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ABSTRACT
Background: Ultra-low-field magnetic resonance imaging (ULF-MRI) has emerged as an alternative with several 
portable clinical applications. This review aims to comprehensively explore its applications, potential limitations, 
technological advancements, and expert recommendations.

Methods: A review of the literature was conducted across medical databases to identify relevant studies. Articles 
on clinical usage of ULF-MRI were included, and data regarding applications, limitations, and advancements were 
extracted. A total of 25 articles were included for qualitative analysis.

Results: The review reveals ULF-MRI efficacy in intensive care settings and intraoperatively. Technological strides 
are evident through innovative reconstruction techniques and integration with machine learning approaches. 
Additional advantages include features such as portability, cost-effectiveness, reduced power requirements, and 
improved patient comfort. However, alongside these strengths, certain limitations of ULF-MRI were identified, 
including low signal-to-noise ratio, limited resolution and length of scanning sequences, as well as variety 
and absence of regulatory-approved contrast-enhanced imaging. Recommendations from experts emphasize 
optimizing imaging quality, including addressing signal-to-noise ratio (SNR) and resolution, decreasing the 
length of scan time, and expanding point-of-care magnetic resonance imaging availability.

Conclusion: This review summarizes the potential of ULF-MRI. The technology’s adaptability in intensive care 
unit settings and its diverse clinical and surgical applications, while accounting for SNR and resolution limitations, 
highlight its significance, especially in resource-limited settings. Technological advancements, alongside expert 
recommendations, pave the way for refining and expanding ULF-MRI’s utility. However, adequate training is 
crucial for widespread utilization.

Keywords: Global health, Healthcare innovation, Medical imaging, Technology, Ultra-low-field magnetic 
resonance imaging
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INTRODUCTION

The development of low-cost magnetic resonance imaging 
(MRI) technologies at ultra-low-field (ULF) strengths, that 
is, <0.1 T, has received attention recently.[29] In the realm 
of modern healthcare, medical imaging has emerged as an 
indispensable tool, particularly in the fast-paced and high-
stakes environment of critical care settings, where split-
second decisions can mean the difference between life and 
death, and the importance of accurate and timely diagnostics 
cannot be overstated.[44]

Across the globe, the accessibility and availability of 
imaging technologies paint a diverse landscape, starkly 
contrasting between well-resourced nations and those 
striving to overcome developmental hurdles.[9] By one 
estimate, around 66% of the world’s population lacks access 
to MRI scanners.[15,16] In another illustration, in low-  and 
middle-income countries (LMICs), the ratio of computed 
tomography (CT) scanners to the population is <1 per 
million, in stark contrast to the nearly 40 per million found 
in high-income countries (HICs).[19,21,35] This disparity is 
further magnified for MRI and nuclear medicine devices, 
which translates to a scanner density of only 1.12 MRI units 
per million population (pmp) in LMICs compared to 26.53 
MRI units per pmp in HICs.[22] This divide underscores the 
critical need for equitable healthcare resources and highlights 
the challenges faced by LMICs or developing regions in 
delivering optimal patient care.[9]

At the heart of this imaging mosaic lies MRI, a stalwart in 
medical diagnostics, which largely replaced CT mainly 
due to its enhanced sensitivity, lack of radiation exposure, 
and superior soft-tissue contrast, facilitating the detection 
of varied pathologies, including small infarcts.[30,39,45] Its 
applications span a wide spectrum, illuminating the intricacies 
of neural pathways, detecting brain and musculoskeletal 
injuries,[4] unraveling the mysteries of neuropathologies, 
including strokes and hemorrhages[30], and even peering into 
pediatric imaging.[10]

As technology advances, so does the pursuit for more refined 
and accessible diagnostic tools. This quest gave birth to 
ULF MRI, an innovative approach that resonates with the 
core principles of imaging while carving a unique niche in 
the medical landscape. Despite improving accessibility to 
magnetic resonance, ULF strengths are still progressing 
toward sufficient imaging quality for clinical applications.[29]

The potential benefits of ULF-MRI include its footprint, 
affordability, and ease of transportation to the patient’s location. 
In contrast, conventional MRI offers its own merits, such as 
the ability to perform contrast examinations and a low signal-
to-noise ratio (SNR), but it has limitations, such as its large 
size, high cost, and the requirement for patients to remain 
immobile in a confined space, which can cause discomfort or 

even claustrophobia for some patients.[36,41,48] In addition, unlike 
traditional MRI, ULF-MRI does not require the presence of 
highly trained technicians, potentially reducing the disparity 
in quality of diagnosis that arises due to a lack of trained 
technicians in LMICs.[36,41,48] ULF-MRI holds the promise of 
affordable, convenient, and accessible diagnostic capabilities, 
presenting an opportunity to redefine the standards of care for 
patients with complex medical histories and demographics.

ULF-MRI, with its potential to address some of the 
limitations of traditional MRIs, has garnered attention for its 
possible role in revolutionizing diagnostic imaging. As with 
any pioneering technology, the literature surrounding ULF-
MRI is still in its nascent stages. However, a comprehensive 
assessment of its advantages and limitations has not been 
conducted for clinicians. Therefore, this scoping review aims 
to explore existing evidence and identify knowledge gaps 
for ULF-MRI to provide a singular source with the latest 
information. A  noticeable gap exists in comprehensively 
understanding its full potential, applications, and 
comparative efficacy in various clinical scenarios. Bridging 
this gap is crucial to harnessing the full capabilities of ULF-
MRI and translating them into tangible improvements in 
patient care, which is one of the objectives of this review.

MATERIALS AND METHODS

Operational definitions

The definition of “low‐field” is not consistent; it is sometimes 
used for values below 1.5T and other times confined to 
the range of 0.01T–0.1T.[4] In this review, we adhere to the 
provided categorizations. Although evolving classifications 
may arise to enhance clarity, we can alleviate confusion by 
outlining our terminology as follows.
•	 ULF: ≤0.1T
•	 Low field (LF): ≤0.1T and ≤0.3T
•	 High field (HF): >1.0T and ≤3T
•	 Ultra-HF: ≥7T

This review has been designed to overview existing evidence, 
identify gaps in knowledge, and pave the way for future 
research. Our review adhered to the guidelines laid out by the 
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses extension for Scoping Reviews (PRIMA-ScR).[32]

Search strategy

A comprehensive and systematic literature search was 
performed using multiple databases, including PubMed, 
CINAHL, and Scopus, from inception to May 31, 2023. The 
search included the Medical Subject Headings database and 
utilized the following keywords: “Ultra-Low Field MRI,” 
“Portable MRI,” or “Hyperfine MRI.” Searches were limited 
to abstract, title, and keywords. Backward reference searches 
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(examining references of found articles) and reference 
snowballing (using citations to identify additional papers) 
were also performed to obtain the maximum number 
of articles. There was no restriction on language or date 
to ensure that the most current and relevant data were 
included in the study. The search also included ResearchGate 
and Google Scholar and recognized repositories of Gray 
Literature to capture unpublished studies on this topic.

Study selection

This review considered cross-sectional and cohort studies, 
both randomized and nonrandomized trials, case series, 
case reports, and technical reports that discussed ULF-MRI. 
We excluded review articles, editorials, letters to the editor, 
meeting abstracts, book chapters, guidelines, animal studies, 
and studies lacking full text. Search results were imported 
into Mendeley to remove duplicates, and two reviewers (AA 
and MS) independently screened titles and abstracts based 
on the inclusion criteria. A  third reviewer was consulted 
(HAI) to discuss disagreements. After title and abstract 
screening, the full text was screened independently, with 
conflicts resolved by discussion with a third reviewer (HAI).

Data extraction

For each study that met the inclusion criteria, relevant data were 
extracted, including study design, sample size, study setting, 
applications, limitations, recommendations, and adverse events 
related to ULF-MRI. Two reviewers (SA and UK) independently 
extracted per the column headings using a predefined sheet. Any 
disagreements on the placement of information in the headings 
between the reviewers were resolved by consulting an additional 
reviewer (HAI). Missing data were systematically handled; 
studies with incomplete data were still included, and attempts 
were made to contact authors for clarification. However, the 
analysis relied on available data, with any implications of missing 
data acknowledged within review limitations.

Data analysis

The analysis in this review was conducted through a 
systematic approach. Extracted data from selected studies 
were collated and synthesized to identify patterns, themes, 
and key findings. A qualitative content analysis was used to 
categorize and group information, allowing for an overview 
of the landscape while highlighting trends, gaps, and 
insights related to ULF-MRI applications, limitations, and 
recommendations across the studies.

RESULTS

A total of 25 articles were included after the title, abstract, 
and full-text screening. The flow diagram for article screening 

and selection is depicted in Figure  1. The studies reviewed 
originated from the USA (n = 20), Pakistan (n = 2), China 
(n = 1), UK (n = 1), and Sub-Saharan Africa-USA (n = 1), 
as shown in Figure  2. The distribution of study designs is 
illustrated in Figure 3, while the distribution of publication 
dates is depicted in Figure 4.

The analysis of the included studies revealed several distinct 
themes showcasing diverse applications of ULF-MRI in 
the field of medical imaging. First, ULF-MRI proves to 
be an effective tool in intensive care units (ICUs). It is 
particularly useful for patients who exhibit neurological 
alterations, experience seizures, have unexplained 
encephalopathy, or show abnormal head CT scans.[27,41,45] 
Furthermore, its relevance also extends to ICUs dealing with 
COVID-19 and pediatrics.[1,10,34,43] Second, the integration 
of ULF-MRI into remote neuroimaging settings, such as 
community centers, has significantly improved the patient 
experience during bedside scanning.[11,12] In addition, 
ULF-MRI demonstrates remarkable versatility in various 
clinical applications, from epilepsy and multiple sclerosis 
(MS) to ischemic stroke, intracranial hemorrhage, and 
even intraoperative confirmation of pituitary adenoma 
removal.[1,5-8,12,30,42,47,48] Mapping brain tissue and exploring 
connections have been facilitated through ULF-MRI, 
including neonatal brain tissue mapping and investigating 
the links between brain morphometry and verbal memory 
performance.[11,34] Technological advancements are evident, 
with studies delving into high-quality scan production 
through various reconstruction methods and the integration 
of machine learning techniques.[3,13,17,23,49] Furthermore, ULF-
MRI holds promise in timely diagnosis and safety assurance 
for neuropathological conditions, distinguishing it from 
conventional MRI systems.[27,36,41,45] Ethical considerations 
underscore the importance of community engagement, 
and recommendations are made for overcoming identified 
limitations.[40] The technology’s dynamic assessment of 
pathology changes over time, and its contribution to 
volumetric growth curves and lesion detection further 
emphasizes its significance.[5,10,30,42] ULF-MRI’s role in high-
quality imaging, its portability, and its innovative imaging 
techniques also stand out, along with its potential in cognitive 
data collection and connectivity studies.[2,6,8,11,12,17,47,48] 
These themes collectively shed light on the wide-ranging 
implications of ULF-MRI in advancing medical imaging and 
patient care, as shown in Table 1.

Some of the studies have identified and highlighted 
inherent limitations of ULF-MRI technology. These 
limitations encompass various aspects of the technology’s 
functionality. These include challenges such as a low 
SNR,[5,40,43,48] poor resolution,[5] and its as-yet-unexplored 
ability to perform regulatory-approved contrast-enhanced 
MRIs.[13,45] Moreover, the limitations extend to the inability 
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Records identified from:
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(n =0)
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(n = 31)
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Figure 1: Preferred reporting items for systematic reviews and meta-analyses flow diagram.

Figure 2: Countries on a world map where the studies were published.

to image anatomy beyond the brain and foot,[45] prolonged 
acquisition times,[36] and a reduced ability to detect ischemic 
penumbras and large-vessel occlusions when compared to 
traditional MRI systems.[42] Additional constraints entail 
limited tissue detection due to short relaxation times and 
attenuation of magnetization during transportation [17], 
as well as a capacity to execute solely specific standard 
sequences (T1, T2, fluid-attenuated inversion recovery, and 

diffusion-weighted Imaging).[2] Challenges are further noted 
in terms of accounting for changes in lesion-to-background 
tissue contrast,[3] the absence of functional, perfusion, and 
metabolic imaging on certain systems,[12] and there are 
insufficient validation studies to confirm the reliability and 
effectiveness of ULF-MRIs for their widespread use in new 
medical facilities.[30] The detailed limitations are outlined in 
Table 1.
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A notable theme surfaces through valuable recommendations 
by experts to improve ULF-MRI functionality. 
Stemming from comprehensive analysis, these tailored 
recommendations address identified limitations, driving 
advancements in ULF-MRI. Improvements encompass 
imaging acquisition and quality, introducing novel sequences, 
and AI-driven improvements.[5,45,48] Clinical implementation 
gains momentum with proposals for expanded 

point-of-care MRI availability, aiding temporal profiling 
and interventional studies,[41] and telemedicine integration 
for remote accessibility.[2] Addressing challenges involves 
electroencephalography/near-infrared spectroscopy inclusion 
for image fidelity, along with thorough roadmap review and 
preparedness.[7,12] Rigorous validation emerges through 
prospective multicenter studies focusing on hypoxic-ischemic 
brain injury.[6] Prospects spotlight advanced techniques such 
as interchangeable dual-domain self-supervised networks, 
innovative image restoration, dual-domain reconstruction,[49] 
and AI-driven resolution augmentation.[1] The details of the 
recommendations are shown in Table 1.

DISCUSSION

This review discusses the applications, limitations, 
technological advancements, and recommendations 
associated with ULF-MRI. The findings underscore the 
substantial impact of ULF-MRI in various clinical settings, 
such as pediatrics and adult ICU, particularly to challenges 
posed by the COVID-19 pandemic and even resource-
constrained settings. Notably, ULF-MRI showcased its 
proficiency in improving bedside scanning experiences 
and offering diverse clinical applications spanning epilepsy, 
MS, and ischemic stroke. Technological progress is evident 
through innovative reconstruction methods and integration 
with machine learning techniques. In addition, the review 
identified vital recommendations for further refining and 
expanding the potential of ULF-MRI.

Figure 3: Study Designs included in the review.

Figure 4: Publication dates of included studies.
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Among applications, portable imaging technologies offer a 
range of benefits in ICU settings that traditional MRIs do not. 
For example, ULF MRI enables more frequent monitoring, 
facilitating real-time observation of changes and the 
adjustment of treatment plans.[1] In addition, this technology 
does not use ionizing radiation, unlike X-rays or CT scans, 
crucially safeguarding the health of the compromised 
patients.[36]

ULF MRI’s adaptability facilitates its smooth integration 
into a range of ICU settings, ensuring patient-centric care. 
The minimization of disturbances is noteworthy, as portable 
imaging helps in developing settings that are conducive to 
patients’ recovery.[36] In addition, it enables overall patient 
care in the ICU setting by enabling the maintenance 
of appropriate staffing levels while at the same time 
safeguarding the patient undergoing imaging by eliminating 
potentially deleterious transport. Nevertheless, in the ICU 
setting, patients can be rerouted from fixed CT and MRI to 
portable MRIs, which is especially crucial to combat long 
wait times.[24] Rapid imaging is pivotal to critical care and 
would work to improve patient long-term outcomes.[31]

Early detection and diagnosis are improved through these 
technologies, enabling quick interventions and, hence, better 
patient outcomes.[5] A fundamental advantage lies in its 
cost-effectiveness; portable ULF-MRI systems are not only 
more accessible but also economically viable for populations 
that might otherwise experience delayed diagnoses due to 
financial barriers.[45]

Figure  5 exemplifies the concept of portable devices in a 
clinical setting. Such portable devices can be conveniently 
introduced into healthcare facilities within patients’ reach, 
reducing the need for costly travel. This not only benefits 
patients financially but also increases the likelihood of 
individuals seeking timely medical attention thus, aligning 
with the principle of enhancing health-care accessibility.[14]

Traditional MRI machines require specialized facilities, 
trained technicians, and high maintenance costs.[6] However, 
for any trained technicians, formal operator training 
programs and certifications are needed. This is of special 
importance from a legal perspective and in unionized 
environments. Our review did not find any mention of 
planned programs that would distinguish the role of 
health-care providers and operators, leaving gray areas for 
the assigned roles associated with ULF-MRI use. Hence, 
discussions among medical societies on planning out the 
implementation of such modalities are required.

Portable neuroimaging devices often have lower 
maintenance requirements and can be operated with 
simpler infrastructure with no need to be kept in protected 
rooms due to their lower magnetic field strength.[40] Low-
resource hospitals in LMICs would benefit from reduced 

maintenance costs, making it more sustainable for them to 
offer imaging services. Portable neuroimaging devices can 
be transported to various healthcare settings, including 
remote areas or makeshift clinics.[12] This flexibility ensures 
that underserved populations in rural or remote regions can 
receive essential imaging services without the need to travel 
long distances.[12,48] Portable neuroimaging devices can be 
integrated with telemedicine solutions, allowing experts from 
urban centers or specialized institutions to provide remote 
guidance and consultations.[2] This enhances the diagnostic 
capabilities of low-resource hospitals and clinics.

Portable neuroimaging devices typically consume less 
power compared to their traditional counterparts.[41] This 
is particularly advantageous for hospitals in regions with 
unstable or limited power supply, as it helps minimize 
energy costs and dependence on continuous electricity.[41] 
Traditional MRI machines have complex components that 
may require specialized technical expertise for maintenance 
and repairs. Training personnel to operate and maintain 
traditional MRI machines can be resource-intensive and 
require specialized training.[48] Portable neuroimaging 
devices often have fewer intricate components, leading to 
simpler maintenance procedures that local technicians or 
engineers can perform.[40] Portable devices are designed to 
be user-friendly and may require less training for hospital 
staff, making it easier to maintain and operate the equipment 
effectively.[42] The design of portable neuroimaging devices 
could potentially result in lower long-term maintenance 
costs.[10]

ULF-MRI operates at significantly lower magnetic field 
strengths compared to traditional HF MRI machines.[45] 

Figure 5: The Swoop® Portable Magnetic Resonance Imaging (MRI) 
System™ (Hyperfine, Inc., Guilford, CT, USA). This illustration 
showcases the practical utilization of the Hyperfine Swoop, a portable 
MRI scanner with low magnetic field strength, within a clinical 
context. The system’s mobility allows it to be transported to a patient’s 
bedside, where it can be connected to a standard wall outlet for power. 
The operation of the scanner is managed through a wireless tablet. The 
system boasts a field strength of 0.064T, employs a permanent magnet, 
and carries a weight of approximately 1400 pounds. On the Left: 
Connected to a power outlet and used through a wireless tablet. On 
the Right (Top and Bottom): Use of the system in a practical setting.
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This can reduce the potential risks associated with stronger 
magnetic fields, making it safer[41] for all patients, especially 
infants and younger children. Especially in pediatric patients, 
the open and less confining design of ULF-MRI systems can 
help reduce anxiety and improve comfort during imaging 
procedures.[48] Children are more susceptible to feelings of 
claustrophobia in confined scanner environments compared 
to adults.[5,18] ULF-MRI makes it easier for pediatric patients 
to complete scans without requiring sedation. Anxiety 
decreases the comfort level of young patients and, studies have 
noted claustrophobia to be a drawback to ULF-MRI use.[36,37] 
The more open and less restrictive nature of ULF MRI can 
reduce the feelings of confinement, along with the potential 
of caregivers to remain at the patient’s side and talk with 
them during the exam, making it easier for pediatric patients 
to undergo the procedure without sedation.[25,36] ULF-MRI 
systems may provide overall faster imaging sessions, helping 
to capture images before children become restless.[12] ULF-
MRI can be particularly useful for pediatric neuroimaging, 
which includes brain imaging. It enables the assessment of 
brain development, abnormalities, and conditions affecting 
the pediatric population with improved spatial and temporal 
resolution.[40] Improved image quality, shortened scan times, 
and reduced sensitivity to subject motion have further allowed 
these methods to be adopted for use in pediatric populations 
and, more recently, even in utero fetal imaging.[10]

In addition, it is crucial to discuss the limitations of ULF-
MRI. The limitations largely arise from the imaging 
performance of this modality. Low spatial resolution, a high 
degree of noise and artifacts in the images, and a lengthy 
scan time (particularly when various orientations of the 
images are required) are examples of these shortcomings. 
SNR, which is used for the assessment of noise and signal 
quality by comparing the actual image data (signal) to the 
background noise in the system, uses weak magnetic fields of 
<1T to produce less SNR, resulting in compromised imaging 
resolution.[38] The restricting size and setup of such systems 
that allow the patients to be placed within a limited range, 
causing a low SNR and lesser image quality, has forced the 
experts in the field to be concerned about the effects that it 
would cause on the scanning credibility in the long run. LF 
strengths result in a lower average of nuclear spins. With fewer 
polarized spins, sensitivity declines, necessitating longer 
scans for comparable quality. In a high-paced environment 
of medicine, this poses barriers to timely diagnosis where 
expedience is critical.[38] While faster protocols using under-
sampling are employed, resolution suffers, potentially 
omitting subtle yet vital diagnostic details. In addition, it 
has been stated that low SNR has presented motion artifacts, 
especially when used with longer imaging times, causing 
frequent changes in volumetric measurements.[4] However, 
it is important to note that field strength alone does not 
determine image quality – advancements in radiofrequency 

(RF) coils, pulse sequences, and reconstruction have 
dramatically improved 1.5T MRI over decades without 
requiring stronger magnets.

Nevertheless, a significant watershed moment in ULF-
MRI systems arose from the incorporation of artificial 
intelligence (AI) and deep learning in image reconstruction. 
The implementation of SNR-efficient data acquisition and 
reconstruction algorithms, including parallel imaging, 
compressed sensing, and machine learning-based image 
reconstruction methods, have allowed ULF-MRI to be 
clinically useful.[33] Essentially, a repository of MRI images 
spanning both low and high noise spectra was developed. 
Leveraging this, AI algorithms adeptly discerned the nuances 
of a low-noise dataset, even when presented with a noisier 
counterpart. Employing an array of mathematical and 
computer vision-driven modalities, this technique not only 
enhances image quality but, in theory, holds the potential to 
drastically truncate acquisition times. In addition, scientists 
are now working toward SNR-optimization techniques to 
address low-quality and basic imaging concerns, even if the 
timely diagnostic approaches of LF strength have worked 
out so far in critical patient care. One way to do that is 
using modified, specially designed magnets with more 
homogeneous fields, which improves SNR by reducing 
dephasing. For example, open magnets with B0 fields of 
0.1–0.2T can offer more uniformity and less distortion in the 
system.[46] In addition, more efficient sequences such as long 
spiral readouts, turbo spin echo with full 180° refocusing 
pulses, or balanced steady-state free precession sequences 
may increase SNR per unit time.[46] Signal averaging is 
another strategy for increasing SNR as it increases by the 
square root of the number of averages, though at the cost of 
longer scan times.[38] Recent work further suggests that SNR 
depends not just on B0 strength but also on coil design and 
sample properties, providing opportunities for optimization 
independent of field strength.[33]

Proponents argue that ULF-MRI expands access with 
simpler, low-cost systems in underserved regions. However, 
meaningful access mandates reliable diagnosis. A case report 
regarding a suspected stroke MRI conducted on the same 
day in the same patient using both 3T and 0.064T stated 
that even though the patient’s movement caused low-quality 
scanned images and lacked diagnostic precision needed, the 
results were still reliable and concordant with that of HF 3T 
MRI scanner.[20]

Machine learning has shown promise for improving ULF-
MRI technology. Be it in the form of image reconstruction, 
artifact minimization, contrast enhancement, or predictive 
modeling. One group developed an active electromagnetic 
interference cancellation system using analytical and deep 
learning models that eliminated the need for traditional 
RF shielding in a low-cost 0.55T ULF-MRI system.[29] Lau 
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et al. have helped visualize the idea of the dual-acquisition 
3D super-resolution brain imaging model through deep-
learning of HF brain data in LF, cost-friendly, and RF 
shielding-free MRI scanners to get democratized in resource-
limited settings.[28] Public MRI datasets have also been 
leveraged to generate synthetic ULF training data, which 
reduces manual labor and opens access for various patient 
populations.[3] Deep learning reconstruction techniques like 
the AUTOMAP framework have been applied to enhance 
image quality from low SNR ULF data by suppressing 
artifacts.[26] While challenges remain, these initial advances 
demonstrate the machine and deep learning’s potential to 
address limitations in ULF-MRI sensitivity, artifacts, and the 
need for physical infrastructure – improving accessibility in 
resource-limited regions.

Recommendations

Further work is needed to incorporate ULF MRIs in a larger 
variety of clinical settings and to improve the diagnostic 
capability of these devices. Although ULF-MRI offers several 
advantages over traditional MRI scanners, such as lower cost, 
reduced power requirements, and improved patient comfort, 
the findings of this review suggest several important areas 
for future investigation based on the current limitations 
identified. First, it is recommended that future researchers 
focus on longitudinal studies to understand better the long-
term feasibility and safety effects associated with the use of 
ULF-MRI. In addition, the studies that have been performed 
previously were mainly cross-sectional, cohort study designs, 
and case reports. There is a need for more randomized 
controlled trials to establish causality and determine the 
effectiveness of the new technology in a wide variety of use 
cases – some of which would not be possible with an HF MRI 
scanner. Furthermore, researchers are encouraged to explore 
diverse populations and settings and, therefore, enhance 
the generalizability of findings. It is also advised to employ 
rigorous research designs, utilize standardized measurement 
tools, and employ robust statistical analyses to increase 
the validity and reliability of research outcomes. These 
recommendations may serve as a guide for future researchers, 
enabling them to build on the existing knowledge base and 
contribute to the advancement of ULF MRIs.

Limitations

Limitations of this scoping review include variations in 
the study methodologies of the included studies, potential 
biases from selected literature, and the qualitative nature 
of the data synthesis. Moreover, despite the steps taken, 
the data synthesis is subjective and restricted to predefined 
headings. In addition, the sample sizes of included studies 
were generally small (<100), and therefore, the use of larger 
cohorts in the future is crucial for increased generalizability. 

Potential confounders, such as the status of the patients 
and their comorbidities within each study, were also not 
considered. These factors, while considered, could impact the 
depth and scope of the findings presented.

CONCLUSION

This review has unveiled the remarkable potential of ULF 
MRI across a spectrum of clinical applications. The findings 
underscore its significant role in enhancing patient experiences 
in ICU settings, its diverse clinical utility spanning various 
medical and surgical conditions, and its integration with 
innovative reconstruction methods and machine learning 
techniques. ULF-MRI can be particularly useful in resource-
limited settings to bridge the gap in diagnostic modalities. 
Future work should address its limitations in imaging quality 
and further facilitate its clinical adoption.
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