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Abstract: Catalysis is a topic of continuous interest since it was discovered in chemistry centuries
ago. Aiming at the advance of reactions for efficient processes, a number of approaches have been
developed over the last 180 years, and more recently, porphyrins occupy an important role in this
field. Porphyrins and metalloporphyrins are fascinating compounds which are involved in a number
of synthetic transformations of great interest for industry and academy. The aim of this review is
to cover the most recent progress in reactions catalysed by porphyrins in scalable procedures, thus
presenting the state of the art in reactions of epoxidation, sulfoxidation, oxidation of alcohols to
carbonyl compounds and C–H functionalization. In addition, the use of porphyrins as photocatalysts
in continuous flow processes is covered.
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1. A Brief History of Catalysis

Catalysis is a phenomenon observed since ancient times when Valerius Cordus (1514–1544)
converted ethanol to ethyl ether using sulfuric acid as catalyst [1]. Formally, this term was proposed in
1835 by Berzelius (1779–1848), who defined catalysis as the ability of substances “to awaken affinities,
which are asleep at a particular temperature, by their mere presence and not by their own affinity” [1,2].
Later, Ostwald (Nobel Prize in Chemistry in 1909) introduced a rational physical chemical definition
of a catalyst in 1895 as a “substance that can change the reaction rate (accelerate or inhibit) without
modification of the energy factors of the reaction” [2]. However, the complete molecular basis of the
catalytic processes was established just one century later, [3] and now is widely applied on a large
scale. One important and historical example in industry is the Haber–Bosch process for ammonia
synthesis [3].

In fact, acid-base and metal catalysis have been the most recurrent procedures in industry and
academy over the last centuries, allowing the growth of chemistry with many benefits for society.
However, very complex systems have been developed more recently, including mixed metallo-organic
materials and multiple catalysts [4].

Currently, almost all the chemical processes in industry are mediated by catalysts implying large
annual expenses, involving green and energy-saving processes. In 2009 Noyori [5] stated “I personally
consider that catalysis is the most important subject in chemistry and also technology—80 per cent of
all commercial products are made by catalysis and the total market of these commercial products is
$7 trillion [£4.3 trillion]”; in a very recent editorial Zhou affirms that it is now 90% [6].

Taking into account the challenges of the global economy and the needs for more sustainable
chemical processes, catalysed reactions represent an important role for the development of new
synthetic methods to generate target molecules in fewer steps and with less chemical waste.
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Certainly, the design, synthesis and applications of new catalysts are a hot research topic in the three
scientific disciplines, considered essential for catalysis: chemical engineering, inorganic chemistry and
organic chemistry.

In this context, it is important to highlight that porphyrin derivatives are special molecular
scaffolds, which present relevant activities and cost-competitive transformations in these fields, thus
deserving attention. In this review, we intend to cover the most relevant scalable porphyrin-catalysed
procedures, showing how these compounds represent broad applications in chemistry.

2. General Concepts in Porphyrin Catalysis

Porphyrins and their derivatives are a class of naturally occurring macrocyclic compounds with
intense colour, that have been extensively studied [7–9] due to the key role played in some life processes
(Figures 1 and 2) and involving their special aromatic structure (18π electrons). A suitable example that
can be given is the heme group which contains an iron-porphyrin complex which coordinates oxygen
and carbon dioxide for cellular carriage [10], responsible for cellular respiration, and contributing to the
catalytic activities of many enzymes as cofactors [11]. This is one of the reasons why porphyrin-derived
pigments are called “the Pigments of Life” (Figures 1 and 2) [12,13].
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demonstrated for the first time the presence of iron in blood [14]. Hoppe and Seyler in 1871 isolated 
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The history of the study of metalloporphyrins’ activities began in 1747 when Menghini
demonstrated for the first time the presence of iron in blood [14]. Hoppe and Seyler in 1871 isolated
porphyrins from blood, describing these compounds as pyrrole derivatives, and in 1940 the structure
and biological functions of iron porphyrin complexes were well established [15]. Nowadays, this kind
of metalloporphyrins is well known since they are prosthetic group of an important class of proteins
and enzymes called hemoproteins.

Metalloporphyrins have also been widely studied as bioinspired models of cytochrome
P-450 (hemoproteins), and have exhibited catalytic activity for highly selective monooxygenation
reactions [16], which proceed via formation of a high valence metal-oxygen complex intermediate. In
1979, Groves and co–workers developed the first oxidation system using a synthetic metalloporphyrin
as a bioinspired catalyst [17].

Since then, the synthesis and study of these very robust macrocycles inspired by biological systems,
have been incorporated into the development of sophisticated bulky, chiral, and surface linked catalysts,
because of a variety of properties that turn them useful for organic synthesis (Scheme 1) [18].
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The development of metalloporphyrin catalysts as synthetic tools has recently evolved
significantly [19]. For instance, in catalytic C–H oxidation reactions, the simplest metalloporphyrins
without substituents at the meso positions are not useful because they undergo fast oxidative
degradation [20]. The degradation process (the catalase reaction) leads to hydroxylation at the
meso position, followed by other processes that occur in natural heme degradation, in order to form
meso-hydroxyporphyrin derivatives which then inactivate the catalytic activity [20]. Therefore, it has
been demonstrated that the introduction of phenyl or related groups at the meso positions (Figure 3) is
a good strategy which provides efficient catalytic oxidations by protecting these reactive sites [19].
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In 1997, Dolphin and Traylor proposed a classification system for all the different
metalloporphyrins used in catalysis based on their structural features (Figure 4) [21]. These authors
classified the synthetic metalloporphyrins without substituents in the aryl moiety at the meso positions
as first generation porphyrins, and one example is the meso-tetraphenylporphyrin iron(III) chloride
([Fe(TPP)]Cl) that Groves et al. employed in cytochrome P-450 bioinspired catalysis (Figure 4a) [17].
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Nonetheless, meso–phenyl-substituted metalloporphyrins bearing electronegative and bulky
groups were classified as second-generation porphyrins such as meso-tetrakis(pentafluorophenyl)
porphyrin iron(III) chloride and meso-tetramesitylporphyrin iron(III) chloride (TMPFeCl) (Figure 4b).
The introduction of electron-withdrawing groups (such as halogens) in the β-pyrrole positions
of second-generation porphyrins yields the so-called third generation porphyrin derivatives
(Figure 4c) [22], which provide better catalytic activity over the other porphyrin generations, according
to Haber and co-workers [23].

Over the last few decades, a number of publications have covered the many catalytic activities
of porphyrins; however, these studies were typically focused on methodology, converting only a few
milli- or micrograms of substrates during the experiments. Herein, we intend to present porphyrin
derivatives which are able to perform scaled-up transformations.

3. Oxidation Reactions with Porphyrin and Metalloporphyrin–Based Catalysts

Oxidation reactions are important synthetic tools, and a number of applications can be found in
the chemical industry [24]. The manufacture of products obtained from oxidation of organic substrates
and the production of pharmaceutical ingredients (APIs) are of major importance [25].

The inert nature of C–H bonds requires the use of highly reactive reagents and stoichiometric
amounts of oxidizing agents such as strong inorganic acids, peroxyacids, or highly toxic oxo–metal
oxidants; all yield products with low chemo, regio and stereoselectivity, and generate large amounts of
toxic waste [26]. However, since the discovery of cytochrome P450, the use of metalloporphyrin
catalysts has emerged as an alternative for controlled oxidation reactions in the above aspects
(Figure 5) [27].

This cytochrome family of enzymes play a key role in aerobic oxidation reactions in biological
systems under mild conditions, such as highly selective hydroxylation of alkanes (C–O bond formation
via saturated C–H bond functionalization) (Scheme 2) [28,29]. Metalloporphyrins with ruthenium,
iron, manganese, among other metals, constitute the family of catalysts which are efficient to mediate
C–H oxidations with high selectivity and good yields [30].
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3.1. Epoxidation

The epoxidation of alkenes is one of the processes of great importance in the fine chemical
industry from an economic point of view, because epoxides are useful intermediates in the production
and manufacture of high–value commercial polymers like polyurethane, polyamides, resins, and
polyesters [31]. In addition, this transformation is used to carry out bioinspired oxidations [32] to
produce drug candidates or metabolites (Scheme 3).
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Scheme 3. Metalloporphyrin catalysed bioinspired oxidation of 2-propylquinoline.

Iron porphyrins are effective catalysts for epoxidation of olefins by a number of oxidants, such as
iodosylbenzene (PhIO) and 2,6-dichloropyridine-N-oxide (2,6-Cl2pyNO) [15]. Due to the relevance of
cytochrome P-450 mechanism, catalytic epoxidation by iron porphyrins has gained great attention [33].
Since the Groves and co-workers’ first report in 1983 [34], several research groups have employed
chiral metalloporphyrins [35] to catalyse the oxidation of various organic substrates, and new synthetic
routes have been created to improve the catalytic performance of these heterocyclic complexes.
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The complexes FeTHAPP and FeTCBCPP (Figure 6) are examples of metalloporphyrins which are
able to perform asymmetric induction in the presence of either PhIO or iodosylmesitylene as oxygen
donors, achieving products with enantioselectivities up to 50% and a turnover number (TON) near to
100 [36].
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Optically active epoxides obtained from the catalytic enantioselective epoxidation of alkenes
are important intermediates in asymmetric synthesis, since these compounds are very useful for
the synthesis of chirons with up to two contiguous stereogenic centres [37,38]. Chiral epoxidation
of allylic alcohols provides interesting building blocks for the asymmetric synthesis of biologically
active compounds, and consequently, asymmetric epoxidation of allylic alcohols has been extensively
developed [39]. Chiral non-racemic iron porphyrins with binaphthyl moieties linked to the
macrocycle allow the enantioselective epoxidation of non-functionalized terminal olefins with good
enantioselectivity (>97% for styrene) and high turnover numbers (>16,000) (Scheme 4) [35,40].
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In general, iron porphyrins present good reactivity to catalyse two primary reactions, namely
the enantioselective transfer of an oxygen atom from the hydrogen peroxide to the substrate, and the
decomposition of the peroxide in water and oxygen [41]. On the other hand, the use of manganese
porphyrins as catalysts with hydrogen peroxide as oxidant, yield low enantiomeric excesses for
epoxidations in organic solvents or biphasic medium [42].
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However, Simonneaux and co-workers reported in 2012 the enantioselective epoxidation of
styrene derivatives using H2O2 (ee up to 68%), in water-methanol solutions using chiral water-soluble
manganese and iron porphyrins as catalysts (Scheme 5) [43,44]. They also studied various factors
which affect the catalytic epoxidation of olefins and found that the water present in the methanol is
quite useful [44].
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Besides the hydrogen peroxide decomposition [45] and other factors like the structural features of
the porphyrin catalyst [46], the substrate concentration and the solvent [47] affect strongly the activity
and the selectivity of these catalysts.

Scheme 6 shows how the reaction conditions affect the total conversion of alkenes when an iron
porphyrin is employed as catalyst in a mixture of dichloromethane and methanol. In this case, direct
oxygen transfer to obtain the epoxide is observed from the high-valent Fe(IV)-porphyrin radical cation
complex (path A) [37]. On the other hand, when an aprotic solvent such as acetonitrile is used, the
reactive intermediate is more likely to be the iron hydroperoxide complex, leading to the generation of
competing radicals, thus promoting low selectivity and yield even though an imidazole is added to
help the stabilization of the intermediate (path B) [37].
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Despite numerous studies on the metalloporphyrin–catalysed epoxidation of olefins, the substrate
types in such oxidation systems reported in the literature were rather limited and were usually
confined to electron–rich alkenes such as styrenes, norbornene, cyclohexene and cyclooctene. However,
employing dendritic ruthenium porphyrins [48] as catalysts, and 2,6-Cl2pyNO, t-BuOOH or O2, some
authors have described efficient epoxidations of different alkenes in high yields and turnover numbers
(>700).

Che and co-workers investigated the catalytic properties of the catalyst for the epoxidation of
unsaturated cholesteryl esters with 2,6-Cl2pyNO in dichloromethane using just 0.1 mol % of the
dendritic ruthenium porphyrin catalyst (Scheme 7) [48].
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3.2. Sulfides to Sulfoxides

Since the pioneering work of Oae and co-workers (Scheme 8) [49] on the bioinspired oxidation of
sulfides to sulfoxides, this transformation has gained much attention. Historically, sulfur-containing
compounds have figured as targets for their importance to the pharmaceutical industry as antibacterial
agents [25]. Therefore, the development of catalytic systems for the preparation of optically
active sulfoxides is important, because they are chiral synthons [50] in the synthesis of bioactive
compounds [51].

Sulfoxidation is commonly presented as being a direct pathway for generating sulfoxides,
however, most of the reagents used for this reaction such as iodosylbenzene, peroxyacids, and
stoichiometric oxo-metal oxidants are unsatisfactory due to their high toxicity and low chemoselectivity
between sulfoxide and sulfone products [52]. One successful example of a green protocol was described
by Baciocchi and co-workers, who reported the oxidation of sulfides with an ethanolic solution of H2O2
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and iron tetrakis(pentafluorophenyl)porphyrin as catalyst, thus giving the corresponding sulfoxides
on a gram-scale (Scheme 9) [53].
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The advantages of the process is supported by the absence of excess of oxidant, small reaction 
time, reaction at room temperature, and protection against destruction of the macrocycle by the two 
bulky norbornane groups joined to the central benzene ring [56]; however, this procedure was not 
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Scheme 9. Synthesis of sulfoxides from sulfides.

Among the methods to obtain sulfoxides [54], the enantioselective oxidation of sulfides with small
amounts of metal-organic catalysts is one of the most attractive routes to optically active sulfoxides [55].
For example, Simonneaux and co-workers reported a small scale enantioselective sulfide oxidation
with 35% aqueous hydrogen peroxide and a chiral water-soluble iron-porphyrin as catalyst [56], thus
obtaining sulfoxides with enantioselectivities between 78% and 90% from alkyl aryl sulfides, bearing
electron-withdrawing groups in the phenyl ring (Scheme 10a).
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Scheme 10. (a) Enantioselective sulfoxidation of styrenes using iron porphyrins as catalyst and
hydrogen peroxide; (b) Metalloporphyrin-catalysed epoxidation for the enantioselective synthesis
of Sulindac®.
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The advantages of the process is supported by the absence of excess of oxidant, small reaction
time, reaction at room temperature, and protection against destruction of the macrocycle by the two
bulky norbornane groups joined to the central benzene ring [56]; however, this procedure was not
scaled-up, and only a few micrograms of sulfide were converted.

Another example of an enantioselective oxidation of sulfides (small scale) catalysed by a chiral
manganese porphyrin in an aqueous methanol solution in the presence of H2O2 furnished the
non-steroidal anti-inflammatory drug Sulindac® (Banyu Pharmaceutical Co., Ltd., Tokyo, Japan)
(Scheme 10b) [57].

Nonetheless, the formation of sulfoxides using metalloporphyrins as catalyst can be achieved
by other methodologies, but in this case, on a superior scale. The use of oxygen as the oxidant
with NaBH4 and Me4NOH, [58] is an example to obtain the oxidized product of diarylsulfide
compounds (Scheme 11).
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3.3. Hydroxylation

Once the mechanism by which the cytochrome P-450 acts as catalyst in C–H functionalization
became known [59], with an iron porphyrin core as the active site, many synthetic metalloporphyrins
have been studied as catalyst for this purpose with different organic substrates [60,61]. In fact, this is
one of the most difficult transformations for the petrochemical industry, and one of the major challenge
to convert petroleum derivatives into chemicals of higher value [62].

The first report of metalloporphyrin-catalysed hydroxylation of saturated C–H bonds was
published by Groves and co-workers in 1979 [17], where they showed the catalytic activity of
[Fe(TPP)Cl] towards oxidation of cyclohexane and adamantane with iodosylbenzene to give the
corresponding alcohols. Approximately 10 years later, Groves and Viski reported for the first time,
the enantioselective hydroxylation of ethylbenzenes catalysed by a chiral iron porphyrin with up to
77% ee using PhIO as oxidant (Scheme 12) [63,64]. When manganese was used, higher yields were
obtained, but the enantioselectivity decreased and ketones were also observed as by-products in the
catalytic reactions.

In 1999, Gross and Ini reported the first example of ruthenium-catalysed enantioselective (ee up
to 38%) hydroxylation of racemic tertiary alkanes, using a chiral porphyrin ligand and 2,6-Cl2pyNO as
oxidant (Scheme 13) [65].

Che and co-workers [66] reported the Ru-catalysed enantioselective hydroxylation of aromatic
hydrocarbons with benzylic C–H bonds. Using 2,6-Cl2pyNO as oxidant, the chiral ruthenium
porphyrin was shown to be an effective catalyst for hydroxylating a series of aromatic hydrocarbons to
form the corresponding secondary alcohols. Although the conversion of the substrates was incomplete,
the Ru-based hydroxylation gave yields up to 76% ee (Scheme 14).

In 2012 Simonneaux and co-workers reported examples of enantioselective hydroxylation of
alkanes, with a chiral iron porphyrin as catalyst and using hydrogen peroxide as oxidant in methanol
and water, to give optically active secondary alcohols (ee up to 63%) [43]. Nonetheless, one limitation
for this system is the requirement of an excess of alkane versus the oxidant, and consequently the
asymmetric hydroxylation of alkanes using these conditions is still difficult to proceed without
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electron-deficient chiral metalloporphyrins [44]. The treatment of ethylbenzene with H2O2 and
catalysis by the complex (Scheme 15) afforded a mixture of 1–phenylethanol (57%) and acetophenone
(43%) with 88% of conversion [43].
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Scheme 15. Hydroxylation of ethylbenzene derivatives using a water-soluble iron-porphyrin
as catalyst.

Other types of porphyrins have been explored for this hydroxylation reaction, and in 2007,
Idemori and co–workers studied Mn(III)–tetrapyridylporphyrin as catalyst in the hydroxylation of
cyclohexene [67]. Iida and co-workers have shown that the combination of tert-butyl hydroperoxide
(TBHP) and the osmium(II) carbonyl complex of meso-tetramesitylporphyrin [Os(TMP)(CO)] as oxygen
donor and catalyst respectively (Scheme 16), is an efficient and versatile oxidation system for the
functionalization of bioactive molecules, like bile acids [68] and terpenoids [69].
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The oxy-functionalization system with osmium-porphyrins as catalyst regioselectively
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oxidant system afforded a variety of novel oxygenated derivatives in one-step with good isolated
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3.4. Oxidation of Alcohols to Carbonyl Compounds

The transformation of primary alcohols to the corresponding aldehydes or carboxylic acids is
important for organic synthesis, since these are versatile functional groups which are present in many
building blocks [71] (Scheme 18).
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Conventionally, stoichiometric or even over-stoichiometric amounts of metal oxides and metal
complexes are used for these oxidations [72], but the catalytic oxidation with O2 is of sustainability
interest [73].

Metalloporphyrins have been widely used as catalysts for various oxidations of alcohols
with PhIO [74], 2,6-Cl2PyNO [75], m-chloroperbenzoic acid [76], Bu4NHSO5 (tetrabutylammonium
peroxymonosulfate) [77] and oxygen as oxidants. Woo and co-workers reported the aerobic
homogeneous oxidation of benzyl alcohol with oxo-titanium porphyrin ((TPP)Ti=O), which gave
benzaldehyde in 50% yield [78]. It has been found that (TPP)Ti=O reacts with free diols to yield diolato
complexes [79], and these complexes undergo oxidative cleavage reactions at high temperatures to
release carbonyl compounds.

Ji and co-workers reported a selective oxidation of alcohols to carbonyl compounds by
molecular oxygen with isobutyraldehyde as oxygen acceptor in the presence of ruthenium (III)
meso-tetraphenylporphyrin chloride (Ru(TPP)Cl) (Scheme 19) [80]. In addition, they found that
the catalytic activity and selectivity of metalloporphyrins towards benzaldehydes appeared to be
dependent on the nature of the central ion, and were influenced by the stability of different valences of
the metal atoms and their respective electric potential.
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Oxidation of aldehydes to the corresponding carboxylic acids is one of the ubiquitous
transformation in organic synthesis, for the preparation of numerous APIs, vitamins and fragrances [73].
Rebelo and co-authors investigated the oxidation of benzaldehyde with hydrogen peroxide using a
Mn(III) porphyrin/ammonium acetate system to give benzoic acid in 93% yield [81].

The oxidation of α,β-enones at the γ position is a relevant transformation, with few known
methodologies. Che and co-workers reported the Ru-porphyrin catalysed oxidation of ketosteroids to
form diketosteroids using meso-tetrakis(2,6-dichlorophenyl)porphyrin (Ru(TDClPP)Cl2) as catalyst
and 2,6–Cl2pyNO as oxidant (Scheme 20) [82].
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4. Porphyrin Derivatives Acting as Photocatalysts

Since 1930, when Kautsky first examined the generation of singlet oxygen {O2 (1∆g)}, by energy
transfer from a photoexcited organic molecules to molecular oxygen, this kind of environmentally
friendly methodology has been of interest [83]. The importance of singlet oxygen in many physical
and biological processes has been recognized, with rich details concerning the physics and chemistry
of this electronically excited molecule [84]. Generally, singlet oxygen can be generated by chemical or
photosensitized reactions, but the photochemical approach is more cost-competitive. The mechanism
of the photochemical singlet oxygen generation includes the promotion of the photosensitizer to the
triplet state, passing through a singlet -excited state. At the triplet state many photosensitizers are
able to transfer energy to molecular oxygen leading to the formation of reactive oxygen species (ROS)
(Figure 7) [85].
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In this context, porphyrins are prominent photosensitizers because of their high light absorption
coefficient, exited state energy levels, and high photostability as compared to other dyes. For
example, meso-tetraphenylporphyrin (TPP) has been chosen as one of the most highly effective
photosensitizer [86] for singlet oxygen generation [87].

In 1999, methylene blue was used as photosensitizer in the photooxidation of 8-hydroxyquinoline
to afford quinoline-5,8-quinone in 64%–70% yields [88]. However, Cossy and Belotti showed in 2001 an
improved method using TPP for the photooxygenation of substituted 8-hydroxyquinolines in 50%–89%
yield (Scheme 21) [85].
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Scheme 21. Synthesis of substituted quinoline-5,8-quinones by photooxygenation.

Spivey and co-workers reported in 2010 the synthesis of high-functionalized molecules using
two photooxygenation reactions with oxygen, visible light and TPP as photocatalyst, including a
base-catalysed Kornblum DeLaMare rearrangement. Also, Co(II)TPP was used three times as the
oxidation catalyst (Scheme 22) showing its versatility in the entire synthetic approach [89].

By comparison, in 2011 Nicolaou presented the total synthesis of dithiodiketopiperazines
(epicoccin G and 8,8’-epi-ent-rostratin B) including two TPP-photocatalysed endoperoxide formations,
and base-catalysed Kornblum DeLaMare rearrangements (Scheme 23) [90]. Singlet oxygen generation
by porphyrins can take place in reactions with amines [91]. In the case of secondary amines, there is an
example with the dehydrogenation of N–neopentylallylic amine using TPP as photocatalyst to obtain
the corresponding imine product [92]. Moreover, Che and co-workers [93] reported the highly efficient
photooxidation of secondary benzylamines to imines in 90% yield using molecular oxygen and TPP as
photosensitizer. They used directly the in situ formed imine products for further functionalization to
develop an oxidative Ugi–type MCR (Scheme 24).
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Another photocatalytic application of porphyrins is their encapsulation in microemulsions of
ethyl acetate, water and surfactants to allow the use of TPP as photosensitizer for singlet oxygen
generation [94]. For example, Oelgemöller and co-workers carried out the photooxygenation of
1,5-dihydroxynaphthalene to Juglone (5-hydroxy-1,4-naphthoquinone) as a reaction model in a micellar
system, but only on a small-scale (Scheme 25) [95].
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4.1. Immobilized Porphyrins as Photocatalysts

One approach to enhance the usefulness of metalloporphyrin catalysis, involves recyclability
through heterogeneous catalytic systems [96] by using immobilized homogeneous catalysts [97]. In
the case of asymmetric oxidation, immobilization can avoid the need for chiral ligand recovery. One
of the simplest ways to prepare a polymer-immobilized catalyst is the direct reaction of a simple
functionalized polymer, such as Merrifield‘s resin with a derivative of the desired ligand and then
insertion of the metal [98].

The covalent immobilization of porphyrins on polymeric matrices is very versatile to generate
singlet oxygen [99]. Anchoring the photocatalyst onto a poly(ethylene glycol) allows the easy recovery
of the catalyst from the reaction mixture, as Benaglia and co-workers [100] reported with a new
poly(ethylene glycol)-supported porphyrin which exhibited high activity as catalyst, comparable to
that of a non-anchored sensitizer (Scheme 26).
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Che and co-workers reported a covalently attached carbonylruthenium(II)meso-tetrakis
(pentafluorophenyl)porphyrin (Ru(TPFPP)(CO)) linked to hydrophilic PEG macromolecules [101]. The
resulting PEG-supported Ru-porphyrin was shown to be an effective catalyst for oxidation of both
secondary and tertiary C–H bonds (Scheme 27) [101].
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In 2004, Shiragami and co-workers reported a scaled-up photocatalytic oxidation of cycloalkenes
with O2 under visible-light using a SbTPP(OH)2zSiO2 catalyst (Scheme 28) [102].

Molecules 2016, 21, 310 18 of 26 

 

In 2004, Shiragami and co-workers reported a scaled-up photocatalytic oxidation of cycloalkenes 
with O2 under visible-light using a SbTPP(OH)2\SiO2 catalyst (Scheme 28) [102].  

 
Scheme 28. Different photocatalytic properties of antimony SbTPP(OH)2\SiO2 supported over silica. 

Recently, Gonsalves and co-workers have synthesized supported materials with a non-symmetric 
halogenated tetra-arylporphyrin linked to Merrifield polymers, thus showing high efficiency in the 
scalable photooxygenations of different substrates using sunlight (Scheme 29) [103,104].  

 
Scheme 29. Solar photooxygenation with supported porphyrins on Merrifield-modified polymers. 

  

Scheme 28. Different photocatalytic properties of antimony SbTPP(OH)2zSiO2 supported over silica.



Molecules 2016, 21, 310 19 of 27

Recently, Gonsalves and co-workers have synthesized supported materials with a non-symmetric
halogenated tetra-arylporphyrin linked to Merrifield polymers, thus showing high efficiency in the
scalable photooxygenations of different substrates using sunlight (Scheme 29) [103,104].
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4.2. Continuous Flow Photocatalysis

Continuous flow reactors have recently emerged as a new technology in chemical synthesis with
a wide variety of efficient applications [105,106]. The small inner dimensions of these devices in
combination with their continuous flow operation make them especially attractive for photochemical
reactions [107]. A combination of a microreactor system as the reaction medium and visible light
offers a new and convenient approach towards green photochemistry, in which the production of
by-products is also reduced. As a result, not only enhanced selectivity is achieved, but also the
amount of environmentally problematic and expensive solvents are reduced, and the security is really
improved [108].

Reactions with singlet oxygen (1O2) have not been used for large/industrial scale processes for
the following reasons: (I) decreased photochemical efficiency of photosensitizers in batch conditions
due to low light penetration in classic photochemical reactors); (II) the need for high substrate dilutions
due to the safety requested by procedures with peroxides and endoperoxides formation; (III) major
by-products formation; and (IV) difficulty to find suitable non-flammable and environmentally friendly
solvents, with no incompatibility with singlet oxygen generation [109].

However, the use of supercritical carbon dioxide as solvent brings a solution to some of these
issues, because it is neither flammable nor toxic, completely miscible with gases, and has a lower
viscosity and higher diffusivity [110]. For example, George and co-workers reported the production of
artemisinin (gram-scale) using liquid CO2 as solvent and an immobilized porphyrin as photocatalyst.
They developed a simple method to anchor TPP or TPFPP onto the sulfonated cross-linked polystyrene
ion-exchange resin (Amberlyst-15) [111]. This yielded a dual catalyst, with both the Bronsted acid
and photo-catalytic functions needed to convert dihydroartemisinic acid (DHAA) into artemisinin,
currently a very important drug for malaria treatment (Scheme 30). The reaction resulted in 98% of
conversion using toluene as co-solvent.
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Scheme 30. One-pot semi-synthesis of artemisinin using immobilized TPP on Amberlyst-15. 

George and co-workers have been the pioneers in using this kind of green solvent approach, since 
in 2011 they reported the use of supercritical carbon dioxide as solvent with different immobilized 
photosensitizers for the continuous flow synthesis of ascaridole from α-terpinene (Scheme 31) [112]. 
The authors coupled a porphyrin to amino functionalized PVC beads by covalent amide linkage, and 
achieved the continuous production of ascaridole and also citronellol hydroperoxide from citronellol 
[112]. 

Lapkin and co-workers[113] have also carried out a gram-scale photooxygenation/rearrangement 
of α-pinene using TPP as sensitizer in dichloromethane under continuous flow conditions, thus 
obtaining pinocarvone quantitatively. This oxygenation reaction was efficiently performed in a 
segmented gas-liquid flow condition in a very safe manner (Scheme 32) [113]. 
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George and co-workers have been the pioneers in using this kind of green solvent approach, since
in 2011 they reported the use of supercritical carbon dioxide as solvent with different immobilized
photosensitizers for the continuous flow synthesis of ascaridole from α-terpinene (Scheme 31) [112].
The authors coupled a porphyrin to amino functionalized PVC beads by covalent amide linkage,
and achieved the continuous production of ascaridole and also citronellol hydroperoxide from
citronellol [112].Molecules 2016, 21, 310 20 of 26 
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generation under continuous flow by using TPP as photocatalyst, and a very simple photoreactor 
(perfluoroalkoxy—PFA—tube coiled around a cooled glass tube and a lamp) [114]. In this apparatus, 
the illumination of the entire solution is highly efficient because the tubing has a constant, narrow 
diameter, and it is positioned very close to the light source. Thus, an increasing quantity (space-time 
yield = 200g·day-1) of the product can be produced in long-term experiments (Scheme 33).  

 
Scheme 33. Synthetic route to artemisinin from artemisinic acid. 

Scheme 31. Continuous flow reactions with PVC amino-functionalized covalently bonded porphyrin.

Lapkin and co-workers[113] have also carried out a gram-scale photooxygenation/rearrangement
of α-pinene using TPP as sensitizer in dichloromethane under continuous flow conditions, thus
obtaining pinocarvone quantitatively. This oxygenation reaction was efficiently performed in a
segmented gas-liquid flow condition in a very safe manner (Scheme 32) [113].

Seeberger and co-workers have also established gram-scale photoinduced singlet-oxygen
generation under continuous flow by using TPP as photocatalyst, and a very simple photoreactor
(perfluoroalkoxy—PFA—tube coiled around a cooled glass tube and a lamp) [114]. In this apparatus,
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the illumination of the entire solution is highly efficient because the tubing has a constant, narrow
diameter, and it is positioned very close to the light source. Thus, an increasing quantity (space-time
yield = 200g¨day´1) of the product can be produced in long-term experiments (Scheme 33).
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The above mentioned method has opened perspectives to carry out the crucial step in the synthesis
of artemisinin (Scheme 33) [115]. The great importance of TPP as photosensitizer for singlet oxygen
production can be highlighted by the green gram-scale synthesis of artemisinin recently established as
an industrial process by the pharmaceutical company Sanofi [116].

To finish this section, it is important to highlight the recent and cost competitive protocol for
photooxygenation of naphthols under continuous flow conditions, which was recently published
by Oliveira, Miller and McQuade [117]. A careful methodological study was performed using four
different porphyrins as photocatalysts. After optimisation of the reaction conditions, a number of
substituted naphthols were converted into the corresponding naphthoquinones in high yields, as well
as in gram-scale experiments (up to 1.4 g produced continuously in a 24 h experiment) (Scheme 34).
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5. Perspectives 

Over the last few decades, synthetic organic chemists have taken advantage of the catalytic 
activity of porphyrin derivatives to develop novel laboratory procedures and to enhance existing 
protocols, but normally on a small scale. Recently some scaled-up reactions have been described 
showing that these macrocycles are very useful for increasing the scope of available multiple 
catalysts. The challenge now is to explore the broad potential and applications of these catalysts for 
the synthesis of important products from an economic point of view, for the industrial and 
pharmaceutical industries.  

In addition, another challenge is to introduce simple and cost-competitive synthetic routes [118] 
to access porphyrinods, since historically these compounds are considered rare due to low synthetic 
yields and tedious purification protocols. Therefore, it is necessary to incorporate enabling techniques 
for the optimisation of the production and utilization of these fascinating naturally inspired 
catalysts, and chemists must now consider these robust compounds for many new purposes. 
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5. Perspectives

Over the last few decades, synthetic organic chemists have taken advantage of the catalytic activity
of porphyrin derivatives to develop novel laboratory procedures and to enhance existing protocols,
but normally on a small scale. Recently some scaled-up reactions have been described showing that
these macrocycles are very useful for increasing the scope of available multiple catalysts. The challenge
now is to explore the broad potential and applications of these catalysts for the synthesis of important
products from an economic point of view, for the industrial and pharmaceutical industries.

In addition, another challenge is to introduce simple and cost-competitive synthetic routes [118]
to access porphyrinods, since historically these compounds are considered rare due to low synthetic
yields and tedious purification protocols. Therefore, it is necessary to incorporate enabling techniques
for the optimisation of the production and utilization of these fascinating naturally inspired catalysts,
and chemists must now consider these robust compounds for many new purposes.
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