L-STM networks were 
compared utilizing fMRI data. Results showed that the 
L-STM network outperformed SVM and produced slightly 

better performance than R-CNN (∼1%).
Bidirectional long short-term memory (BI-LSTM) net-

works have also attracted the interest of many researchers 
in the fields of psychiatry and neuroscience. A compre-
hensive study about the classification of dementia other 
than AD, and autism disorders published in 2019 [42]. 
This study covered a comparative analysis of simple RNN 
and BI-LSTM network using MRI, CT, and positron emis-
sion tomography images for these three disorders. Due to 
the ability to learn from both past and future inputs, the out-
come of the study showed that BI-LSTM achieved around 
13.6% higher accuracy than simple RNN for all disorders.

In literature, gated recurrent unit (GRU)-based net-
works were also implemented to predict epileptic seiz-
ures [43] and PD [44] accurately. Researchers proposed a 
GRU network for seizure detection using publicly avail-
able data. One of these studies was published in 2019 
[45] in predicting epileptic seizures. In this study, in-
dependently RNN (IndRNN) has applied the first time the 
seizure/non-seizure classification. In the results, com-
pared to the other two common algorithms (L-STM and 
CNN) IndRNN provided the best accuracy.

GANs in Neuroscience
Nowadays, GANs are used in many areas, such as im-

age conversion (low-resolution to multi-resolution), im-
age segmentation, reconstruction, de-noising, registra-
tion, classification, and completing the missing parts of an 
image. Additionally, GANs are used with medical images 
such as MRI to classify neuropsychiatric disorders such as 
multiple sclerosis (MS). 

Since GANs are relatively new in the field, studies em-
ploying GANs have a few examples in the neuroscience 
literature. Studies using GAN in neuropsychiatry are 
shown in Table 4. One of these studies was published in 
2018, by Truong et al. [46] on predicting seizure. In this 
study, a deep convolutional GAN (DCGAN) was used to 
reveal the underlying relevant structures from EEG signals, 
and results were investigated in three different scenarios 
on two datasets to observe the system’s overall perfor-
mance. Results showed that, compared to the fully su-
pervised CNN, DCGAN achieved approximately 6% and 
12% lower performance for two datasets. 

In 2018, researchers studied on MS to learn myelin 
content using adversarial training [47]. They proposed a 
Sketcher-Refinery GANs which consists of two condi-
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tional GANs (cGANs) to predict the myelin content from 
multimodal MRI. Using this method, the ability to predict 
myelin content at the voxel level was evaluated. The re-
sults of the evaluation concluded that demyelination at 
the lesion sites and the myelin content in normal-appear-
ing white matter could be predicted with high accuracy.

In another study, Palazzo et al. [48] proposed a deep 
network model using L-STM and cGAN on reading the 
mind. They aimed to generate the picture shown in the 
subject with cGAN after removing the distinctive features 
of the picture using L-STM from the subjectʼs EEG signals. 
The resulting images are not the same but can most prob-
ably match the images that the user is looking at.

DISCUSSION 

Detecting and making differential diagnosing of neuro-
psychiatric disorders at their early stages has been a chal-
lenging problem. DL algorithms provide highly accurate, 
generalizable solutions for such problems compared to 
traditional approaches. Different from conventional stat-
istical methods, DL algorithms do not require explicit as-
sumption about each parameter and its distribution and 
use optimization techniques, in particular gradient de-
scent [10], to find the relevant parameters together with 
their appropriate value. Considering their advantage of 
finding and optimizing hundreds or even millions of rele-
vant parameters rather than using prior, explicit assump-
tions, DL provides considerable advantages compared to 
statistical approaches in terms of revealing intrinsic pat-
terns for performing diagnosis and prognosis research in 
neuropsychiatry. 

Different DL algorithms are used depending on input 
data and the task. ANNs are among the first DL archi-
tecture and used for general classification purposes in 
neuropsychiatry. In contrast, CNNs are preferred for neu-
roimaging studies since their convolutional layers extract 
their own image-related features with the convolutional 
kernels. In addition to images, CNNs can also be used 
with one-dimensional (1D) sequential data with 1D con-
volutional kernels. However, CNNs explore spatial fea-
tures and might lose temporal patterns in the data. RNNs 
can exploit long-term temporal information due to their 
architectural state behavior (memory). Hence, RNNs are 
generally used for analyzing temporal and sequential data 
in neuropsychiatric research. GANs are relatively new 

compared to other architectures and have just begun to 
take place in the neuropsychiatric research.

Besides many advantages, DL algorithms also have a 
number of important limitations. DL-based classification 
algorithms generally require very large data sizes com-
pared to typical sample sizes collected in neuro-
psychiatric studies [2]. Areas where DL typically outper-
forms other ML methods, and shallow networks such as 
image recognition or speech analysis may have larger da-
tabases [49]. Training models with many parameters on 
small sample sizes pose a serious challenge to find sol-
utions that will generalize well to the population [50], so 
researchers continue to turn to traditional ML applications 
due to their limited sample sizes. DL algorithms have also 
some limitations such as the black-box problem, requir-
ing large training set, selecting an appropriate network, 
highly complex, and intractable calculations between 
layers so called black-box problem, and need for high 
computational power. 

Black-box problem: Since feature extraction is per-
formed automatically in DL algorithms, why network per-
formed well or why the modified network failed cannot 
be fully explained. This problem can prevent the re-
searchers from understanding causal relations in neuro-
psychiatric disorders [51].

Data requirement: When the number of training sam-
ples is insufficient, the network cannot learn underlying 
hidden patterns causing over fitting. Hence, DL algo-
rithms require large amounts of data that are hard to col-
lect in many neuropsychiatric experiments [52].

Architecture selection: There are no networks that 
provide the best results for any problem, so different algo-
rithms have to be tried, and this complicates the network 
selection. 

Computational power: DL algorithms optimize the 
large amount of parameters demanding huge processing 
load. Recently, cloud computing has been used to train 
large networks on platforms such as Google Colab and 
Amazon Web Services.

FUTURE ASPECTS

It is very likely that the successes of DL algorithms in 
neuropsychiatric disorders will likely keep its rapid growth 
in the near future. New architectures such as capsule net-
works [53] and new hardwares were designed specifically 
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for DL architectures to provide promising solutions to the 
drawbacks of DL algorithms.

CONCLUSION

In this paper, we provide a broad overview of DL algo-
rithms that are used in the field of neuropsychiatry. Con-
sidering a wide range of different architectures, we focus 
particularly on the four different types of DL algorithms 
that have been used recently for analyzing neuropsychiatric 
disorders. In addition to providing an overview, our aim is 
also to guide researchers in choosing the proper DL archi-
tecture for solving their problems in neuropsychiatry and 
provide a perspective for future research.
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