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Diabetic autonomic neuropathy (DAN) is a serious and common complication of diabetes,
often overlooked and misdiagnosed. It is a systemic-wide disorder that may be asymp-
tomatic in the early stages. The most studied and clinically important form of DAN is
cardiovascular autonomic neuropathy defined as the impairment of autonomic control of
the cardiovascular system in patients with diabetes after exclusion of other causes. The
reported prevalence of DAN varies widely depending on inconsistent definition, different
diagnostic method, different patient cohorts studied. The pathogenesis is still unclear and
probably multifactorial. Once DAN becomes clinically evident, no form of therapy has been
identified, which can effectively stop or reverse it. Prevention strategies are based on strict
glycemic control with intensive insulin treatment, multifactorial intervention, and lifestyle
modification including control of hypertension, dyslipidemia, stop smoking, weight loss,
and adequate physical exercise. The present review summarizes the latest knowledge
regarding clinical presentation, epidemiology, pathogenesis, and management of DAN,
with some mention to childhood and adolescent population.

Keywords: diabetic autonomic neuropathy, diabetes mellitus, autonomic nervous system, hyperglycemia, oxidative
stress, advanced glycation end-products, inflammation, cardiovascular autonomic neuropathy

DEFINITION
Diabetic neuropathy is the main cause of neuropathy in the world
(1). As one of the major complications (2), it plays a key role in
morbidity and mortality in patients with type 1 and type 2 diabetes
mellitus (T1DM and T2DM).

Diabetic neuropathy is classically defined as “the presence of
symptoms and/or signs of peripheral nerve dysfunction in peo-
ple with diabetes after the exclusion of other causes” (3). Sensory,
motor, or autonomic nerves can be involved, often coexisting.

The Thomas and Boulton classifications distinguish between
generalized symmetric polyneuropathies (DPNs) and focal/
multifocal neuropathies (4, 5).

Diabetic autonomic neuropathy (DAN) is included in the first
group. Erroneously considered for a long time in the past century
as a rare event, DAN is indeed a serious and often underestimated
complication of diabetes for two main reasons: by potentially
affecting any circuit/tract of autonomic nervous system, DAN is
a systemic-wide disorder, which encompasses a large spectrum of
organs and leads to significant increase in morbidity and mortal-
ity (6–8); moreover DAN in early stages may be asymptomatic,
especially in young T1DM patients, often compromising early
diagnosis and treatment.

In fact, subclinical DAN can occur within a year of diagnosis
in T2DM and within 2 years in T1DM, while first symptoms may
onset after years (6, 9, 10).

CARDIOVASCULAR AUTONOMIC NEUROPATHY
The most common and studied manifestation of DAN is
cardiovascular autonomic neuropathy (CAN), owing to its
life-threatening complications (arrhythmias, silent myocardial
ischemia, and sudden death) and to its relation with other

microangiopathic comorbidities. CAN is defined as the impair-
ment of autonomic control of the cardiovascular system (5). In
recent years, much attention has been directed to early warn-
ing signs of CAN, detectable in the first years after diabetes
onset by means of validated cardiovascular reflex tests (11) sup-
ported by newer procedures (12–14). Such warning signs include
reduced heart rate (HR) variability during deep breath, prolonga-
tion of QT interval, temporally followed by resting tachycardia,
impaired exercise tolerance, and decreased baroreflex sensitiv-
ity with consequent abnormal blood pressure regulation, and
orthostatic hypotension (12, 15).

A recent cross-sectional study on 387 diabetic adult patients
showed that there was a tendency toward increased CAN preva-
lence with increased resting HR and highlighted the importance
of resting HR as a predictive value for CAN (16). Despite the
evidence of the increase in CAN severity with diabetes dura-
tion, a study on 684 T1DM adult patients has recently reported
that diabetes duration by itself was not a good predictor of CAN
severity (17).

Cardiac alterations initially start with a relative increase of the
sympathetic tone, since diabetic neuropathy firstly affects longest
fibers as those of parasympathetic system (like the vagus nerve).
Sympathetic denervation begins at the following stage, by affect-
ing the heart from the apex toward the base, gradually impairing
ventricle function and resulting in cardiomyopathy (12).

OTHER MANIFESTATIONS OF DAN
The central control of breathing and the sympathetic bronchial
innervation can also be jeopardized by the autonomic impair-
ment. Both peripheral and central chemosensitivity to hypoxia
is altered, as is the bronchomotor tone in lung. The coexistence
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of this finding with other risk factors like lung microvascular
complications, endocrine impairments, obesity, and hyperten-
sion, lead to a higher prevalence of sleep apnea syndrome
(SAS) in diabetic patient (18, 19). Clinical implications of SAS
go from a decrease in quality of life due to sleepiness to an
increased risk of sudden death (20). The meta-analysis of Fuji-
hara et al. indicated that patients with DAN had about twofold
higher prevalence of SAS than patients without DAN, the asso-
ciation being more remarkable among young patients with
T2DM (21).

Furthermore, DAN may manifest with gastrointestinal (GI)
symptoms, as a result of the remodeling of the enteric nervous
system (ENS) induced by diabetes (22). Loss in inhibitory and
increase in excitatory enteric neurons, as well as decrease in sensory
neuropeptides, may induce gastroparesis, esophageal dysmotility,
constipation, diarrhea, fecal incontinence, or gallbladder atony.
In general, the presence of gastroparesis weakly correlates with
upper GI autonomic symptoms (nausea, vomiting, early sati-
ety, postprandial fullness, bloating, and abdominal pain), which
are very common in T1DM and T2DM patients. Nevertheless, it
has been reported (23) that gastric dysmotility has an impact in
acute glycemic control by delaying glucose absorption while, on
the other hand, acute glycemic imbalance may lead to temporary
functional GI abnormalities.

The earlier damages to the sacral parasympathetic fibers con-
tributes to genitourinary dysfunction, starting from impaired
bladder sensation with increase in urine retention to dysuria,
nicturia, incomplete bladder emptying, and urgency up to over-
flow incontinence due to the progressive involvement of motor
sympathetic and somatic nerves (5, 7). Bladder dysfunction as
well predisposes to recurrent urinary tract infections and may be
predictive for long-term development of renal failure.

Diabetic autonomic neuropathy along with vasculopathy,
connective tissue damage, and other psychological, endocrine,
nutritional, and pharmacological factors may influence sexual-
ity, by inducing erectile dysfunction, retrograde ejaculation and
decreased sexual desire in female, dyspareunia, or inadequate
lubrication (24–26).

Autonomic pupillomotor function and sudomotor function
are not spared by DAN. The sympathetic predominance in pupil
control decreases its diameter at rest (27). Preserved pupil miotic
reaction to accommodation-convergence without the miotic reac-
tion to light is named “Argyll-Robertson pupil,” a clinical sign
shared with neurosyphilis. Sweat gland denervation results in skin
dryness, which is strongly linked to the development of typical
foot ulcerations (28).

EPIDEMIOLOGY
The reported prevalence of DAN varies widely depending on dif-
ferent criteria used to define autonomic dysfunction, different type
and number of tests performed, the use of age-related normative
values, the presence or absence of signs and symptoms of auto-
nomic neuropathy, and different patient cohorts studied (5, 14,
29–33).

A meta-analysis of adult patients including 15 studies from
1966 to 2001 reported prevalence rates of CAN between 1 and
90% (30, 34), while Dimitropoulos reported a prevalence of CAN

that varies between 1 and 90% in patients with T1DM and 20–70%
in patients with T2DM (14).

On the other hand, in a community-based population study,
the prevalence of autonomic neuropathy, defined by one or more
abnormal HR variability test results was 16.7% (34, 35).

In 1992, Ziegler et al. in a multicenter study reported that the
prevalence of CAN in T1DM and T2DM patients was 25.3 and
34.3%, respectively (more than two of six abnormal autonomic
function tests). Using more strict criteria (abnormalities in at least
three of six autonomic function tests), the prevalence of CAN
was 16.8% for patients with type 1 and 22.1% for individual with
T2DM (30, 36) and a similar prevalence rate had been found by
O’Brien et al. in patients with T1DM (30, 37).

In our experience (38), 47 of 110 diabetic children and ado-
lescents showed one or more abnormal test for cardiovascular
autonomic dysfunction, while in a prospective study, Solders et al.
reported low sensory nerve conduction and autonomic dysfunc-
tion in about 25% of 144 diabetic children (39), instead Karavanaki
found evidence of reduced papillary adaptation in darkness in
13.8% of children with diabetes compared with 5.8% of controls,
50% of these children also had impaired HR variation (40).

The Diabetes Control and Complications Trial (DCCT) found
that 1.65% had abnormal HR variability at baseline in patients
with <5 years duration of diabetes. The prevalence increased to
6.2% in patients with more than 5 but <9 years duration of diabetes
and to 12.2% by 9 years duration of diabetes (30, 41).

The prevalence of confirmed CAN (defined as the abnormality
of at least two cardiovascular HR results) in clinical studies in uns-
elected populations, including both T1DM and T2DM patients,
varies from 16.6 to 20% (31, 42, 43), and this prevalence may
increase to 65% with increasing age and diabetes duration (29, 31).
In particular, the prevalence may increase up to 38% in T1DM and
44% in T2DM patients aged 40–70 years and up to 35% in T1DM
and 65% in T2DM patients with long standing diabetes (31, 33,
44, 45).

Cardiovascular autonomic neuropathy is detected in about 7%
of both T1DM and T2DM at the time of diagnosis. The annual
increase in prevalence of CAN has been reported about 6% in
T2DM and 2% in T1DM (14, 31, 33, 45, 46).

Diabetic autonomic neuropathy may also cause GI distur-
bances, affecting every part of the GI tract: delayed esophageal
transit (50%), gastroparesis (40%), disordered small and large
intestinal motility with diarrhea (20%) and constipation (25%)
(5, 30).

The prevalence of organic sexual dysfunction is also high with
erectile dysfunction (35–90%) and retrograde ejaculation (32%)
(5, 30).

Bladder dysfunction is detected in 43–85% of patients with
T1DM and in 25% of T2DM (5, 30).

Discussing about pediatric population, a systematic review
by Tang including 19 studies about young people with T1DM,
reported a prevalence of DAN that varied between 16 and 75%
for cardiovascular nerve function tests and between 8 and 16% in
pupillometry studies (27). Furthermore, several studies reported
a significant association between glycemic control, longer dia-
betes duration, and autonomic test abnormalities in young people
(27). Only few studies analyze the association between DAN and
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other microvascular complications in young people with diabetes:
retinopathy and nephropathy seems to be associated with DAN
data from adult population (27).

PATHOGENESIS
HYPERGLYCEMIA AND OXIDATIVE STRESS
An increasing body of data supports the multifactorial genesis of
DAN (Figure 1).

It is well established that hyperglycemia is the main driver of
diabetic complications. The increase in blood and cytoplasmic
glucose induces several metabolic pathways into a vicious cycle
resulting in chronic tissue damage. Within the cell, the mito-
chondrial overproduction of reactive oxygen and nitrogen species
(RONS) like superoxide anion radical, peroxynitrite, and hydro-
gen peroxide is the key event secondary to glucose overload (47).
Longitudinal studies showed an higher prevalence of oxidative
stress in female and an increased risk for sensory dysfunction,
CAN, and mortality (48, 49). RONS in turn, induce DNA dam-
age and consequently overstimulate the poly-ADP ribose poly-
merase (PARP), a repair enzyme inducing NAD consumption and
decreasing glyceraldehyde 3-phosphatedehydrogenase (GAPDH)
activity, already impaired by RONS. This results in endothelial

FIGURE 1 | Pathogenesis of DAN: the role of hyperglycemia as the
cause of inflammation and oxidative stress.

dysregulation and pro-apoptotic signals initiation, like advanced
glycation end products (AGEs) formations. The production of
AGEs leads to structural and functional protein alteration both
in the extracellular matrix and in the intracellular space. AGEs
may also interact with specific receptors (RAGEs), which create a
complex pro-inflammatory cascade (involving IL-1, IL-6, TNF-α,
TGF-β, and VCAM-1) and increase oxidative stress (14, 47, 48, 50,
51). It is noteworthy that experimental studies on RAGE knock-
out mice have demonstrated a reduced frequency in neuronal
complications (52).

Protein kinase C (PKC) and hexosamine pathways are thus
enhanced by the impaired cellular milieu, respectively, resulting
in further production of RONS by means of NADPH oxidase
complex, and in transcription of vascular impairment factors, like
PAI-1, TGF-α, and TGF-β (50).

Furthermore, glucose in excess is converted into polyols, partic-
ularly sorbitol, whose increased flux consumes NADPH, involved
in antioxidant regeneration. Polyols accumulation also inhibits
Na+/K+ ATPase, thus interacting with PKC pathway.

INFLAMMATION
The role of inflammation in the pathogenesis of DAN has increas-
ingly been highlighted. Adhesion molecules expression, cytokine
overproduction, phagocytic cells infiltration, and innate immune
system activation via toll-like receptors (TLR-2 and TLR-4) cause
secondary neuronal and vascular damage, also by determining a
continuous cross-talk with the oxidative stress (53, 54). An increase
in traditional circulating inflammatory markers like C-reactive
protein (CRP), IL-6, IL-8, TNF-α, and endothelin-1, as well as
novel markers like the urokinase plasminogen activator recep-
tor (SuPAR), have repeatedly been detected in several studies on
T1DM and T2DM (55–61). These markers have been considered
predictive for diabetic complications, especially CAN (62).

OTHER FACTORS
With reference to T1DM, the role of autoimmunity has also been
considered. Autoantibodies against sympathetic ganglia, vagus
nerve, and adrenal medulla were found in T1D patients (63, 64).
Recent studies have shown that these antibodies were independent
from islet autoimmunity while the data about the predictivity for
future development of DAN and CAN are conflicting (65, 66).

Microvascular damage itself should not be underestimated as
an indirect factor of neuronal dysfunction and apoptosis (14, 67).
Even an impaired dynamic cerebral autoregulation has been linked
to CAN (68).

Over the past decade, new pathogenic theories closely inter-
related to the classic mechanisms have been suggested. A genetic
predisposition to oxidative stress and an increased risk in neuropa-
thy due to polymorphism of antioxidant enzymes like superoxide
dismutase (SOD), glutathione peroxidase (GPX), and catalase
(CAT) has been demonstrated in a diabetic population (69).

Great interest has been generated by the role of nerve growth
factors in the pathogenesis of DAN: for instance, insulin-like
growth factor-1 (IGF-1) and neurotrophin-3 (NT-3) have been
demonstrated to reverse experimental diabetic neuropathy (70).

Besides the hyperglycemia, of particular interest are the studies
on dyslipidemia showing the free fatty acids being key mediators of
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inflammation and oxidative damage, as well as elevation in plasma
triglycerides or decrease in HDL cholesterol correlating to diabetic
neuropathy (67, 71). Furthermore, in experimental studies, leptin
receptor deletion in mice resulted in autonomic neuropathy (72).

Puberty can also have a certain pathogenetic importance (14,
73, 74): it appears to decrease insulin sensitivity, especially by
rising GH and reducing IGF-1 circulating levels. This may alter
the metabolic profile to promote microvascular complications
(32, 75, 76). Moreover, a poor compliance to therapy and diet
should not be underestimated during adolescence in consequence
of neuropsychological problems.

PREVENTION
Intensive glycemic control seems to be the most effective way to
prevent/delay the onset and slow the progression of autonomic
dysfunction in patients with T1DM (14, 30, 33, 46, 77). The
DCCT demonstrated that intensive glycemic treatment reduces
the onset and the progression of diabetic complications (retinopa-
thy, nephropathy, and neuropathy) and also reduces the rate
of CAN by 53% compared to conventional therapy (41, 45, 78
79). The Epidemiology of Diabetes Intervention and Complica-
tion (EDIC) study has demonstrated persistent beneficial effects
of early strict glycemic control on microvascular complications
and also on DAN: although CAN prevalence increased in both
groups, the former intensive insulin treatment group continued to
have a significantly lower decline in CAN through 13 or 14 years
of EDIC follow-up. These long-term beneficial effects of early
intensive glucose control have been called “metabolic memory”
(14, 30, 33, 45, 80–83). A 3 year prospective trial, by the use of
PET cardiac imaging, has shown a similar beneficial effect of
good glycemic control (defined by HbA1c <8%) on autonomic
function (84).

The EURODIAB IDDM complication study and the EURO-
DIAB Prospective study indicated that, apart from glycemic con-
trol, the incidence of DAN in patients with T2DM may be associ-
ated with potentially modifiable cardiovascular risk factors includ-
ing a raised triglyceride level, body-mass index, smoking, and
hypertension. This finding may be important for the development
of risk reduction strategies (67, 85).

In T2DM, intensive glycemic control seems to be less effective
in prevention of autonomic function deterioration (14, 33). Dur-
ing the VA Cooperative Study, no difference in the prevalence of
autonomic neuropathy derived by the use of intensive insulin ther-
apy and strict glycemic control in patients with T2DM (86). Three
large studies (VADT, ACCOR, and ADVANCE) have reported that
intensive glycemic control does not reduce all-cause mortality
while increases hypoglycemic episode frequency (87–89).

The best results on prevention of autonomic dysfunction in
patients with T2DM seem to be derived by multifactorial strat-
egy treatment and lifestyle modification. Steno-2 study showed
that a multifactorial cardiovascular risk intervention based on
behavioral therapy (diet, smoking cessation, and physical exer-
cise) and pharmacological intervention (to control hypertension,
dyslipidemia, and hyperglicemia) retards development and pro-
gression of CAN in patients with T2DM and microalbuminuria
(90). In the Diabetes Prevention Program (DPP) lifestyle mod-
ification, aimed to lose weight and physical activity, improved

autonomic function indices (HR variation and QT indexes) more
than metformin or placebo (91). A review published in 2007,
has shown the improvement on autonomic function obtained
from weight loss in individuals with diabetes and obesity (92).
On the other hand, moderate endurance and aerobic exercise
seem to improve cardiac autonomic function independent of
BMI, blood pressure, glycemic control, and diabetes duration in
patient with T1DM and T2DM as shown in a recent review in
Ref. (93).

THERAPY
Once DAN becomes clinically evident, there is no treatment, which
can effectively stop or reverse it. The most recent studies con-
firmed the efficacy of intensive insulin therapy in slowing the
progression of both diabetic peripheral neuropathy (94) and DAN
(95). This goal is obtained in T1DM by increasing the frequency
of daily injections or by using a pump for continuous subcuta-
neous insulin infusion. In T2DM, several antihyperglycemic drugs,
like sulfonylureas, GLP-1 agonists, thiazolidinediones, have shown
beneficial effects in diabetes complications (51). In contrast, met-
formin seems to worsen neuropathic damage because of its effect
on vitamin B12 (96). In particular, in the past years, attention
has been paid to CAN outcomes. A number of treatments have
been shown to target and contrast the pathogenetic pathways of
CAN or to improve its symptoms. The efficacy of antioxidants
like α-lipoic acid or vitamin E in increasing HRV is controversial
(14). Aldose reductase inhibitors (ARIs) studies have shown dis-
appointing results because of the poor effects and the induction of
adverse events like hepatic and renal toxicity. Recent experimental
studies on ARIs look promising but they need to be validated (51,
97). The use of agents inhibiting peroxynitrite formation (FP15
and FeTMPS) has recently been examined in diabetic rats with
positive outcomes (8).

Furthermore, C-peptide has shown beneficial effects on HRV
in T1DM patients as it enhanced endoneurial blood flow, Na+/K+

pump activity, and neurotrophic factors release (97). Similarly,
HRV may be treated with antihypertensive drugs (ACE inhibitors,
angiotensin receptor blockers, cardioselective β-blockers, digoxin,
and verapamil) (8).

Symptomatic orthostatic hypotension therapy has been exten-
sively investigated. When lifestyle, behavioral measures, and phys-
ical countermanoeuvres are no longer effective, pharmacolog-
ical intervention should be considered. Although only mido-
drine, an α1-adrenergic agonist, has been approved by the
Food and Drug Administration for the therapy of orthosta-
tic hypotension, α-2 antagonists (clonidine), mineralocorticoids
(9-α-fluorohydrocortisone), non-selective β-blockers, somato-
statin and its analogs (octreotide), erythropoietin, desmopressin
acetate, cholinesterase inhibitor (pyridostigmine bromide), caf-
feine, and acarbose have been found to ameliorate symptoms
through different mechanisms, albeit with limited effectiveness
(12, 14).

Inhibitors of specific antioxidant pathways, especially NF-kB
and Nfr-2, mitochondria targeted antioxidants as well as enhancers
of mitochondrial functions have been suggested as future strate-
gies against DAN (50). Finally, new possibilities have been opened
by stem cells and gene therapy (32).
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CONCLUSION
In conclusion, DAN is a particular aspect of diabetic neuropa-
thy, which leads to multisystemic impairment in both T1DM and
T2DM patients. Cardiac system is the most seriously involved.

The pathogenesis of DAN has yet to be clarified but metabolic,
genetic, and hormonal factors have been reported. The final com-
mon effect seems to be hyperglycemia resulting in oxidative stress
and inflammation.

As nowadays no therapy is able to effectively reverse this
process, prevention with strict glycemic control, multifactorial
intervention, and lifestyle modification remains essential.
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