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Abstract: The use of 225Ac in prostate-specific membrane antigen (PSMA)-targeted radioligand
therapy (RLT), either as monotherapy or in combination with 177Lu, is a promising therapy approach
in patients with metastatic castration-resistant prostate carcinoma (mCRPC). In this study, we report
the efficacy and safety of [225Ac]Ac-PSMA-617 augmented [177Lu]Lu-PSMA-617 RLT in 177Lu-naive
mCRPC patients (n = 15) with poor prognosis (presence of visceral metastases, high total tumor
burden with diffuse bone metastases or a short PSA doubling time of <2 months). Biochemical (by
PSA serum value) and molecular imaging response (by [68Ga]Ga-PSMA-11 PET/CT) was assessed
after two cycles of [177Lu]Lu-PSMA-617 RLT, with at least one [225Ac]Ac-PSMA-617 augmentation.
In addition, PSA-based progression-free survival (PSA-PFS), overall survival (OS) and toxicity
(according to CTCAE) were analyzed. We observed a biochemical- and molecular imaging-based
partial remission in 53.3% (8/15) and 66.7% (10/15) of patients, respectively. The median PSA-PFS
and OS was 9.1 and 14.8 months, respectively. No serious acute adverse events were recorded. Two
out of fifteen patients experienced grade 3 anemia. No other grade 3/4 toxicities were observed.
RLT-related xerostomia (grade 1/2) was recorded in 2/15 patients. Our data showed a high clinical
efficacy with a favorable side effects profile of [225Ac]Ac-PSMA-617 augmented [177Lu]Lu-PSMA-617
RLT in this highly challenging patient cohort.

Keywords: metastatic castration-resistant prostate cancer; 225Ac and 177Lu; PSMA radioligand
therapy; biochemical response; molecular imaging response; efficacy; toxicity

1. Introduction

Prostate carcinoma is currently ranked as the second most frequent malignancy and the
fifth leading cause of cancer-related death in men worldwide [1]. Patients with metastatic
prostate carcinoma are initially treated with androgen deprivation therapy (ADT), but
a considerable number of patients ultimately reach the stage of metastatic castration-
resistant prostate carcinoma (mCRPC) [2,3]. Bone and lymph node metastases are the most
dominant, but visceral, especially liver metastases, are also quite frequent [4,5].

In the stage of mCRPC, taxane-based chemotherapy (docetaxel and cabazitaxel) [6,7],
treatment with novel androgen axis drugs (NAAD) (abiraterone or enzalutamide) [8,9] and
bone-seeking 223Ra therapy (Xofigo®) [10] are currently the standard treatment options [11],
which are approved by the European Medicines Agency (EMA) and the US Food and
Drug Administration (FDA). Recently, the EMA and FDA approved PARP-inhibitors (e.g.,
Olaparib) [12] for the treatment of mCRPC patients with alterations in DNA repair genes
(e.g., BRCA 1/2 mutations).
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If these treatments are ineffective, radioligand therapy targeting the prostate-specific
membrane antigen (PSMA) is a promising therapy approach. PSMA, also known as folate
hydrolase 1 (FOLH1) or glutamate carboxypeptidase II (GCPII), is one of the proteins
overexpressed on the surface of prostate carcinoma cells [13]. PSMA radioligand ther-
apy (PSMA-RLT) using the beta emitter lutetium-177 ([177Lu]Lu-PSMA-617 or [177Lu]Lu-
PSMA-I&T) revealed encouraging data in several studies in mCRPC patients [14–19].
Both PSMA-targeted radioligands are currently being tested in phase III trials (e.g., VI-
SION Trial (NCT03511664) and SPLASH Trial (NCT04647526)). Lutetium-177 (177Lu, half-
life: 6.7 d) emits beta particles with moderate energies (Emax = 0.5 MeV), resulting in a
particle range of about 2 mm, and a linear energy transfer (LET) of about 0.2 keV/µm
in tissue [20]. PSMA-RLT using alpha emitters as actinium-225 (225Ac, half-life: 9.9 d),
whose particles (E = 5.8 MeV) possess a shorter tissue range (<0.1 mm) and a higher LET
(>50 keV/µm) [21,22], may have an advantage in comparison to PSMA-RLT with beta emit-
ters. Recently, clinical studies using 225Ac-labeled PSMA-ligands ([225Ac]Ac-PSMA-617 or
[225Ac]Ac-PSMA-I&T) have reported remarkable therapeutic results [23–30]. However, the
stronger radiobiological effect of alpha particles also has implications to the organs at risk.
Xerostomia seems to be the most prominent adverse effect of PSMA-RLT using 225Ac and
may compromise the patients’ quality of life. Combining alpha emitters in adjusted doses
as an augmentation to PSMA-RLT with beta emitters (so-called ‘tandem therapy’), may
reduce these significant adverse effects in comparison to monotherapy using alpha emitters
alone, while potentially increasing the therapeutic efficacy in comparison to monotherapy
using beta emitters alone.

[225Ac]Ac-PSMA-617/[177Lu]Lu-PSMA-617 tandem therapy was reported as an ef-
fective treatment option in patients who exhibited progress or an insufficient response to
[177Lu]Lu-PSMA-617 monotherapy [31,32]. Evaluation of this treatment approach combin-
ing alpha and beta RLT might thus be performed in other mCRPC patient cohorts. To the
best of our knowledge, [225Ac]Ac-PSMA-617 as an augmentation to [177Lu]Lu-PSMA-617
RLT in 177Lu-naive mCRPC patients has not been reported to date. In this retrospective
study, we report on the efficacy and safety profile of [225Ac]Ac-PSMA-617 augmentation in
the initial phase of [177Lu]Lu-PSMA-617 RLT in patients with highly advanced mCRPC
attributed to poor prognosis.

2. Materials and Methods
2.1. Patient Population

This retrospective study comprised n = 15 patients with highly advanced mCRPC who
received [225Ac]Ac-PSMA-617 augmentation in the initial phase of [177Lu]Lu-PSMA-617
RLT. The initial phase was defined as the first two cycles of [177Lu]Lu-PSMA-617 RLT.
Patients had to be in a highly advanced mCRPC setting with poor prognosis fulfilling at
least one of the following criteria: (1) visceral metastases, (2) high total tumor burden with
diffuse bone metastases or (3) short PSA doubling time (DT) of <2 months. Each patient
received multiple therapies prior to PSMA-RLT, including ADT, NAAD, chemotherapy,
Olaparib and 223Ra therapy. Detailed information on patient characteristics and pre-
treatments is summarized in Table 1. All patients received at least two cycles of PSMA-RLT
and were imaged by [68Ga]Ga-PSMA-11 PET/CT before and after two cycles of PSMA-RLT.
PSMA-RLT was performed on a compassionate use basis under the German Pharmaceutical
Act §13 (2b). All patients were treated within a prospective patient registry (REALITY
Study, NCT04833517). Patients gave their consent after being fully informed about the
risks and potential adverse effects of these procedures. Moreover, the patients agreed to
the publication of the resulting data in accordance with the Declaration of Helsinki. The
study was approved by the local Institutional Review Board (ethics committee permission
number 140/17).
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Table 1. Patient characteristics.

Patient Characteristics Value

Age
Median (min.–max.) years 77 (57–88)
Age ≥ 70 years, % (n) 73 (11)

PSA, median (min.–max.) in (ng/mL) 272 (58–3389)
Alkaline phosphatase, median (min.–max.) in (U/L) 115 (8–1659)
Hemoglobin, median (min.–max.) in (g/dL) 11 (8–13)
ECOG performance score category, % (n)

≤1 80 (12)
2 13 (2)
3 7 (1)

Sites of metastases, % (n)
Bone 100 (15)
Lymph node 73 (11)
Liver 40 (6)
Lung 13 (2)
Other 7 (1)

Prior therapies, % (n)
Prostatectomy 47 (7)
Radiation 53 (8)
ADT 100 (15)
Abiraterone or Enzalutamide 100 (15)

Abiraterone 80 (12)
Enzalutamide 87 (13)
Abiraterone and Enzalutamide 67 (10)

Chemotherapy 67 (10)
Docetaxel 67 (10)
Cabazitaxel 27 (4)
Docetaxel and Cabazitaxel 27 (4)

223Ra 20 (3)
Olaparib 13 (2)

Adverse prognostic factors at baseline, % (n)
Visceral metastases 47 (7)
High total tumor burden with diffuse bone

metastases 53 (8)

PSA DT < 2 months 67 (10)

2.2. Treatment Details

All patients (n = 15) received two cycles of [177Lu]Lu-PSMA-617 with at least one
[225Ac]Ac-PSMA-617 augmentation. The first (n = 7), the second (n = 3) or both (n = 5)
of the two cycles of [177Lu]Lu-PSMA-617 were augmented with [225Ac]Ac-PSMA-617.
[225Ac]Ac-PSMA-617 and [177Lu]Lu-PSMA-617 were synthesized analogously to published
procedures [23,33] and administered during an inpatient stay according to German radi-
ation protection regulations. The mean cumulative activity of [177Lu]Lu-PSMA-617 and
[225Ac]Ac-PSMA-617 after the two initial PSMA-RLT cycles was 13.4 ± 2.6 GBq (corre-
sponding to 169 ± 53 MBq/kg body weight (BW)) and 3.7 ± 1.7 MBq (corresponding to
45 ± 19 kBq/kg BW), respectively. The mean administered activity of [177Lu]Lu-PSMA-617
per cycle was 6.7 ± 1.8 GBq (corresponding to 84 ± 29 MBq/kg BW). The mean adminis-
tered activity of [225Ac]Ac-PSMA-617 augmentation per cycle was 2.7 ± 1.1 MBq (corre-
sponding to 33 ± 15 kBq/kg BW). Applied activities of both radioligands were individually
chosen in consideration of each patient’s condition, the total tumor burden and the sites
of metastases. Each patient received external cooling of the salivary glands and 1 L intra-
venous hydration (0.9% NaCl) 30 min before to two hours after radioligand administration.
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2.3. Therapeutic Efficacy

Therapeutic efficacy was assessed through a change in biochemical and molecular
imaging variables after the two cycles of PSMA-RLT. In addition, progression-free and
overall survival were determined.

Biochemical response rate. PSA serum values were collected at the start of PSMA-RLT
and a few weeks (mean 6 ± 2 weeks) after the second cycle of PSMA-RLT. Biochemical
response was defined as a PSA reduction of 50% or more from baseline. Progression was
defined by an increase of at least 25% and at least 2 ng/mL according to the PCWG3
guideline [34]. Stable disease was defined as a PSA change between −50% and 25%.

Molecular imaging response rate. All patients were imaged by PSMA PET/CT mean
12 ± 14 days before the first and mean 6 ± 2 weeks after the second cycle of PSMA-
RLT. [68Ga]Ga-PSMA-11 was used for imaging as it is currently the most widely used
PET tracer in clinical routines and studies on prostate cancer [35]. PET/CT images were
recorded on an EANM-accredited Biograph 40 mCT (Siemens Medical Solutions, Knoxville,
TN, USA) with a mean administered activity of 124 ± 25 MBq [68Ga]Ga-PSMA-11 and
an incubation time of approximately 60 min. PET data were acquired from vertex to
mid-femur (3 min per bed position) and reconstructed using an iterative 3-dimensional
ordered subset expectation maximization algorithm (3 iterations; 24 subsets; slice thickness
5 mm). Molecular imaging parameters as the whole-body total lesion PSMA (TLP) and
molecular tumor volume (MTV) were determined by semi-automatic tumor segmentation
using Syngo.Via (Enterprise VB 40B, Siemens, Erlangen, Germany). In accordance with
Ferdinandus et al. [36], a threshold of standard uptake value (SUV) ≥3.0 was used for tumor
segmentation. The physiological uptake of salivary glands, lacrimal glands, liver, spleen,
intestine, kidney, ureter and bladder was manually excluded. Due to the intense uptake
in the healthy liver, a threshold of 1.5 × SUVmean of the normal liver tissue was applied
for the segmentation of liver metastases. TLP was calculated as the summed products of
volume and uptake (SUVmean) of all lesions, similar to the established parameter of total
lesion glycolysis (TLG) in [18F]FDG PET/CT [37]. To avoid altering PSMA expression,
ADT and NAAD were continued unchanged between both [68Ga]Ga-PSMA-11 PET/CT
scans [38]. Modified PET response criteria in solid tumors (PERCIST) version 1.0 [39] were
applied as follows: Molecular imaging-based partial remission represents a decrease of
MTV or TLP > 30%. Progressive disease was defined as an increase in MTV or TLP > 30%
or the appearance of any new lesion. A change in MTV or TLP in the range between +30%
and −30% was considered as stable disease.

Survival. Analysis of progression-free survival (PFS) and overall survival (OS) based
on the Kaplan–Meier method was performed using Prism 8 (GraphPad Software, San
Diego, CA, USA). PFS was based on frequent measurements of the PSA serum value
(PSA-PFS) and defined as the time interval from the start of PSMA-RLT to whichever came
first: (1) evidence of PSA progression, (2) the last study visit or (3) death of any cause. OS
was defined as the interval from the start of PSMA-RLT to the occurrence of any of the
following: (1) death from any cause, (2) the last study visit or (3) initiation of a different
treatment (e.g., chemotherapy). The cut-off follow-up date was 15th March 2021.

2.4. Safety

To assess hematotoxicity, blood tests, including hemoglobin, leukocytes and platelets,
were performed before the start and after two cycles of PSMA-RLT (on the same days as the
PSA serum values were measured). Renal toxicity was assessed by using the creatine-based
estimated glomerular filtration rate (eGFR). Toxicity and adverse events were recorded
and graded according to the Common Terminology Criteria for Adverse Events version
5.0 (CTCAE). Xerostomia was evaluated on patient reports via a questionnaire during
hospitalization and at each outpatient visit. The questionnaire used was developed by our
department and was based on CTCAE, including dry mouth feeling during the day, at
night or while eating; swallowing problems; and intake alterations.
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3. Results
3.1. Therapeutic Efficacy
3.1.1. Biochemical Response Rate

At the baseline of treatment, the mean PSA serum value was 667 ± 895 ng/mL
(range: 58–3389 ng/mL). After two cycles of [177Lu]Lu-PSMA-617 RLT with at least one
[225Ac]Ac-PSMA-617 augmentation, the mean PSA serum value was 249 ± 398 ng/mL
(range: 1.4–1391 ng/mL). The median decrease was −72.6%. The detailed values of each
patient are compiled in Table 2, and the relative changes are illustrated as a waterfall plot
in Figure 1A.
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Figure 1. Waterfall plots of individual changes in (A): PSA serum value; (B): MTV; (C): TLP. Red:
progressive disease (PD). Blue: stable disease (SD). Green: partial remission (PR). * Appearance of
new metastases.
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Table 2. Individual values of PSA, MTV and TLP at baseline and after two cycles of [177Lu]Lu-PSMA-
617 RLT with at least one [225Ac]Ac-PSMA-617 augmentation.

Patient
Number

Baseline After Two Cycles

PSA
(ng/mL)

MTV
(mL)

TLP
(mL × SUV)

PSA
(ng/mL)

MTV
(mL)

TLP
(mL × SUV)

1 58 110 636 37 101 491
2 822 2357 17,374 606 2420 16,688
3 1055 2695 20,288 185 1453 7646
4 66 137 1131 1 9 36
5 97 299 1518 77 39 215
6 3389 4002 34,273 172 2050 13,861
7 130 156 1295 12 11 53
8 317 479 2431 87 156 647
9 416 329 3732 26 131 1291

10 1630 2142 11,234 1391 1835 8841
11 272 306 3096 24 78 341
12 204 1128 6727 857 2747 15,497
13 210 2415 15,417 139 1993 11,260
14 127 1883 13,036 99 226 953
15 1214 930 11,179 17 65 387

Biochemical partial remission was observed in 8/15 (53.3%) patients, stable disease in
6/15 (40%) and progressive disease in 1/15 (6.7%).

3.1.2. Molecular Imaging Response Rate

The total tumor burden was assessed by MTV and TLP in PET images. At baseline,
the mean MTV and TLP were 1291 ± 1210 mL (range: 110–4002 mL) and 9558 ± 9476 mL ×
SUV (range: 636–34,273 mL × SUV), respectively. After two cycles of [177Lu]Lu-PSMA-617
RLT with at least one [225Ac]Ac-PSMA-617 augmentation, the mean MTV and TLP were
887 ± 1047 mL (range: 9–2747 mL) and 5214 ± 6381 mL × SUV (range: 36–16,688 mL ×
SUV), respectively. Individual values are summarized in Table 2. The median decreases in
MTV and TLP were 60.1% and 65.4%, respectively. Figure 1B,C show the relative changes
of each parameter for all patients. The results of response assessments using MTV or TLP
were identical for all patients.

Molecular imaging partial remission was observed in 10/15 (66.7%) patients and
stable disease in 2/15 (13.3%) patients. Progressive disease was recorded in 3/15 (20%) pa-
tients, all with the appearance of new metastases and in one with an additional increase in
TLP/MTV > 30%. [68Ga]Ga-PSMA-11 PET/CT images of two responders with correspond-
ing PSA, MTV and TLP values are shown in Figure 2. Molecular imaging and biochemical
response assessment were concordant in 11/15 (73.3%) cases. The four discrepant cases
were all assessed as stable diseases by PSA; however, two were categorized as partial
remission and two as progressive disease (due to the appearance of new metastases) by
molecular imaging.

3.1.3. Survival

After the two cycles of PSMA-RLT, 13 patients continued PSMA-RLT with a median of
two cycles (range: 1–6 cycles). Two additional [225Ac]Ac-PSMA-617 augmentations were
given to 3/13 patients, and one additional [225Ac]Ac-PSMA-617 augmentation was given
to 4/13 patients. From the date of initiating PSMA-RLT, the median follow-up time was
19.4 months. Fourteen out of fifteen patients (93.3%) exhibited disease progression during
follow up. The median PSA-PFS was 9.1 months (CI: 3.7–10.4 months) (Figure 3A). At the
end of the study, 12 patients had died due to mCRPC. The median OS was 14.8 months (CI:
9.6–16.9 months) (Figure 3B).
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Patients showing partial remission by molecular imaging after two cycles reached a
median OS of 16.5 months (CI: 9.8–19.4 months), whereas patients showing either stable
or progressive disease only reached a median OS of 9.6 months (CI: 4.0–15.2 months)
(Figure 3C). The difference in median OS was statistically significant (p = 0.017, log-rank
test). In contrast, no significant difference (p = 0.116, log-rank test) in OS was noted
between patients showing biochemical partial remission and those with biochemical stable
or progressive disease. Median OS values were identical compared to molecular imaging,
9.6 months (CI: 4.0–26.7 months) for patients with biochemical stable or progressive disease
and 16.5 months (CI: 9.8–19.4 months) for patients showing partial remission.
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Figure 3. Kaplan–Meier curves of (A): PSA-based progression-free survival of the entire cohort; (B):
overall survival of the entire cohort; (C): overall survival stratified by molecular imaging response
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3.2. Safety Profile

[225Ac]Ac-PSMA-617 augmented [177Lu]Lu-PSMA-617 RLT was well-tolerated, and
no serious acute adverse events were recorded. All CTCAE grades for thrombocytopenia,
leukopenia, anemia, renal function impairment and xerostomia before and after two cycles
of [177Lu]Lu-PSMA-617 RLT with at least one [225Ac]Ac-PSMA-617 augmentation are
compiled in Figure 4. Except in n = 2 patients, who experienced CTCAE 3◦ anemia, no other
grade 3/4 toxicities were observed. Moderate adverse events (CTCAE 2◦) attributed to the
treatment were recorded in terms of anemia, renal function impairment and xerostomia in
each n = 1 patient. Mild adverse events (CTCAE 1◦) related to the treatment were observed
for thrombocytopenia, lymphocytopenia, anemia and xerostomia in n = 3, n = 2, n = 1 and
n = 1 patients, respectively. All other CTCAE grades remained unchanged or sporadically
improved in comparison to baseline. Six out of fifteen patients (40%) did not experience
any toxicity related to PSMA-RLT.
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Figure 4. Graphical illustration of CTCAE grades for thrombocytopenia, leukocytopenia, anemia, renal function impairment
and xerostomia at baseline (upper row) and after two cycles of [177Lu]Lu-PSMA-617 RLT with at least one [225Ac]Ac-PSMA-
617 augmentation (lower row).

4. Discussion

The use of 225Ac in targeted PSMA-RLT, either as monotherapy or in combination
with 177Lu-labeled PSMA-RLT as tandem approach, has achieved promising results in
patients with mCRPC who have progressed on monotherapy with 177Lu [30–32]. In this
study, we report the efficacy and safety of [225Ac]Ac-PSMA-617 augmented [177Lu]Lu-
PSMA-617 RLT in 177Lu-naive mCRPC patients with poor prognosis, namely, the presence
of visceral metastases, high total tumor burden with diffuse bone metastases or rapid PSA
increase (DT < 2 months). Our data showed a high clinical efficacy with a favorable side
effects profile of [225Ac]Ac-PSMA-617 augmented [177Lu]Lu-PSMA-617 RLT in this highly
challenging patient cohort.

The presence of visceral metastases, especially liver metastases, is a strong adverse
prognostic factor in patients with mCRPC [40–42]. Published data dealing with [177Lu]Lu-
PSMA-617 RLT in mCRPC confirmed the negative prognostic impact of liver metas-
tases [43–45]. Furthermore, high overall tumor burden, especially with diffuse bone
metastases, is also considered to be a negative prognostic factor [46–48], and, in the major-
ity of patients, leads to a rapid deterioration of the general patient condition. In addition, a
short doubling time of PSA in principle implies a rapid progression and high aggressive-
ness of the tumor [48,49]. In an attempt to achieve a better outcome for patients with those
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negative prognostic factors, we intended to intensify the therapeutic effect of [177Lu]Lu-
PSMA-617 RLT by [225Ac]Ac-PSMA-617 augmentation. The alpha particles emitted by
225Ac have a much higher LET than electrons emitted by 177Lu, leading to clusters of
irreparable double-strand DNA breaks. In contrast, beta radiation by 177Lu alone produces
primarily single-strand breaks, which are more easily repaired by cell mechanisms [22].

After two cycles of [177Lu]Lu-PSMA-617 RLT augmented with at least one cycle of
[225Ac]Ac-PSMA-617, we observed a biochemical partial remission in 53.3% (8/15) of
treated patients. Although our patient cohort represents an unfavorably selected mCRPC
sample with poorer prognosis, the observed high biochemical response rate is comparable
to response rates reported for various non-preselected mCRPC patient cohorts on two or
three cycles of [177Lu]Lu-PSMA-617 monotherapy, although associated with less prognosis-
worsening conditions (reported response rates: 47%–60%) [16–19]. Furthermore, molecular
imaging-based partial remission determined by PSMA PET/CT was noted in 66.7% (10/15)
of patients, again corresponding to published data from less challenging cohorts after either
two or three cycles of [177Lu]Lu-PSMA-617 monotherapy [50,51]. These promising response
rates in such highly challenging patients with markedly adverse prognostic factors appear
to be the consequence of the additional radiobiological effect of the alpha radiation.

In addition to response-based outcome measures, survival-based outcomes may pro-
vide a stronger indication of the efficacy of a new therapeutic approach. The median
PSA-PFS of 9.1 months and median OS of 14.8 months are encouraging in the mentioned
context and compare favorably with that of [177Lu]Lu-PSMA-617 monotherapy in non-
preselected cohorts [52–54]. For example, in a prospective trial with n = 50 mCRPC patients
treated with [177Lu]Lu-PSMA-617, a median PSA-PFS of 6.9 months and OS of 13.3 months
was reached [54]. Only a few studies investigated [177Lu]Lu-PSMA-617 RLT in selected
subgroups with impaired prognosis. Gafita et al. reported an OS of 11.6 months in a
multicenter study of n = 43 mCRPC patients with diffuse bone marrow involvement [55].
Our group recently observed an OS of 11.7 months in a monocentric study of n = 28
mCRPC patients with liver metastases [56]. Due to different pre-selection criteria, resulting
in inconsistent patient cohorts, a direct comparison seems inappropriate. However, the
suggested improved survival achieved in the present study might be attributed to the
benefit of combining alpha radiation with beta radiation for PSMA-RLT.

Another notable finding of our study was that early molecular imaging response to
[225Ac]Ac-PSMA-617 augmented [177Lu]Lu-PSMA-617 RLT was significantly associated
with OS. Patients showing progressive disease or stable disease on imaging after two cycles
had shorter OS than those with partial remission. This is consistent with the results of
our previous study [31] and highlights the potential role of PSMA PET/CT, in particular,
the determination of total tumor burden, for therapy monitoring. The early identification
of patients with worsening disease course and resistance to PSMA-targeted irradiation
is essential, as the therapeutic strategy of these patients needs to be adjusted. However,
it remains unknown whether the assessment of total tumor burden can be integrated in
clinical routine due to its extensive time requirements.

Due to the short tissue range of alpha particles and the resulting low ‘crossfire’ effect,
the addition of 225Ac did not substantially increase hematotoxicity. After two cycles, only
2/8 patients with diffuse bone metastases experienced grade 3 anemia. Both patients
had existing grade 2 anemia at baseline. No other grade 3/4 hematotoxicities were noted.
Additionally, no grade 3/4 xerostomia or renal function impairment was observed. Notably,
only one patient experienced grade 2 and one grade 1 xerostomia, which was related to
RLT. In particular, this low rate of xerostomia is most likely attributable to the lower
administered activity of 225Ac compared to other studies in which [225Ac]Ac-PSMA-617 is
applied as monotherapy. For 225Ac-augmentation, we applied a mean activity of 33 kBq/kg
BW, which is one third of the recommended activity for the application of [225Ac]Ac-PSMA-
617 as monotherapy [57]. A prospective study on [225Ac]Ac-PSMA-617 monotherapy by
Yadav et al. reported grade 1/2 xerostomia in 29% of patients [25], and other retrospective
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studies observed considerably higher rates [26–29]. However, it should be noted that in
these studies, some patients received more than two cycles.

As with all retrospective data, the promising results of this study should be confirmed
by further studies, ideally in prospective randomized trials with larger patient cohorts.
Although the current study focused on a challenging population of highly advanced
mCRPC patients with poor prognosis, the efficacy and safety of this treatment approach
in a non-preselected group of mCRPC patients is also worth assessing. Furthermore, a
comparison study to [177Lu]Lu-PSMA-617 monotherapy in a prospective setting is needed
to show whether the combination of 225Ac and 177Lu positively affects the outcome of
mCRPC, as indicated in our study. In addition, the investigation of the response depending
on the lesion sites would also be of high interest. For these purposes, we recommend
future clinical studies on the combined use of 225Ac and 177Lu in PSMA-RLT in larger
patient cohorts.

5. Limitations

When interpreting the reported results of this study, some limitations must be taken
into account. The most important are the retrospective study design and the small number
of patients. Further limitations concern the inhomogeneity resulting from a non-fixed
activity, augmentation and treatment protocol.

6. Conclusions

[225Ac]Ac-PSMA-617 augmented [177Lu]Lu-PSMA-617 RLT is an effective treatment
approach with a favorable toxicity profile in mCRPC patients with poor prognosis. These
promising results should be confirmed by future, ideally prospective, studies consisting of
large patient cohorts.
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