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Abstract

Chemical liabilities, such as adverse effects and toxicity, play a significant role in modern drug discovery process.
In silico assessment of chemical liabilities is an important step aimed to reduce costs and animal testing by
complementing or replacing in vitro and in vivo experiments. Herein, we propose an approach combining several
classification and chemography methods to be able to predict chemical liabilities and to interpret obtained results
in the context of impact of structural changes of compounds on their pharmacological profile. To our knowledge
for the first time, the supervised extension of Generative Topographic Mapping is proposed as an effective new
chemography method. New approach for mapping new data using supervised Isomap without re-building models
from the scratch has been proposed. Two approaches for estimation of model’s applicability domain are used in
our study to our knowledge for the first time in chemoinformatics. The structural alerts responsible for the negative
characteristics of pharmacological profile of chemical compounds has been found as a result of model interpretation.

Keywords: Cheminformatics, Chemography, Applicability domain, Generative topographic mapping, Dimensionality
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Background
During the past decade, computational technologies and
predictive tools have been deeply integrated in the mod-
ern drug discovery process and changed this process
extracting the useful knowledge embedded in the com-
plex arrays of chemical and biological information to se-
lect the most promising compounds as early as possible
and to reveal chemical liabilities in order to reduce the
risk of late stage attrition [1,2]. Chemical liabilities, such
as adverse effects and toxicity, play a significant role in
modern drug discovery process. Methods to avoid or re-
duce chemical liabilities are an important target for drug
discovery and development. Herein, we propose an ap-
proach combining several classification and chemogra-
phy [3] methods to assess chemical liabilities in silico
and to interpret obtained results in the context of
impact of structural changes of compounds on their
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pharmacological profile. Model development has been
performed in six different descriptor spaces for mutage-
nicity, carcinogenicity, acute toxicity and phospholipido-
sis data sets. A set of machine learning methods has
been involved in model development encompassing
well-known approaches with new ones. The combination
of classification and data visualization is a key point for
mechanistic model interpretation which allows one to
understand which changes of the existing structures are
required to improve target properties, to generate new
hypothesis and, finally, to optimize the chemical struc-
tures. Over the years, a number of dimensionality reduc-
tion approaches [4-11] have been proposed and used in
cheminformatics. The most known and widely used
among these methods are Principal Component Analysis
[12], Multidimensional Scaling (MDS) [13,14], Self-
Organizing Maps (SOM) [15], Stochastic Proximity Em-
bedding [16-18], Stochastic Neighbor Embedding [19,20],
Sammon Mapping [21] and Generative Topographic Map-
ping (GTM) [22-24]. In this study, Generative Topo-
graphic Mapping and Isomap as well as their supervised
extensions have been involved. Recently, the unsupervised
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implementations of these approaches have been used in a
number of studies in chemoinformatics [25-32]. These
two representatives of nonlinear dimensionality reduction
methods are related to two different families: distance-
based approaches and topology based approaches. Isomap
reduces the dimensionality of data by using distance pres-
ervation as the criterion, that is intuitively understandable
and easy to compute. GTM is related to the topology
based techniques. This group of methods tries to preserve
topology principle that is concerned to relative proxim-
ities: compounds which are close in the data space remain
close in the data visualization model. Topology preserva-
tion usually is considered as more powerful and in the
same time more complex comparing with distance preser-
vation [4]. The comparison of used techniques on the
considered data is performed in this study. Support vector
machines (SVM) [33], GTM and probabilistic neural net-
works (PNN) [34] have been used for the development of
classification models. Two applicability domain of models’
approaches (AD) are involved in our study in order to as-
sesses the model’s limitation in prediction of new data in
order to reliably predict those data that are structurally
similar to the training set compounds used for model de-
velopment. Recently, several different AD approaches have
been proposed [35-49]. Here, we use the representatives
of two families of AD methods: distance-based (Ball) [50]
and probability-based (Local Outlier Factor LOF) [51].
Here, to our knowledge for the first time, we propose

supervised extension of Generative Topographic Maps
[52] that can be used as a universal tool to visualize the
chemical space and to develop classification models.
New approach for projecting new data using supervised
Isomap [53] without re-building models from the scratch
has been developed. The evaluation of the performance of
the dimensionality reduction techniques and introduced
descriptor spaces to separate different activity classes has
been monitored by three parameters, two of them have
been used in cheminformatics for the first time.

Materials and methods
Data preparation
Data preparation has been carried out using recommen-
dations published in [54]. Chemaxon Standardizer [55]
and Instant JChem [56] software have been used for the
data preparation. Using Standardizer, the explicit hydro-
gen atoms have been removed, the structures have been
aromatized and neutralized. Four data sets have been
used in our study.

Mutagenicity
Ames mutagenicity data from a study by Kazius et al.
[57]. The data set contained 2367 active and 1888 in-
active compounds. External test set consists of 1164 ac-
tive and 2167 inactive compounds.
Carcinogenicity
Data was collected from the distributed ISSCAN Data-
base (part of structure-searchable toxicity DSSTox
public database network [58]). The database has been
specifically designed as an expert decision support tool
and includes the carcinogenicity classification “calls” to
guide the application of SAR approaches. Collected data
set encompass 1088 chemical structures containing 648
compounds annotated as actives and 440 as inactive
compounds. External test set [25] contains 359 actives
and 141 inactives.

Phospholipidosis
A set of 100 phospholipidosis-inducing compounds and
82 negative drug-like compounds were taken from [59],
where the active compounds have been observed to act
on a range of species (humans, rats, mice, dogs, rabbits,
hamsters and monkeys) and on a variety of tissue types
(lungs, kidney and liver). External test set from [60] con-
tains 141 active and 359 inactive compounds.

Acute toxicity
Data from EPA Fathead Minnow Acute Toxicity Data-
base [61] after data preparation stage containing 612
compounds (578 actives and 34 inactives). This database
was generated by the U.S. EPA Mid-Continental Ecology
Division (MED) for the purpose of developing an expert
system to predict acute toxicity from chemical structures
based on mode of action considerations.

Descriptors
In this study, six descriptor types have been involved in
model development. ISIDA package [62] has been repre-
sented by two different descriptor types: (i) ISIDA
Property-Labeled Fragment Descriptors (IPLF) [63]
(atom-centered fragments (augmented atoms) of radius
1 to 3 colored by pH-dependent pharmacophores and
(ii) subclass of ISIDA Substructural Molecular Frag-
ments (SMF) [62] consisting of the shortest topological
paths with explicit representation of only terminal atoms
and bonds, where the values of minimal nmin and max-
imal nmax number of atoms varied from 2 to 15. 2D de-
scriptors of Molecular Operating Environment (MOE
2D) [64] containing different physical properties, subdi-
vided surface areas, atom and bond counts, Kier&Hall
connectivity and Kappa shape indices, adjacency and
distance matrix descriptors, pharmacophore feature de-
scriptors and partial charge descriptors were involved in
model development. The CDK (Chemistry Development
Kit) MACCS keys and extended fingerprints (EF) were
computed using the RCDK package [65] of the R soft-
ware [66]. Finally, Dragon software [67] has been used
for molecular descriptors calculations. Constant and
nearly constant descriptors were removed. Detailed table
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with the final number of descriptors for each data set and
descriptor type is represented in supporting information.

Methods
Classification methods
Support Vector Machines (SVM)
SVM [68,69] is a supervised learning method commonly
used for classification and regression and based on stat-
istical learning theory of Vapnik–Chervonenkis [70,71].
Projecting the original data described by means of de-
scriptor vectors to a higher dimensional feature space
SVM achieves distinct separation between considered
classes of compounds finding the optimal position of the
separating hyperplane between the instances from the
classes.

Generative Topographic Mapping (GTM)
GTM is a specific unsupervised density network based
on generative modeling. It can be considered as prob-
abilistic extension of Kohonen Self-Organizing Maps.
Like SOM, it operates with a grid of K nodes, which can
be considered as analogs of nodes in SOM. GTM creates
a generative probabilistic model in the high-dimensional
data space RD by placing a radially symmetric Gaussian
with zero mean and inverse variance β around projec-
tions of the latent space centers which approximating
the data density. The nonlinear GTM transformation
from the latent space to the data space is defined using a
Radial Basis Function (RBF) network. Thus, each node is
projected to the center of Gaussian belonging to the
manifold (two-dimensional flexible sheet located in the
high-dimensional space in such a way to cover the data
points by stretching or compressing) embedded in the
data space. This manifold can be considered as a repre-
sentation of the latent space in the data space. The coor-
dinates of the Gaussians are computed as a linear
combination of Gaussian basis functions and for the
point x in the latent space its projection to the data
space can be defined as:

y ¼ Wϕ xð Þ ð1Þ

where W- the output weights of RBF.
It relates the real data in the chemical space with

manifold points. Thus, any point of the latent space ℝL

has its own projection in a data space ℝD obtained by
non-linear parameterized mapping y(x, W).
The mapping function y(x, W) is continuous, which

leads to the topographic ordering of the projected
points, i.e. two points that are close in the latent space
are also close in the data space. Defining a probability
distribution over the latent space induces the corre-
sponding distribution over the manifold in the data
space and, thus, imposes the probabilistic relationships
between two spaces.
The iterative Expectation-Maximization algorithm

(EM-algorithm) is used to find the parameters of RBF
network (W and β) maximizing the, so called, log likeli-
hood function which measures a correspondence be-
tween the data distribution and the model.

ℒ W; βð Þ ¼
XN
n¼1

ln
1
K

XK
i¼1

p tnjxi;W; βð Þ
( )

ð2Þ

where ℒ - log likelihood function, β - inverse of variance,
W - the output weights of RBF, K - number of the nodes,
N - number of compounds, p(tn|xi, W, β) – prior probability
generated in a point tn in the data space by the Gaussian
with a center in y(xi, W).
Activity profile of a chemical compound can be assessed

starting from the values of the class-conditioned probabil-
ity distribution function p(t|Ck) computed for each class
Ck, where t is its molecular descriptor vector. Such func-
tion can be build, for each activity class, by training a sep-
arate GTM model on the data belonging to class Ck. The
class-conditioned probabilities p(t|Ck) can be used for
computing posterior probabilities of class membership
P(Ck|t) for a given compound using the Bayes theorem:

P Ck jtð Þ ¼ p tjCkð Þ⋅P Ckð Þ
p tð Þ ð3Þ

where P Ckð Þ ¼ Nk
Ntot

is a prior probability of class mem-
bership (Nk – the number of compounds belonging to
class Ck; Ntot – the total number of compounds),
whereas p(t), the marginal probability density function,
is the normalization factor:

p tð Þ ¼
X
k

p t Ckj Þ⋅P Ckð Þð ð4Þ

The latter ensures that the estimated posterior prob-
abilities are normalized. By applying Function 3 to each
class Ck one can assess the posterior probability of class
membership for each compound. According to statistical
decision theory [72], the optimal class assignment is de-
termined by the maximal value of posterior class prob-
abilities P(Ck|t).

Probabilistic Neural Networks (PNN)
PNN [34] belongs to a group of feed-forward neural net-
work algorithms. It was derived from Bayesian Networks
[73] and Kernel Discriminant Analysis [74]. PNN con-
sists of four layers: input layer, pattern layer, summation
layer and output layer.
An input layer represents the input vector, e.g. a com-

pound from a test set. Each compound is attributed to a
single neuron of pattern layer, for which its descriptors
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represent a weight vector. Therefore all pattern neurons
can be marked with the class labels of corresponding
compounds. Input layer interconnected with a pattern
layer, thus each pattern unit forms a dot product Z of an
input vector and its weight vector. Z is propagated to

the network activation function e
Z−1
σ2 and the result is out-

putted to the summation layer. Each neuron in the sum-
mation layer is connected to pattern units of the
corresponding class. This layer performs simple summa-
tion of the inputs from the pattern layer. The output
layer is a two-input layer, which produces a binary out-
put. It takes into account the contribution for each class
of inputs. The output is a 1 (positive identification) for
that class and a 0 (negative identification) for non-
targeted classes. In fact, there’s no training required
since the compounds of the training set are considered
as the weights to the hidden layer of the network. As no
training required, classifying an input vector is fast, de-
pending on the number of classes and compounds in
use. PNNs have some advantages comparing with multi-
layer perceptron networks: they are faster, relatively in-
sensitive to outliers and generate probability scores.

Dimensionality reduction methods
Supervised Generative Topographic Mapping (s-GTM)
GTM performs visualization by inversing mapping from
the data space to the latent space (unbending this flex-
ible sheet into the rectangular 2D map). For this Bayes
theorem is used. Thus, for each molecule GTM calcu-
lates its probability to be located in the given point of
this map represented by the latent space and visualizes
this molecule according this probability.
In order to make manifolds location in the data space

dependent on distribution not only of the whole data
set, but also of each class, a new supervised training pro-
cedure was performed. Each iteration consists of two
major steps.
On the first step latent points are ascribed to one of

the data classes in consideration. To this end we calcu-
late responsibilities rkn (i.e. posterior probabilities that
data point tn was generated by the component xk).

rkn ¼ p xk jtn;W; βð Þ ¼ p tnjxk ;W; βð Þp xkð ÞXK

i¼1
p tn xi;W; βj Þp xið Þð

ð5Þ

where p xkð Þ ¼ 1
K .

For each latent point xk the following sums are
calculated

Sj ¼ 1
Nj

XNj

i¼1

rki; j ¼ 1; 2 ð6Þ

where index j refers to one of the classes, Nj – is a num-
ber of compounds in this class.
The latent point is associated with the class with the
largest sum of responsibilities, only in a case when the
difference between the sums is greater than the thresh-
old value thr, which is an external parameter of the
method. If not, the latent point remains unlabeled. To
assure the formation of clusters of similarly labeled la-
tent points, the influence of neighbor latent points is
taken into account by decreasing the threshold value if
the latent point on previous iteration had neighbors as-
sociated with the class which responsibility sum is larger
on the current iteration and increasing it if the neigh-
bors are from the opposite class.
The second step contains movement of the latent

points projections towards data points of the corre-
sponding class by adjusting the RBF network. The sum
�T of vector distances from the latent point xk projection
to all the data points tn, for which rkn > rr, is calculated.
Here, rr denotes the responsibility radius, another exter-
nal parameter of s-GTM. If the data point belongs to the
class opposite to that of the latent point, the correspond-
ing distance is multiplied by -1 (thereby, the vector form
the data point to the latent point is obtained). The de-

sired new coordinates �P 0 of the latent point projection
are defined the following way:

�P 0 ¼ �P þ
�T
N

ð7Þ

Then RBF network is trained using the coordinates of

xk in the latent space as input and �P 0 as a target.
Supervised GTM has a number of external parameters

that have a great influence on the model development.
Main parameter for latent points’ colorization is the
threshold value. It should be low enough, in order to
allow a considerable amount of latent points to get la-
beled. The maximum value can be found from analyzing
the responsibility matrix and strongly depends on the
number of latent points: the larger is their number, the
lower should be the threshold value.
The influence of the color of neighbor latent point is de-

fined by additional compound for threshold calculation:

thr01;l ¼ thr þ N2−N1

ρ
ð8Þ

where thr is an original value, N1 and N2 – number of
neighboring latent points of class 1 and 2 respectively, ρ -
an external parameter, thr '1,l - is a threshold value, specific
for class 1 and latent point l. This means, that latent point
l will be labeled as class 1, if

S1 > S2 þ thr01;l ð9Þ
It is obvious, that parameter ρ is required to bring

both terms of Formula 9 to similar scale. Surprisingly, in
quite a wide range it has small impact on the model, but
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can be very useful for imbalanced data to prevent all the
latent point to be marked by the same class label. It
should be altered for fine optimization or in case if no
similarly labeled clusters of latent points are formed dur-
ing the training process.

S-Isomap
Isomap [75] is a low-dimensional embedding method. It
implies that data are disposed along a manifold with a
dimensionality d less than dimensionality do of the ori-
ginal data space. Our aim is to “unroll” the manifold into
a d-dimensional space, so that data points, which are
close to each other on the manifold remain close, and
remote points – stay remote. To this end, we replace
Euclidian distance with geodesic one – the length of the
shortest curve between two points that lies on the
manifold.
Isomap algorithm consists of three steps. On the first

step we define k nearest neighbors of each compound
and assume that Euclidian distances between them are
small and, thus, are nearly equal to corresponding geo-
desic distances. This assumption allows us to create a
weighted graph where only the vertices that are nearest
neighbors are connected and the length of each edge
equals the corresponding distance. This graph is not al-
ways connected and in this case the largest connected
part is taken for the next step. After the graph has been
constructed we compute shortest distances between its
vertices. Then obtained distance matrix is used for
multidimensional scaling (MDS) [13,14] from original to
d-dimensional space. To minimize the cost function in
MDS coordinates of compounds in the new space
should be set to the top d eigenvectors of the matrix τ
~D
� �

[76], where ~D is a matrix of pairwise distances be-
tween training points and τ is an operator, that converts
distances to inner products. For visualization purpose
we set d = 2.
Supervised extension of Isomap was proposed in

[53]. It differs from the original algorithm in its first
step. Instead of Euclidian distance d(xi,xj) between xi
and xj a new measurement of compounds’ dissimilar-
ity is calculated.

D xi; xið Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−e

−d2 xi; xj
� �
β

s
; if yi ¼ yjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e

d2 xi; xj
� �
β

s
−α; if yi≠yj

8>>>>><
>>>>>:

ð10Þ

Here yi denotes class label of compound xi, and β is a
parameter that prevents D(xi, xj) from increasing too
fast. β should depend on data density and average
Euclidian distance between all pairs of data points is
usually used. The parameter α gives some chance to the
points from different classes to be more close to each
other.
After new distances have been calculated k-nearest

neighbors are defined and weighted graph is constructed
in the way it is done in non-supervised algorithm.
A way to extend nonsupervised Isomap to new points

was proposed in [77,78]. There coordinates of new
points are calculated as

ek xð Þ ¼ 1

2
ffiffiffiffiffi
λk

p
X
i

υki Ex0 τ ~D x
0
; xi

� �� �� �
−τ ~D xi; xð Þ� �� �

ð11Þ

where λk is eigenvalues and υki - coordinates of the cor-
responding eigenvectors of the matrix τ ~D

� �
, operator

Ex0 denotes average over the data set. To make this work
for S-Isomap we take into consideration Eq. 11, while
computing ~D xi; xð Þ – geodesic distance from and exter-
nal point x to the training point xi. We assume that the
distance from x to its k nearest neighbors of x is small
enough to make not much difference between two parts
of Eq. 11, and so we can use their average as a geodesic
distance from x to its k nearest neighbors. Other geo-
desic distances are found from matrix ~D by computing
the shortest paths as it has been done while training the
model. If value d2 x;xið Þ

β is too large (which happens when
average distances between compounds in the original
data space are much exceed one), additional coefficient
β1 can be used for both training the model and extend-
ing it to the new points. In this case the parameter β in
Eq. 11 is replaced with β1β.

Applicability domain approaches
Ball
Ball [50] is a distance-based method for outlier detection.
It uses Lp –metric, in which distance between compounds
x and y in feature is space denoted by Formula 11.

distLp x; yð Þ ¼
X
i

xi−yij jp
 !1

p=

ð12Þ

The algorithm optimizes the weight vector w the fol-
lowing way:

minρ
s:t:
X
j

wj xij−aj
�� ��p ≤ ρX

j

wj ¼ 1;wj ≥ 0
ð13Þ

where α is a centroid of the data points and xij denotes
the coordinate j of the compound xi.
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After w is optimized, the compounds xi for whichX
j

wj xij−aj
�� ��p is the largest are considered as outliers. In

other words this method fit Lp “ball” around the data.
This “ball” separates targets from outliers. Figure 1a
demonstrates the case of 2-dimensional feature space
with w1 =w2.

Local Outlier Factor (LOF)
LOF is a probability based method for outlier detec-
tion in a multidimensional dataset [51]. It operates
with local densities of objects in the dataset by using
the definition of local reachability density and calcu-
lates value of “local outlier factor” that indicates the
degree of object’s dissimilarity to other compounds in
the data set.
To define the local reachability density we should first

introduce some other concepts. We call k-distance of
the object p (distk(p)) the smallest value for which there
are at least k objects besides p with a distance from p
smaller or equal to distk(p). K-distance neighborhood of
an object p (Nk(p)) is a set of objects, not including p,
whose distance from p does not exceed distk(p). Let us
specify that the cardinality of Nk(p), which we also de-
note as |Nk(p)|, can be greater than k in case, when in
Nk(p) exist two or more objects whose distances from
p are equal to distk(p). Reachability distance of object
p with respect to object o (rdistk(p,o)) is the maximum
value between k-distance of o and distance from o to
p. The idea of reachability distance is illustrated in
Figure 1b.
Local reachability density can be defined as

lrdk pð Þ ¼
X

o∈Nk pð Þrdistk p; oð Þ
Nk pð Þj j

0
@

1
A

−1

ð14Þ
Figure 1 The methods of applicability domain estimation: a) The Lp “
p and w1 =w2; b) the reachability distance of objects p1 and p2 with r
The local outlier factor is an average of the ratios of
the local reachability densities of objects to those of ob-
ject’s k nearest neighbors (Eq. 15).

LOFk pð Þ ¼
X

o∈Nk pð Þ
lrdk oð Þ
lrdk pð Þ

Nk pð Þj j ð15Þ

In [51] is shown, that LOF of objects that lie ‘deep’ in-
side a cluster approximately equals to 1. It is also shown
that in majority of cases k can be chosen so that for all
objects that belong to some cluster of objects LOF ap-
proximately equals to one, and for any other object it
significantly differs from one. This fact allows us to de-
tect compounds that do not belong to any cluster and so
can be called outliers.

Experimental
The predictive performance of developed classification
models was assessed using five-fold external cross-
validation (5-CV) procedure considering Balanced Ac-
curacy (BA) value [79] as a criterion of the predictive
performance of the models. BA is an average of two
other criteria, Sensitivity and Specificity, which were de-
signed to assess model’s ability to identify compounds
from a certain class (active or positive for Sensitivity and
inactive or negative for Specificity) disregarding its be-
havior for the other class. The combination of Sensitivity
and Specificity should be able to compensate possible
imbalance in the dataset.

BA ¼ 1
2

Sensþ Specð Þ ¼ 1
2

tp
tpþ fn

þ tn
tnþ fp

� 	
ð16Þ

where Sens is Sensitivity, Spec is Specificity, tp stands for
true positive rate (e.g. the number of correctly predicted
active compounds), tn – for true negative (correctly pre-
dicted inactive compounds), fp – for false positive
ball” of radius one in 2-dimentional space for different values of
espect to object o for k = 3.
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(inactive compounds that’ve been predicted to be active),
fn – for false negative (active compounds that’ve been
identified as inactive ones).
LibSVM [80] was used for developing SVM models,

two its external parameters v and γ were varied from
0.01 to 0.91 and from 2-11 to 23 respectively.
GTM models were built with the help of the Netlab

[81] package. This implementation can’t work with
large number of descriptors, so the Principal Compo-
nent Analysis was introduced beforehand. Here, the
following external parameters were gone over. Number
of first principal components, that were retained, was
varied from 20 to 60, number of latent points – from
52 to 502, number of radial basis network centers –
from 22 to 72.
PNN was implemented in Classification Toolbox for

use with MATLAB [82]. Its only external parameter
Gaussian width was chosen from the range of [0; 1].
Among all the developed models for each combination

of dataset, descriptor type and applied method one with
the highest Balanced Accuracy was selected for further
analysis.
For s-GTM the value of threshold was tried from 0 to

0.2, in most cases we used ρ = 40 or ρ = 30. The only ex-
ternal parameter in the movement step (responsibility
radius, rr) has a great influence on the model. Too small
values leads to small changes in the model compared to
unsupervised GTM, too big – to mapping all com-
pounds into a single point. This parameter was sorted
out in a large range.
The performance of data visualization has been moni-

tored with three quantitative measures. Each of them is
normalized to vary from 0 to 1 and can be computed for
a data set where the information about the classes is
available.

Г-score
Г-score [26] takes into account k nearest neighbors of
each projection. The more neighbors of each point be-
long to the same class, the higher is Г-score. Thus,
this score characterizes the ability of a model to
produce similar-structure clustering in a visualization.
To compute Г-score one need to take the following
steps. First, for each compound vl G(l, k) should be
computed:

G l; kð Þ ¼ 1
k

Xk
j¼1

g νl; jð Þ ð17Þ

where k is the number of nearest neighbors, which is an
external parameter, g(νl, j) = 1 if the jth nearest neighbor
of vl in the visualization space belongs to the same class
as vl, g (vl,j) = 0 otherwise. Then for each class i γi (k) is
defined as

γi kð Þ ¼ 1
ni

Xni
l¼1

G l; kð Þ ð18Þ

where ni is a number of compounds of class i. And fi-
nally the Г-score is

Γ kð Þ ¼ 1
N

XN
i¼1

γ i kð Þ ð19Þ

where N is a number of classes.

Distance Consistency (DSC)
DSC [83] is based on the distances from points to the
centroid of each class. It is higher when more points are
closer to the centroid of the corresponding class, then to
any other. The score is equal to 1, if the model projects
compounds into separate clusters, one for each class.
The computation of DSC is similar to the computation
of Г-score, but instead of g(vl, j) the centroid distance
(CD) is used. Beforehand for each class i one need to
find the coordinates of its centroid ci. Then CD(νl, ci) = 1
if the closest to vl is the centroid ci and vl belongs to
class i and CD(νl, ci) = 0 otherwise. Then for each class i

C ið Þ ¼ 1
ni

Xni
l¼1

CD νl; cið Þ ð20Þ

DSC ¼ 1
N

XN
i¼1

Ci ð21Þ

Distribution Consistency (DC)
DC [83] estimates the overlapping of classes. It divides a
map into separate areas and treats them independently.
For each area the value of entropy is computed, which is
0, if all the points in the area share one class label, and
reaches maximum, when every class is represented in
the area by equal number of points. For DC computa-
tion the conception of entropy of the region R is to be
introduced.

HR ¼ −
XN
i¼1

piX
i
pi

log2
piX
i
pi

 !
ð22Þ

Here, pi is a number of molecules of class i in the region
R. And the value of DC is defined the following way

DC ¼ 1−
1
Z

X
R

pRHR ð23Þ

pR is the whole number of molecules in the region R
and a coefficient Z = n log2N is used to range DC from 0
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to 1. In this work to obtain the required regions we di-
vided the visualization map into 15 × 15 equal sized
rectangles.

Results and discussion
Classification models performance
As one can see in Figure 2, for three out of four consid-
ered datasets, the best predictive performance was dem-
onstrated by the Support Vector Machine approach
(carcinogenicity – 68%, mutagenicity – 83%, phospholi-
pidosis – 82%). Yet, in prediction of acute toxicity GTM
significantly outperformed SVM (Balanced Accuracy
reached 86% for GTM and 75% for SVM models). It is
also seen that for GTM approach IPLF descriptors
shown to be less effective than others, while applying
molecular fingerprints for both SVM and GTM ap-
proaches led to high values of Balanced Accuracy. The
behavior of accuracy for acute toxicity predictions sig-
nificantly differs from those for other data sets. Molecu-
lar fingerprints here showed nearly the worst results
among all the types of descriptors in this study (63% for
SVM and 71% for GTM), while the best predictive
Figure 2 Predictive performance (Balanced Accuracy) of SVM (I), GTM
different datasets: acute toxicity (a), carcinogenicity (b), mutagenicity
performance was achieved using descriptors of the MOE
and Dragon packages. The corroboration and a possible
explanation of this fact may be given by found in the at-
tempt of detection of structural alerts that is given
further in this chapter. Implementation of MACCS de-
scriptors failed to mark out any fragments that are re-
sponsible for toxic activity of compounds. The reason
for this may be the imbalance of this particular data set.
The deficiency of inactive compounds leads to difficul-
ties in determining whether the presence of a fragment
in several inactive compounds is an accident. Though in
most cases SVM outperforms GTM, the analysis of its
work is obstructed by the lack of intrinsic information
about the predictive decisions. GTM, on the other hand,
not only gives easily interpretable probability distribu-
tion for each compound, but also can be used as a tool
for data visualization and outlier detection.
PNN may be considered a compromise between the

lack of method’s internal information of SVM and the
decrease of accuracy of GTM. It is not such a universal
tool as GTM but slightly outperforms it (up to 6% for
mutagenicity). At the same time, PNN makes less
(II) and PNN (III) approaches for different types of descriptors and
(c), phospholipidisis (d).
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accurate predictions then SVM, but allows one to look
through the background of each decision by analyzing
pattern and decision layers. There is a similarity in be-
havior of SVM and PNN.
Dependence of Balanced Accuracy from datasets and

descriptor types obtained by PNN is turned out to be
similar to that of SVM, but not of GTM, though both
PNN and GTM are neural networks.
The considered data sets were previously studied by

other teams. Thus, classification of the acute toxicity
data set has been performed in [84]. The compounds
have been divided into classes differently than in our
study and in the original database. A set of different ma-
chine learning approaches including several types of
neural networks as well as SVM, Decision Trees and
Gene Expression Programming have been applied for
classification purposes. Corresponding Balanced Accur-
acy values of the developed models varied in the range
from 0.85 to 0.93. A number of studies [85,86] with the
regression analysis have been published including the
original publication of this data set [61]. The carcinogen-
icity data involved in this study has been used in QSAR
studies mostly as a source of further data retrieval. It has
been used, for example, as a part of considered data in
[87]. A thorough analysis of the mutagenicity data set in-
cluding the applicability domain estimation has been
performed in [40]. The direct comparison of the ob-
tained results performance is straitened because of the
difference in the statistical parameters used. Comparable
results (obtained by combination of ECFP descriptors
with Random Forest and Nearest Neighbor classifiers)
have been recently reported in [88]. In [59] SVM and
Random Forest were applied for phospholipidosis pre-
diction. There Matthews Correlation Coefficient was
used to assess the results performance, and its values
varied up to 0.72 that outperforms the maximum value
of this parameter in our study.
Predictions of models developed on IPLF, ECFP and

SMF descriptors were analyzed. The numbers of com-
pounds containing a certain descriptor d, predicted to
be active ndact and inactive ndinact , were calculated for each
descriptor. Then the corresponding fractions of com-
pounds were calculated as

f rdact ¼
ndact
nact

; f rdinact ¼
ndinact
ninact

ð24Þ

where nact and ninact are total number of compounds, pre-
dicted to be active or, respectively, inactive, by the model
at issue. The rare descriptors with f rdact þ f rdinact < 0:05
were excluded from further consideration. Among other
descriptors were selected for further analysis those with
f ract
f rinact

> 2:5 . Fragment descriptors used for the prediction
of compounds as actives by all three classification methods
are demonstrated in Figure 3.
MACCS descriptors were not effective in detecting

structural alerts for all data sets, but mutagenicity, where
eight descriptors detected mostly nitro groups. There
are limited number of descriptors, which all three
methods considered to be structural alerts. PNN tends
to attribute descriptors to structural alerts that may be
one of the reasons of its inferior efficiency compared to
SVM. The described approach didn’t allow detecting
structural alerts for phospholipidosis. Though more than
30 descriptors were unanimously marked by the methods,
all these descriptors refer to several groups of active com-
pounds with similar structure (an example is demon-
strated in Figure 3).

Performance of data visualization models
In this study, supervised extensions of Isomap and GTM
were used for data visualization.
S-Isomap was first introduced in [53]. It demonstrated

excellent results in separation different classes of train-
ing set. Mapping of the external test set is an important
part of the chemography from the practical point of view
in the context of the possibility of the application of the
developed models to virtual screening and to mechanis-
tic model interpretation which allows one to understand
which changes of the existing structures are required to
improve target properties, to generate new hypothesis
and, finally, to optimize the chemical structures. In the
original article for mapping an external test set it was
recommended to use Radial Basis Network. In our study
it turned out to be ineffective for diverse sets of chem-
ical compounds. In this study, we propose new approach
for the application of models to visualizing external data.
We modified an approach proposed in [77,78] to adapt
it for s-Isomap (See details in Method’s description). The
results of the mapping of external test sets for three
types of activities are demonstrated in Figure 4. Herein-
after visualization maps are presented in the coordinate
system generated be the applied methods. GTM and
s-GTM presume that latent space is a rectangle of
size 2 × 2 with its center located at (0, 0). Isomap and
s-Isomap project compounds into two-dimensional
space so that Euclidean distance (for Isomap) or dis-
similarity measure (see Eq. 10) (for s-Isomap) can be
preserved and the map scale is chosen accordingly.
All axes in Figures 4, 5 and 6 are relative and have
no units of measurement.
One can see that while s-Isomap performed almost

perfect separation of the training set (none of the ap-
plied assessment parameters decreased below 0.91), the
quality of mapping an external set for these models is
highly dependent on the dataset in consideration. An
external set of mutagenicity was mapped quite accurate



Figure 3 Examples of the descriptors frequently used to predict compounds as active by all three applied methods. For each descriptor
an example of inactive compound is given (if any).
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Figure 4 S-Isomap data visualization for considered datasets (the maps for the best combination of involved approach and descriptor
type are given). Each point in the map corresponds to the individual compound (in red, blue - actives, black, green - inactives). In the left
column the values of visualization quality assessment parameters are presented for the training set, in the right one – for the test set.
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Figure 5 The visualization maps of acute toxicity dataset (MOE descriptors), obtained by unsupervised (left) and supervised (right)
GTM. The singled out molecules share similar structure but belong to different classes. They are mapped close to each other by GTM, but are
distinguishable in the s-GTM visualization.
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(Г-score = 0.80, DSC = 0.86, DC = 1.00), while the map-
ping of external set for carcinogenicity is moderate: the
corresponding parameters varied in the range 0.54-0.62.
One of the main factors that determine the quality of
mapping is the distance from each point of the external
set to the nearest neighbors in the training set. The
closer they are, the better are the results. In case, if the
distances are much greater than one, but are of the same
scale, the additional parameter β1 can be used to put
them to the desirable range (look [53] for the specific
values). In the case of carcinogenicity, in particular, the
distances from the points of the external set differ for
several degrees.
The supervised extension of GTM is proposed in this

paper for the first time. It demonstrates a significant im-
provement in visualization performance. An example for
acute toxicity dataset and MOE descriptors is given in
Figure 5. Besides a noticeable increase in all three used
visualization quality measures (Г-score raised from 0.62
for unsupervised model to 0.77 for the supervised one,
DSC – from 0.57 to 0.87 and DC – from 0.85 to 0.95,
respectively), one can see how structurally similar com-
pounds related to different classes and close to each
other on the map obtained by unsupervised GTM are
separated using supervised extension of GTM. Here, two
groups were selected, each of them contained structur-
ally similar active and inactive compounds. The first one
contains toxic 1-Decanol and non-toxic 1-Tridecanol
that differ from each other only by the length of the car-
bon chain (Tanimoto Similarity Coefficient (TSC) is
equal to 1.00). The second group consists of toxic 2-
Undecanone and 2-Dodecanone and similar to them
(TSC = 0.82) non-toxic 3-Tetradecanal. All these com-
pounds were mapped into a small area by unsupervised
GTM while well distinguished applying its supervised
extension.
Mapping of external test set for s-GTM is performed

using the same procedure as for GTM, and the corre-
sponding results are demonstrated in Figure 6. One can
see that presented visualization maps are inferior to
those of s-Isomap. At the same time s-GTM performs
more accurate mapping of the external test set than s-
Isomap, since after the model has been trained, the
training set is mapped using the same algorithm as is
used for the mapping of an external test set. In s-GTM,
if one includes a compound from the training set in the
test set, it will projected exactly to the same point of the
map. This is not so for s-Isomap. Without label informa-
tion each mapping will be an approximation and can be
performed in different ways. The one we’ve proposed is
based on the assumption that label information does not
have much influence on the relative location of the
points that are close to each other. During the training
process s-Isomap changes distances between compounds
in different manners regarding if the compounds belong
to the same class or not but proportionally their relative
position. Thus, new distances for compounds from dif-
ferent classes do not change significantly if they are close
to each other. And if the compound from the test set
has close neighbors in the training set, they will mapped
close even if they belong to different classes. In Figure 6,
as well as in Figure 4, acute toxicity maps are not pre-
sented since we had no corresponding external set at
our disposal. Nevertheless, s-GTM demonstrated rea-
sonably high results visualizing this data set. Considered
quantitative measures for the best maps varied in the
following ranges as a function of the descriptors type: Г-
Score – 0.76-0.77; DSC – 0.72-0.87; DC – 0.93-0.96.



Figure 6 S-GTM data visualization for considered datasets (the maps for the best combination of involved approach and descriptor
type are given). Each point in the map corresponds to the individual compound (in red, blue - actives, black, green - inactives). In the left
column the values of visualization quality assessment parameters are presented for the training set, in the right one – for the test set.
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The given examples allows one to assume that s-GTM
tends to form clusters of identically labeled projections
that is reflected by the increase of the DSC value as
compared with the results of original GTM. For in-
stance, for presented in Figure 6 examples the improve-
ment in DSC is 0.12 for carcinogenicity, 0.18 for
mutagenicity and 0.21 for phospholipidosis. At the same
time, while generally s-GTM provides at least slight in-
crease in all the considered parameters for visualization
quality assessment, it doesn’t separates areas of overlap-
ping as successfully as s-Isomap does. The reason for
this is that s-GTM works with the given relative location
of compounds in the data space, while s-Isomap changes
the distance between the compounds according to the
label information (and thus performs some sort of
metric learning [89]). E.g. if the choice of descriptors
leads to overlapping differently labeled compounds in
the original data space, s-GTM may not be able to sep-
arate them completely, but will project an external set
following the pattern of the training set, while s-Isomap
Figure 7 Balanced accuracy for SVM models as a function of data frac
dissimilarity from the rest of the training set, which was assessed by the ap
phospholipidosis, IV - mutagenicity.
can achieve almost perfect separation for the most diffi-
cult visualization tasks, but then one may face some
problems with the mapping of the external set.
For each presented map (Figures 4, 5 and 6) the values

of three quantitative measures of visualization perfor-
mances are given. None of the parameters is perfect and
can be individually applied for identification of adequate
data visualization models and comparison of different
maps. Г-score, for example, is high for the maps with
randomly mixed compounds that are still grouped in
small clusters. Distance consistency can be low for well
separated classes that form non-convex figures. Distribu-
tion Consistency is usually high for imbalanced dataset
visualization and strongly depends on its external par-
ameter. The effectiveness of each parameter is defined
by the nature of obtained map. For example, the maps
may have similar DC value, but differ in DCS, which can
be interpreted that considered maps have similar class
overlapping and different level of clusterization. In this
study, the combination of DC and DSC parameters
tion. The compounds were removed according to the rate of their
plicability domain methods. I – acute toxicity, II – carcinogenicity, III –
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demonstrates its performance. Another advantage of DC
and DSC is its less time- and memory-consuming com-
pared to Г-score.

Applicability domain of models
Two methods of applicability domain estimation were
applied in this study, their performance was compared.
One of them is a distance-based Ball, the other – a
distribution-based LOF. The Principal Component Ana-
lysis was used as a pre-processing step. Each method
was used to generate a sorted list of compounds accord-
ing to their “outlierness” (the value of LOF function for
LOF and distance to the centroid for ball). The impact
of outliers’ exclusion on the Balanced Accuracy of the
models was analyzed.
In Figure 7 the Balanced Accuracy is given as a func-

tion of data fraction after the exclusion of outliers. The
nature of the changes is affected by the distribution of
compounds between classes in the dataset and predict-
ing performance. In all the presented cases one can see a
certain growth in performance which is different for
considered datasets. Thus, the Balanced Accuracy of
models for predicting carcinogenicity has increased only
by 2.5% and after almost half of the compounds has
been removed, while application of LOF to the SVM
model for phospholipidosis that used SMF descriptors
yield almost linear growth of Balanced Accuracy from
79% to 88% (after excluding 0.4 of compounds).
Figure 8 The examples of outliers, identified by LOF for combination
their exclusion on the Balanced Accuracy of a corresponding GTM mo
marked as the most distant from the applicability domain. The red area on
Accuracy of the model.
For acute toxicity LOF proved to be more efficient
than Ball. This can be explained by the presence of sev-
eral clusters with high density of compounds in the data-
set containing compounds of different classes. The
compounds in these clusters may have been correctly
classified, while a number of false predictions were made
for the compounds lying in the areas of classes overlap-
ping in the midst of the clusters. In this case LOF was
able to detect these mispredicted compounds as outliers
and Ball just excluded the most distant from the cen-
troid compounds in spite of the density distribution.
For phospholipidosis Ball and LOF demonstrated

similar performance, though LOF is a bit more efficient.
It may indicate that the data are slightly clusterized with
an area of clusters’ overlapping and most incorrectly
predicted compounds are located far from the main ag-
gregation of the chemical structures.
For carcinogenicity both applied methods demon-

strated only a small increase of the Balanced Accuracy,
with a better performance of Ball (in Figure 7 blue lines
lie above corresponding black lines). This could happen
if the projection of the dataset into the data space was a
one cluster with irregular density distribution and large
area of classes overlapping.
Similar pattern can be found for mutagenicity. Here,

the maximum increase in BA is only about 2% and Ball
only slightly outperforms LOF for IPLF descriptors. In re-
spect with reasonable performances of both visualization
of phospholipidosis and SMF descriptors and the influence of
del. The compounds given as examples are the ones that were
the diagram reflects the influence of their exclusion on the Balanced
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and classification methods for mutagenicity dataset, one
may assume that this dataset doesn’t contain many out-
liers and applying applicability domain analysis does not
affect the predictive performance of models.
To demonstrate the principles of the outlier detection,

the example of the compounds marked by LOF as the
most dissimilar to the rest of the phospholipidosis data
set was provided in Figure 8. The diagram on the upper
left corner illustrates the effect of their exclusion on the
Balanced Accuracy of the model obtained by GTM.
The SMF descriptors we used represent only terminal

groups (See the section devoted to the descriptor types).
The presented compounds were considered as outliers not
because of the presence of some unique fragment, but be-
cause of unique or rare combination of atoms and bonds
and their relative location. For example, Ceftazidime is
the only compound in the dataset that contains sulfur
with aromatic bond together with distanced heteroatoms
(from 9 to 15 atoms in a fragment). And only in Rifampin
there are carbon atoms with double bonds having from 4
to 10 atoms between them. Not all the given compounds
are characterized by a number of unique descriptors, but
all of them contain plenty of rare ones, as, for example,
Colchicine.

Conclusions
This work concerns an approach that combines several
classification and chemography methods for in silico as-
sessment of chemical liabilities and for the interpretation
of obtained results in the context of impact of structural
changes of compounds on their pharmacological profile.
Support Vector Machines, Generative Topographic Map-
ping and Probabilistic Neural Network were used for clas-
sification. The classification performances were improved
by combination with two applicability domain assessment
approaches (Ball and Local Outlier Factor), and their con-
tribution was analyzed. Here, the supervised extension of
Generative Topographic Mapping was proposed as new
efficient chemography method. New approach for map-
ping new data using supervised Isomap without re-
building models from the scratch has been proposed. The
evaluation of the performance of the dimensionality re-
duction techniques and introduced descriptor spaces to
separate different activity classes has been monitored by
three parameters (Г-score, Distance Consistency and Dis-
tribution Consistency) and their efficiency was compared.
The obtained results, which are comparable with or ex-
ceed those, published by other teams for the given bio-
logical activities, allow one to use proposed approach as
an efficient filter for exclusion of compounds with un-
desirable activities on early stages of drug design process.
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