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Abstract: Osteoarthritis (OA) is a degenerative joint disease characterized by irreversible cartilage
damage, inflammation and altered chondrocyte phenotype. Transforming growth factor-β (TGF-β)
signaling via SMAD2/3 is crucial for blocking hypertrophy. The post-translational modifications
of these SMAD proteins in the linker domain regulate their function and these can be triggered
by inflammation through the activation of kinases or phosphatases. Therefore, we investigated if
OA-related inflammation affects TGF-β signaling via SMAD2/3 linker-modifications in chondrocytes.
We found that both Interleukin (IL)-1β and OA-synovium conditioned medium negated SMAD2/3
transcriptional activity in chondrocytes. This inhibition of TGF-β signaling was enhanced if SMAD3
could not be phosphorylated on Ser213 in the linker region and the inhibition by IL-1β was less if
the SMAD3 linker could not be phosphorylated at Ser204. Our study shows evidence that inflam-
mation inhibits SMAD2/3 signaling in chondrocytes via SMAD linker (de)-phosphorylation. The
involvement of linker region modifications may represent a new therapeutic target for OA.

Keywords: TGF-β; osteoarthritis; cartilage; SMAD2/3 signaling; linker modifications; inflammation

1. Introduction

Osteoarthritis (OA) is characterized by irreversible cartilage breakdown and regarded
as a multifactorial disease in which inflammation is involved [1,2]. Synovitis is present
in osteoarthritic joints and the production of inflammatory cytokines and chemokines
is increased [3–6]. These pro-inflammatory cytokines, such as Interleukin (IL)-1β can
have a direct (negative) effect on cartilage homeostasis [7,8], but can also modulate the
transforming growth factor-β (TGF-β) signaling [9,10].

TGF-β is a crucial growth factor for articular cartilage maintenance [11]. Via intracellu-
lar activation of the transcription factors SMAD2 and SMAD3, TGF-β inhibits chondrocyte
hypertrophy and MMP13 expression [12]. On the other hand, signaling via its alternative
SMAD1/5/9 signaling route promotes these detrimental processes. A disturbed balance
between the two SMAD signaling routes has been proposed as a cause for OA pathol-
ogy [13,14]. TGF-β signaling disruption can occur at different stages in its signaling cascade.
For instance, inflammatory mediators can regulate the TGF-β receptor expression and in-
crease the expression of inhibitory SMAD7 [15]. Alternatively, inflammatory pathways can
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induce post-translational modification of the linker region of SMAD proteins to modulate
their function [16,17]. This linker domain connects the N-terminal MH1 domain, which
is important for DNA binding and nuclear transport, to their C-terminal MH2 domain,
which is responsible for the SMAD receptor and SMAD–SMAD interactions and gene
transcription activation [18–21]. Importantly, the linker region can be phosphorylated on
specific serine and threonine residues, and this regulates nuclear entry, SMAD–protein
interactions, and SMAD turnover, thereby greatly affecting SMAD function [16,22,23]. Still,
the relative importance of these SMAD linker modifications in cartilage biology and OA
pathogenesis has not been investigated and is poorly understood.

In this study we explored whether OA-related inflammation dysregulates TGF-β
signaling in chondrocytes via inflammation-driven SMAD2/3 protein linker-modifications.

2. Results
2.1. IL-1β and OAS-cm Negate the Anti-Hypertrophic Function of TGF-β in Bovine
Cartilage Explants

Hypertrophy-like changes in chondrocytes play a role in OA progression [24]. To
study whether inflammation modulates such changes, a model for hypertrophy was set-
up. For this, we cultured bovine cartilage tissue explants for 2 weeks ex vivo which,
both with and without the addition of FCS in the culture medium, induced hypertrophy-
like differentiation, as confirmed by a ~97-fold increase in COL10A1 expression (26.6 ∆Ct,
p < 0.0001) (Figure 1A). To demonstrate the anti-hypertrophic function of the TGF-β ex vivo,
recombinant human (rh), TGF-β1 was added to culture medium (without FCS) every
3rd day. COL10A1 expression was dose-dependently inhibited by TGF-β, with an EC50
of 0.1 ng/mL and 85% inhibition at 1.0 ng/mL TGF-β (25.6 ∆Ct, p = 0.0002) (Figure 1A).
Co-incubation with the ALK-5 kinase activity inhibitor SB-505124 fully blocked TGF-
β’s effect on COL10A1 expression with a 74-fold difference compared with the vehicle
(DMSO) (26.2 ∆Ct, p = 0.0021) (Figure 1B). To study the interaction between TGF-β and
inflammatory mediators in this model of hypertrophy, explants were exposed to 0.1 ng/mL
TGF-β combined with 0.1 ng/mL IL-1β or 0.5% OA synovium-conditioned medium
(OAS-cm). Importantly, we first established that these concentrations did not modulate
COL10A1 expression themselves (Appendix A). Pre-incubation of explants for 1 h with
IL-1β prior to the addition of TGF-β negated anti-hypertrophic TGF-β signaling with
~2.2 fold difference (21.2 ∆Ct, p = 0.0144) (Figure 1C). The addition of OAS-cm prior to
TGF-β strikingly negated anti-hypertrophic TGF-β signaling with a 7.0-fold difference.
(22.8 ∆Ct, p = 0.0113) (Figure 1D).

2.2. IL-1β and OAS-cm Inhibit TGF-β Transcriptional Activity in Different Chondrocyte
Cell Lines

Hereafter, we used three different human chondrocyte-like cell lines (G6, H11, SW1353)
to identify the cause of this interaction between functional TGF-β signaling and inflam-
matory mediators. We chose to use cell lines because it is difficult to efficiently genetically
modify primary chondrocytes in explants culture. First, we established that a similar
inhibitory effect occurs in these cell lines as in cartilage explants on TGF-β transcriptional
activity. To perform this, we made use of a SBE-pNL1.2 luciferase reporter assay, which
is SMAD2/3 and SMAD4-dependent (Appendix B). In all three cell lines, the luciferase
signal was induced by TGF-β stimulation alone and this effect was significantly inhibited
when pre-incubated for either 1 or 16 h with 0.1 ng/mL IL-1β or 0.5% OAS-cm (Figure 2A
and Appendix B). This inhibition was further investigated in SW1353 cells (Figure 2B,C).
Pre-incubation with 0.001 ng/mL IL-1β (area under the curve (AUC) = 86, p = 0.95) and
0.01 ng/mL IL-1β (AUC = 70, p = 0.12) did not inhibit TGF-β transcriptional activity
(AUC = 92). However, 0.1 ng/mL IL-1β (AUC = 48, p = 0.0018), 1 ng/mL IL-1β (AUC = 40,
p = 0.0004) and 10 ng/mL IL-1β (AUC = 33, p = 0.0002), pre-incubated for 1 h did signifi-
cantly inhibit TGF-β transcriptional activity (Figure 2B). Pre-incubation with OAS-cm for
1 h inhibited TGF-β transcriptional activity (AUC = 85) from 35% inhibition with 1% OAS-
cm (AUC = 54, p = 0.0063) up to 83% inhibition with 10% OAS-cm (AUC = 13, p < 0.0001)
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(Figure 2C). Combining these data supports the conclusion that OA-related inflammation
has an inhibitory effect on TGF-β signaling in chondrocytes.

Figure 1. OA-related inflammation blocks anti-hypertrophic function of TGF-β in bovine cartilage explants. To induce
hypertrophy-like differentiation, bovine cartilage tissue explants were cultured ex vivo for 2 weeks and medium was replaced
every 3rd day. (A) Culturing cartilage explants for 2 weeks with or without FCS spontaneously induced hypertrophy-like
differentiation, as measured by relative collagen type 10 (COL10A1) mRNA expression using qPCR. To study the anti-
hypertrophic role of TGF-β, the effect of different concentrations of rhTGF-β1 (0.1, 1 and 10 ng/mL) on COL10A1 mRNA
expression was measured (in medium without FCS). (B) Co-incubation with 5 µM ALK-5 kinase activity inhibitor SB-505124
fully blocked TGF-β (1 ng/mL) effects on COL10A1 mRNA expression compared with vehicle (DMSO). (C,D) To study the
interaction between TGF-β and inflammatory mediators in this model of hypertrophy, explants were exposed to 0.1 ng/mL
TGF-β with 1 h pre-incubation of 0.1 ng/mL IL-1β (C) or 0.5% OAS-cm (D). Data are plotted as mean ± 95% CI with each
dot representing the average of 2 replicates of 4 explants in one cow. Statistical analysis was performed using a repeated
measures one-way analysis of variance with Bonferroni’s post hoc test (A + B) or a two-tailed Student’s paired t-test (C + D):
ns non-significant p > 0.05; * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p < 0.001.
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Figure 2. OA-related inflammation inhibits TGF-β transcriptional activity in particular chondrocytes. To study interaction
between OA-related inflammation and functional TGF-β signaling, three chondrocyte-like cell lines (SW1353, G6 and H11)
were transfected with a SMAD2/3 transcriptional reporter construct (SBE-pNL1.2). (A) After transfection, cells were re-plated,
pre-incubated overnight (16 h) with medium, 0.1 ng/mL IL-1β or 0.5% OAS-cm and, thereafter, stimulated for 5 h with 0.1 ng/mL
TGF-β. Luciferase activity was measured relative to experimental condition stimulated with TGF-β, as set at 100% (ctrl level).
Data represent mean ± 95% CI of four independent experiments performed in quadruple. (B,C) In SW1353 cells, this was
investigated further, but now with 1 h pre-incubation with a concentration series of (B) IL-1β (0.001–10 ng/mL) or (C) OAS-cm
(0.5–10%) before stimulation with increasing concentrations of TGF-β for 5 h. Data represent mean± 95% CI of three independent
experiments performed in quadruple. Per experiment the area under the curve (AUC) was calculated and displayed. Statistical
analysis was performed using a one-way ANOVA with Dunnett’s multiple comparison test comparing the mean to the mean of
the condition stimulated with solely TGF-β: ** p≤ 0.01; *** p≤ 0.001; **** p < 0.001.
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2.3. IL-1β and OAS-cm Do Not Inhibit C-Terminal Phosphorylation of SMAD2/3 and Do Not
Regulate Receptor Level Expression

Upon TGF-β binding to the receptor, R-SMAD transcription factors become activated
by phosphorylation of serine residues on their carboxy (C)-terminus, which causes them to
form a complex with co-SMAD4, translocate to the nucleus and regulate gene transcrip-
tion [25]. In search of an explanation for the strong inhibition of OA-related inflammatory
factors on TGF-β signaling, we first investigated if IL-1β and OAS-cm influence C-terminal
SMAD phosphorylation. As expected, TGF-β supplementation strongly increased pS-
MAD2/3C in both primary bovine chondrocytes and SW1353 cells, whereas IL-1β or
OAS-cm did not (Figure 3A). However, pSMAD2/3C was not decreased by either 1, 6 or
24 h pre-incubation with IL-1β or OAS-cm (Figure 3A, upper panels), which excluded
a direct effect on C-terminal SMAD phosphorylation. Another underlying cause for the
disturbed TGF-β signaling could be a shifted balance from protective pSMAD2/3 to dele-
terious pSMAD1/5 [26,27]. However, in both primary chondrocytes and SW1353 cells, we
observed that pSMAD1/5C was also not affected by 1, 6 or 24 h pre-incubation of IL-1β
or OAS-cm (Figure 3A, middle panels). Together, these observations strongly indicate
that the TGF-β-receptor complexes were unaffected. In support of this, we did not find
changes in the receptor expression at the mRNA level. The stimulation of both primary
chondrocytes and SW1353 cells with 0.1 ng/mL IL-1β or 5% OAS-cm for 1 h did not alter
TGFBR2 or ALK5 receptor levels (Figure 3C), nor did stimulation for 6 h with IL-1β. Note
that, in SW1353 6 h stimulation with 0.1 ng/mL, IL-1β did induce (and not reduce) TGFBR2
(p = 0.0426) and did not change ALK5 expression.

The duration and intensity of the SMAD depends on the abundance and availability
of ligands and their inhibitors [28]. We also confirmed that the signal duration was not
affected. In primary bovine chondrocytes, TGF-β-induced pSMAD2/3C lasted up to at
least 3 h after stimulation, whereas pSMAD1/5C already disappeared after 3 h TGF-β
stimulation. In both cell types, the length of the pSMAD signal was not affected by addition
of IL-1β or OAS-cm (Figure 3B). Together, these data indicate that the inhibitory effect
that we found on TGF-β signaling, was caused downstream of receptor-mediated SMAD
activation. One such mechanism is through the induction of inhibitory SMAD7; however,
in our experiments, SMAD7 expression levels were not increased by inflammatory stimuli
(Figure 3C). The exception was the 1 h stimulation with 5% OAS-cm, which did increase
SMAD7 expression in bovine chondrocytes but not in SW1353 cells.

2.4. IL-1β and OAS-cm Inhibit TGF-β via (de-)Phosphorylation of the SMAD2/3 Linker Region

Aside from C-terminal phosphorylation, SMAD proteins can also be post-translationally
phosphorylated at serine and threonine residues within the linker region: SMAD2 at
threonine (T) 220 and serines (S) 245, 250, 255 and SMAD3 at the corresponding T179, S204,
S208 and S213 [17] (Figure 4A). TGF-β-induced transcriptional activity is regulated by
SMAD linker modifications in several cell types [29–32]; therefore, we hypothesized that
SMAD2/3 linker modifications are responsible for the effect of IL-1β and OAS-cm on TGF-
β signaling in chondrocytes. We studied linker phosphorylation at those specific linker
threonine and serine residues by Western blotting. SMAD2 and SMAD3 linker threonine
and serine modifications were detectable within 1 h following IL-1β or OAS-cm stimulation
(Figure 4B,C). Concentrations of 0.1, 1 and 10 ng/mL IL-1β induced phosphorylation of
SMAD2L serines and SMAD3L S204 (p = 0.0256), but did not change pSMAD3L S208
(p = 0.1333) or S213 (p = 0.7633). Additionally, OAS-cm did induce pSMAD2L serines
and pSMAD3L S204 (p = 0.0232), but not pSMAD3L S208 (p = 0.0973) and it significantly
decreased the phosphorylation of SMAD3L S213 (p = 0.0047). The phosphorylation of
SMAD2L T220 was not induced by IL-1β, but only by OAS-cm, whereas SMAD3L T179
was not regulated by either stimulus. These data suggest a role for especially serine linker
modifications in regulating TGF-β signaling in chondrocytes.
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Figure 3. IL-1β and OAS-cm do not alter C-terminal phosphorylation of SMAD transcription factors and do not regulate receptor
level expression. In search of an explanation for the inhibition of OA-related inflammatory factors on functional TGF-β signaling,
we investigated if IL-1β and OAS-cm influence C-terminal SMAD2/3 and SMAD1/5 phosphorylation in bovine chondrocytes
cultured in monolayer and in SW1353 chondrosarcoma cells using Western blot (A,B). Pre-incubation for different time periods (1,
6 and 24 h) with 0.1 ng/mL IL-1β (IL1) or 2.5% OAS-cm (OA) did not alter p-SMADC activation with 1 ng/mL TGF-β (A) and also
signal duration was not affected (B). GAPDH was included as loading control. (C) Relative gene expression of TGF-β receptors
ALK5 and TGFBR2 and inhibitory SMAD7 in bovine chondrocytes and SW1353 cells 1 h and 6 h after stimulation with medium
supplemented with 0.1 ng/mL IL-1β or 5% OAS-cm. Data are plotted as mean± SD with each dot representing the average of
2 replicates of 4 explants in one cow (n = 3), or in case of the SW1353 cells of two independent experiments performed in duplicate.
Statistical analysis was performed using a one-way ANOVA with Bonferroni’s post hoc test: * p≤ 0.05; ** p≤ 0.01.
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Figure 4. OA-related inflammation (de)phosphorylates the SMAD 2/3 linker region. SMAD proteins can also be post-
translationally phosphorylated at serine and threonine residues within their linker (L) region: SMAD2 at threonine (T) 220 and
serines (S) 245, 250, 255 and SMAD3 at the corresponding T179, S204, S208 and S213. (A) Schematic illustration of the SMAD2
and SMAD3 proteins and their phospho-epitopes in the linker (L) region and C-terminus. (B,C) Chondrocytes were treated for
1 h with 0.1 ng/mL TGF-β or with different concentrations of IL-1β (0.01–10 ng/mL) or OAS-cm (0.5–5%) and subsequently
phosphorylation at the different phospho-sites in the linker region of SMAD2 (B) and SMAD3 (C) were visualized on Western
blot. Quantification of the Western blots was performed with ImageJ. Data are presented as dot plots with mean± SD, with each
dot representing one donor, n = 3. GAPDH was used as loading control. Statistics were performed using two-tailed Student’s
paired t-test: ** p≤ 0.01.
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To further explore the importance of SMAD linker modifications, we used five differ-
ent SMAD3 variants, which cannot be phosphorylated at specific sites in the linker domain
due to mutations from the linker serines to alanines and the linker threonine to a valine
(Figure 5A). Equal over-expression of the different SMAD linker variants was checked
with flow cytometry (Appendix C). In all conditions, over 90% of the cells were positively
stained for FLAG and the geometric mean of this over-expression was not different, demon-
strating that all SMAD3 variants were overexpressed equally to facilitate a fair comparison
between conditions.

Figure 5. Cont.
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D 

Figure 5. When the SMAD3 linker could not be modified, TGFβ transcriptional activity was differently regulated by
OA-related inflammation. To study the role of the SMAD3 linker phospho-sites in regulating TGF-β signaling, we made
use of individual SMAD3 linker variants. (A) Schematic illustration of the different SMAD3 variants which cannot be
phosphorylated on specific sites in their linker domain due to mutations from the serines (S) to alanines (A) (S204A,
S208A, S213A) and the threonine (T) to a valine (V) (T179V). (B,C) SW1353 cells were transfected with the SBE-pNL1.2
construct, re-plated afterwards and transduced with the different SMAD variants. After a 48 h transduction and after
overnight serum-starvation, we pre-incubated 1 h with 0.1 ng/mL IL-1β or 5% OAS-cm and then stimulated with 0.5 ng/mL
TGF-β, after which luciferase signal was measured. (B) Percentage fold induction compared to medium was depicted,
relative to experimental condition stimulated with 0.5 ng/mL TGF-β set at 100% (ctrl level). Data represent mean ± SD of
four independent experiments performed in quadruple. (C) The percentage inhibition of 0.5 ng/mL TGF-β with 0.1 ng/mL
IL-1β or with 5% OAS-cm was calculated and compared between the normal SMAD3 transduced cells and the conditions
transduced with the SMAD linker mutants. Every dot represents one independent experiment performed in quadruple.
Statistical analysis was performed using a one-way ANOVA with Dunnett’s multiple comparison test. ns— non-significant;
* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p < 0.001. (D) Summarized findings regarding the effect of inflammation-induced
dephosphorylation of SMAD3L S213 on SMAD2/3 transcriptional activity and the hypothetical role of IL-1β-induced S204
linker modification. Green arrows represent activation and red “T” shapes represent inhibition.

We pre-incubated 1 h with 0.1 ng/mL IL-1-β or 5% OAS-cm and then stimulated
cells for 5 h with 0.5 ng/mL TGF-β after which luciferase signal was measured. Similarly
to before, in the condition with normal SMAD3 variant, results indicated inhibition of
SMAD2/3 transcriptional activity with 0.1 ng/mL IL-1-β or 5% OAS-cm. However, in
chondrocytes over-expressing SMAD3 S204A or T179V mutant inhibition with IL-1-β
was no longer statistically significant (Figure 5B). We compared the percentage inhibi-
tion of 0.5 ng/mL TGF-β with these inflammatory stimuli between the normal SMAD3
transduced cells and the conditions with the SMAD linker mutants (Figure 5C). When
we overexpressed a SMAD mutant which could not be phosphorylated at the S204, we
observed the trend that TGF-β signaling was less inhibited by IL-1β by an average of 32%
(p = 0.10) in four separate experiments. We did not observe this with OAS-cm (p = 0.96).
Remarkably, the inhibiting effect of both IL-1β and OAS-cm was significantly stronger
when serine 213 could not be phosphorylated with 59% (p = 0.001) and 46% (p = 0.0003),
respectively (Figure 5C). In Figure 5D, we summarized our findings regarding the effect
of OA-related inflammation-induced dephosphorylation of SMAD3L S213 on SMAD2/3
transcriptional activity and of IL-1β-induced SMAD3L S204 modification.

3. Discussion

In this study, we showed that there is a link between OA-related inflammation and
disturbed TGF-β signaling in chondrocytes. Our results indicate that IL-1β and OAS-
cm can stimulate hypertrophy-like differentiation by decreasing TGF-β transcriptional
activity. In addition, we demonstrate that the inhibition of TGF-β signaling was signif-
icantly enhanced when the SMAD3 linker phosphorylation on S213 cannot take place,
while inhibition is possibly less pronounced when S204 cannot be phosphorylated. These
observations indicate an important role for these modifications in regulating SMAD2/3
signaling in chondrocytes.

OA is a complex and multifactorial disease and it is recognized that both systemic
and local inflammation disturb homeostasis of cartilage in the osteoarthritic joint [1,2].
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The enhanced expression of IL-1β and its receptor (IL1R1) are found in chondrocytes
and synovial membranes of OA patients [33,34], although its role in OA is still under
debate [8,35–38]. OA can certainly not only be attributed solely to the effect of IL-1β and
other pro-inflammatory cytokines contribute to OA pathogenesis [39–44]. For instance,
IL-8, TNF-α and H2O2 also stimulate chondrocyte hypertrophy [45–47]. In this study, both
IL-1β and patient-derived OAS-cm, containing an unknown mix of cytokines, chemokines
and growth factors [48], were used as models of OA-related inflammation.

A crucial role for TGF-β in chondrocytes is controlling hypertrophy and blocking
chondrocyte terminal differentiation through SMAD2/3 signaling [11,49]. In this study,
we support this anti-hypertrophic effect of TGF-β, since it blocks COL10A1 upregulation,
the most evaluated hypertrophy marker in bovine cartilage explants. Importantly, we also
showed that the pre-incubation of 0.1 ng/mL IL-1β or 0.5% OAS-cm before the addition
of TGF-β clearly negated this inhibitory effect. These inflammatory stimuli also blocked
SMAD2/3 transcriptional activity in three different human chondrocyte-like cell lines—G6,
H11 and SW1353. This effect was quite strong and rapid, since only 1 h pre-incubation
with 0.1 ng/mL IL-1β or 5% OAS-cm was sufficient to inhibit SMAD2/3 transcriptional
activity for 47 and 64%, respectively, in SW1353 cells. Together, these results support the
findings that OA-related inflammation blocks protective TGF-β signaling in chondrocytes.
Previous studies reported similar interactions between pro-inflammatory stimuli and
TGF-β signaling in chondrocytes [10,50]. For instance, Roman-Blas et al. reported that
IL-1β treatment resulted in the suppression of the DNA-binding activity of SMAD3/4 and
suppression of SMAD2/3 phosphorylation in chondrocytes [10] and Madej et al. showed
that both IL-1β and OAS-cm impair the mechanical activation of SMAD2/3 signaling in
bovine cartilage explants [50].

One way how inflammatory cytokines can modulate TGF-β induced pSMAD2/3
signaling is via a reduction in ALK5 or TGFBR2 receptor signaling [15,51]. In our exper-
imental set-up, this is unlikely the explanation of the observed inflammation-induced
inhibiting effect on SMAD2/3 transcriptional activity. Namely, our findings show that
IL-1β or OAS-cm, in both primary bovine chondrocytes and SW1353 cells, did not affect C-
terminal SMAD2/3 and SMAD1/5/8 phosphorylation. In support, no ALK5 and TGFBR2
mRNA downregulation was measured with IL-1β or OAS-cm stimulation. In SW1353
cells, TGFBR2 was even induced (and not reduced) 6 h after IL-1β stimulation. Based
on these results, we infer that the inhibitory effect, which we found on TGF-β signaling,
is downstream of the receptor-mediated SMAD activation. Madej et al. also reported
no effect of IL-1β or OAS-cm on their own on ALK5 and TGFBR2 receptor expression
in bovine cartilage explants, while these inflammatory conditions partly suppressed the
mechanically mediated SMAD2/3 signaling [50]. On the other hand, Baugé et al. showed
that pro-inflammatory mediators such as IL-1β can reduce TGFBR2 expression in human
OA monolayer chondrocytes [15]. This might be due to the fact that they used OA chondro-
cytes for their study, which might react differently on cytokines than non-OA chondrocytes,
which we used in our studies. Other than the modulation of receptor expression, IL-1β
can increase the expression of inhibitory SMAD7 via NF-κB the activation in chondrocytes,
which inhibits SMAD2/3 signaling [9]. However, in our study, short-time periods of 1 and
6 h with IL-1β did not result in increased SMAD7 mRNA levels in primary bovine chon-
drocytes and SW1353 cells. Additionally, Roman-Blas et al. reported that SMAD7 is not
involved in the suppression of TGF-β signaling induced by IL-1β [10]. Stimulation with
OAS-cm for 1 h induced SMAD7 in bovine chondrocytes, but this effect disappeared 6 h
after stimulation. This could possibly be explained by the TGF-β presence in OAS-cm,
which also increased the expression of inhibitory SMAD7 itself [27], since it was not shown
for IL-1β.

Next, we investigated if IL-1β and OAS-cm interact with SMAD-dependent signaling
through the modification of the SMAD2/3 linker region. Previous studies showed that
the phosphorylation of the specific serine and threonine residues in the regulatory linker
region control SMAD2/3 function. Mutations in the SMAD3 linker strongly enhanced TGF-
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β-induced responses in breast cancer cells and increased tumorigenesis in the liver [30,52].
SMAD2 linker phosphorylation elevated mRNA levels of glycosaminoglycan synthesizing
enzymes in vascular smooth muscle cells [53] and also the phosphorylation of the SMAD2
linker mediates synthesis of extracellular matrix proteins, such as collagens and proteogly-
cans [31,32,54]. The phosphorylation and dephosphorylation of the serine and threonine
residues in the linker domain is dependent on kinases (e.g., MAPK) and phosphatases
(e.g., DUSP1) [17,22,23,55,56]. Particularly, these are also induced by OA-related inflam-
matory stimuli [57–59], which led us to hypothesize that inflammation-induced kinases or
phosphatases also affect the SMAD linker region in chondrocytes. We reported earlier that
IL-1β induces SMAD2L serine phosphorylation in stem cells [60]. In the current study, we
also reported that in chondrocytes phosphorylation of the SMAD2L serines and SMAD3L
S204 were observed within 1 h following IL-1β or OAS-cm stimulation. Notably, OAS-cm
also significantly decreased pSMAD3L S213. pSMAD3L S208 and T179 were not regulated
by IL-1β or OAS-cm, suggesting a less pronounced role of these linker modifications in
blocking protective TGF-β effects in chondrocytes. In our study, we did not only show
which SMAD linker residues were (de-)phosphorylated by inflammatory stimuli, but
also examined whether these specific inflammation-induced linker modifications explain
the observed inhibiting effects of inflammation on TGF-β signaling by using individual
SMAD3 phospho-mutants. Most other studies make use of a SMAD2/3 EPSM mutant,
which cannot be phosphorylated in the linker region on any phospho-site [29,61,62]. Using
individual SMAD3 linker phospho-mutants, we investigated the effect of every single
SMAD linker modification separately.

To further study the role of the inflammation-induced pSMAD3L S204, we made use
of a SMAD3 mutant which could not be phosphorylated at the serine 204 site (S204A). The
inhibition of the SMAD2/3 transcriptional activity was not significantly inhibited anymore
with IL-1β when SMAD3 S204A was over-expressed, while this was the case when normal
SMAD3 was over-expressed. However, the average effect of 32% less inhibition with IL-1β
was not significant (p = 0.10) compared to the inhibiting effect in the condition using normal
SMAD3. A high variation between samples could explain this non-significance. For this
study, the unstable nature of the SBE-pNL1.2 luciferase construct was chosen for its high
sensitivity and large detection window compared to other stable luciferases [63]. Since
the direction of the effect observed with the SMAD3 S204 mutant was constant across
four separate experiments, we carefully propose that SMAD3L S204 phosphorylation
mediates the effect of IL-1β on SMAD2/3 signaling (summarized in Figure 5D). Linker
modifications are able to regulate the nuclear localization of the SMADs and this could
be the possible explanation why in our study SMAD3 S204 was essential for the blocking
effect of IL-1β on SMAD2/3 transcriptional activity. Kretzschmar et al. reported that in a
mouse mammary epithelial cell line, Ras-activated ERK-induced pSMAD3 S204 resulted in
cytoplasmic retention and the consequent repression of canonical TGF-β signaling [61]. Ad-
ditionally, in epithelial cells, excessive Ras signaling demonstrated lower pSMAD3C tumor
suppression [64,65]. A similar process could take place in chondrocytes and explain our
results. On the other hand, contradictory findings were reported in different cell types. For
instance, it was reported that in fibroblasts and mesangial cells, ERK-induced pSMAD3L
S204 enhanced SMAD3-mediated COL1A2 promotor activity [66] and glycogen synthase
kinase 3 (GSK3)-induced pSMAD3L S204 was strengthening SMAD3 transcriptional activ-
ity by enhancing its affinity to CREB-binding protein [23]. SMAD signaling could also be
regulated via binding to ubiquitin ligases, such as Smurf2 or NEDD4L, resulting in SMAD
degradation [67,68], but SMAD3 S204 phosphorylation has not been reported to regulate
SMAD3 stability [67,69,70]. Another explanation could be the binding of pSMAD3L S204
to the phosphatase PPM1A/PP2Cα, which is known to dephosphorylate the SMAD2/3
C-terminus, and thereby regulate TGF-β signaling [71,72]. However, such interaction has
not yet been investigated and further research into why SMAD3 S204 phosphorylation is
essential for the inhibitory effect of IL-1β in chondrocytes is required.
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The effect of OAS-cm on TGF-β signaling was not inhibited using the SMAD3 S204A
mutant, while OAS-cm stimulation induced the phosphorylation of S204 on Western blot.
This suggests that the inhibition by OAS-cm is regulated differently than with IL-1β,
and S204 phosphorylation is not required to allow the OAS-cm-induced inhibition of
SMAD2/3 transcriptional activity. OAS-cm is a mixture of cytokines which all have diverse
roles on the SMAD3 linker and follow different kinetics of (de-)phosphorylation. The
functional outcome of the SMAD2/3 linker phosphorylation for SMAD2/3 transcriptional
activity depends on the combination of phosphorylation sites in linker and C-terminal
regions, which brings some levels of complexity. This could explain why we did find S204
phosphorylation with OAS-cm on Western blot when looking at it as a single object, but
did not observe an effect on the OAS-cm-induced inhibition of SMAD2/3 transcriptional
activity when this phosphorylation could not occur anymore.

Interestingly, Browne et al. found an opposing role for SMAD3L S213 compared to
S204 phosphorylation on COL1A2 promotor binding [66]. This is consistent with our study
where we also showed contradictory results for SMAD3L S204 and S213 phosphorylation.
Namely, the inhibiting effect of both IL-1β or OAS-cm was significantly enhanced when
SMAD3L S213 could not be phosphorylated with 59% and 46%, respectively. This suggests
that the phosphorylation of SMAD3L S213 protected against the inhibiting effect of IL-1β
and OAS-cm on transcriptional SMAD2/3 signaling (summarized in Figure 5D). In litera-
ture, several lines of evidence report that SMAD3L S213 phosphorylation, induced by the
Ras/JNK pathway, results in the transport of SMAD3 to the nucleus [16,64]. This would
suggest that with the dephosphorylation of the S213 site SMAD2/3 remains in the cyto-
plasm and thereby prevents transcriptional activity. We found that OAS-cm significantly
decreased the phosphorylation of SMAD3L S213, and thereby OAS-cm contributed itself
to the inhibition on SMAD2/3 transcriptional activity. We reported earlier that combined
IL-1β and TGF-β treatment in stem cells resulted in more linker-modified SMAD2 in the
cytoplasm and less nuclear pSMAD2C [60]. Other studies showed that IL-1β-induced
TAK activity resulted in cytoplasmic retention of the SMADs [73,74]. In future studies, the
effect of linker modifications on the cellular localization of the SMAD complexes should,
therefore, be examined.

The phosphorylation of SMAD3 S213 is protective against OA-related inflammation
in chondrocytes. As a therapeutic strategy, it would be possible to activate kinases that
are known to phosphorylate S213 in chondrocytes. Ras/JNK, CDK2, CDK4, SKI and
integrin all have been reported to enhance pSMAD3L S213 phosphorylation in different
cell types [70,75–77]. Another option is to inhibit phosphatases which catalyze the removal
of phosphate groups. Small C-terminal domain phosphatases (SCPs) are known to dephos-
phorylate pSMAD3L S213 in the nucleus, resulting in the dissociation from SMAD4 and
the export of SMAD3 to the cytoplasm [56,71,78,79]. SCP, therefore, could be an interesting
therapeutic target. Blocking it could enhance the protective TGF-β signaling through the
inhibition of dephosphorylation of the SMAD3 S213 linker phosphor-site by inflammation,
resulting eventually in more SMAD3 in the nucleus. The identification of an inhibitor
for SCP1 is ongoing [80,81]. For future in vivo studies, one must careful use these SCP
inhibitors, since the phosphorylation of SMAD3 S213 results in cell-type specific effects.
Namely, the nuclear retention of pSMAD3L S213 is reported to enhance pro-oncogenic
signaling in cancer cells, by facilitating mitogenic signaling via the upregulation of the tran-
scription factor c-Myc [64,70,75–77,82]. This shows that the phosphorylation of SMAD3L
S213 can be malicious in cancer cells, while in chondrocytes S213 phosphorylation seems
to be protective against OA-related inflammation. The discrepancy between these observa-
tions in different cell-types warns us to extract these results and more cell-specific research
on the function of SMAD linker modifications is needed.

It is a limitation of this study that we were not able to transfect primary chondrocyte
explants with the SMAD3 linker variants. Therefore, we could not test if the linker region
was important in regulating the hypertrophic differentiation of chondrocytes in our hyper-
trophy model. Future studies are needed for the identification of interacting proteins of the
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SMAD2/3 linker domain. For example, it would be of great interest to study the difference
in the interaction of normal SMAD3 versus SMAD3 S204 or S213 linker mutants with
RUNX2/3 and MEF2C, which are important transcription factors in driving chondrocyte
hypertrophy [83,84].

In conclusion, the SMAD2/3 linker region is critical for the regulation of TGF-β sig-
naling. The relevance of SMAD linker modifications in fibrosis, cancer and cardiovascular
disease was described earlier but not in joint diseases. In this study, also the relevance for
chondrocytes was established. Joint inflammation during OA development will result in
kinase and phosphatase activation that could (de-)phosphorylate the SMAD linker region
independent of the C-terminal phosphorylation, including the S204 and S213 site [85]. We
showed that the (de)-phosphorylation of these linker sites led to a disturbance of the TGF-β
signaling pathway in cartilage, which is of great importance for chondrocyte homeostasis
maintenance. An additional investigation in chondrocytes is needed to identify the specific
kinases and phosphatases for the individual SMAD linker phospho-sites, the impact of
these modifications on the cellular location of the SMAD-complexes and the functional
consequences for the cartilage. Inhibition studies of relevant kinases and phosphates may
result in new therapeutic targets for OA.

4. Materials and Methods
4.1. Primary Cell Culture

Articular cartilage was obtained from metacarpophalangeal joints (MCP) of skeletally
mature cows (>3 years old) post mortem. Full cartilage thickness explants were isolated
with 3 mm diameter biopsy punches (Kai Medical Seki, Japan) and randomly distributed
over the different conditions (two times four explants per cow per condition). Explants were
equilibrated overnight before start of experiments in DMEM/F12 medium, supplemented
with 100 mg/l sodium pyruvate, 100 U/mL penicillin and 100 µg/mL streptomycin at
37 ◦C and 5% CO2. To obtain chondrocytes to culture in monolayer, cartilage slices were
digested overnight with 1.5 mg/mL collagenase B (Roche Diagnostics, Basel, Switzerland)
in DMEM/F12 at 37 ◦C. The next day, chondrocyte suspension was spun down at 300× g
for 10 min, washed three times using saline and resuspended in DMEM/F12 contain-
ing 10% fetal calf serum (FCS), 100 mg/L sodium pyruvate, 100 U/mL penicillin and
100 µg/mL streptomycin (complete DMEM/F12). Chondrocytes were plated at a density
of 8 × 104 cells/cm2 and cultured for 1 week at 37 ◦C and 5% CO2 to form a monolayer.
Medium was refreshed every three days. Before start of experiments, chondrocytes were
serum-starved (0% FCS) overnight. Each experiment was conducted three times in multiple
donors and conditions were always tested in technical duplicate.

4.2. Chondrocyte Cell Line Culture

SW1353 human chondrosarcoma cells were cultured in complete DMEM/F12 at 37 ◦C
and 5% CO2. For experiments, cells were plated at a density of 3 × 104 cells/cm2. Human
G6 and H11 adult articular chondrocytes were derived from femoral head cartilage of
an anonymous donor, transduced with a temperature-dependent SV40 large oncogene,
resulting in proliferation at 32 ◦C, but not at 37 ◦C [86]. G6 and H11 chondrocytes were
cultured at 32 ◦C with complete DMEM/F12 except with 5% FCS. For experiments G6 and
H11, cells were plated at a density of 8 × 104 cells/cm2. Chondrocytes were serum-starved
overnight in DMEM/F12 medium supplemented with 0.1% FCS (SW1353) or 0.5% FCS
(G6 and H11) before start of experiments.

4.3. Chondrocyte Stimulation

Chondrocytes were stimulated with recombinant human (rh) TGF-β1 (BioLegend,
San Diego, CA, USA), rhIL-1β (R&D Systems, Minneapolis, MN, USA), OA synovium-
conditioned medium (OAS-cm), or a combination of these mediators, for time periods
and dosages indicated in Figure legends. OAS-cm was obtained by culturing synovium
from OA patients for 24 h, whereafter debris was removed by centrifugation at 300× g and



Int. J. Mol. Sci. 2021, 22, 8124 14 of 22

medium was stored in aliquots at −20 ◦C until further use [48]. To inhibit ALK5 kinase
activity, 5 µM SB-505124 (Sigma-Aldrich, Burlington, MA, USA) was used, dissolved in
dimethyl sulfoxide (DMSO).

4.4. Plasmid DNA, Adenoviral Production and Transduction

To study SMAD2/3 transcriptional activity, a luciferase reporter assay (SBE-pNL1.2)
was produced, where a SMAD binding element (SBE) (three times AGTATGTCTAGACTGA)
with spacer (CTCGAGGATATCAAGATCTGGCCTCGGCGGCCTAGATGAGACACT) and
minimal promotor (AGAGGGTATATAATGGAAGCTCGACTTCCAG) (GeneCust, Boynes,
France) was cloned into a NanoLuc luciferase with a protein destabilization domain
(pNL1.2) (Promega, Madison, WI, USA) [63]. Sequences were verified by Sanger se-
quencing. Knock-out of SMAD2, SMAD3 or SMAD4 prevented luciferase induction with
TGF-β, suggesting the reporter assay is SMAD2/3-dependent (Appendix B). Plasmid
transduction was optimized for the different cell lines by analysis of fluorescent (GFP)
protein expressing cells with FACS. G6 and H11 chondrocytes were seeded in a cell den-
sity of 8 × 104 cells/cm2 and transfected with Lipofectamine 2000 Transfection Reagent
(Invitrogen, Waltham, MA, USA) according to manufacturer’s protocol. SW1353 were
seeded in a density of 2.6 × 104 cells/cm2 and transfected with FuGENE6 Transfection
Reagent (Promega, Madison, WI, USA) according to manufacturer’s protocol. SMAD3
linker mutant expression plasmids, containing an N-terminal FLAG-tag, were bought
from Addgene (Watertown, MA, USA) (SMAD3, #14052; SMAD3 T179V, #26997; SMAD3
S204A, #27114; SMAD3 S208A, #27115; SMAD3 S213A, #27116; SMAD3 EPSM, #14963). All
SMAD inserts were directionally cloned into the adenoviral vector pShuttle and verified by
Sanger sequencing. Adenovirus was produced with the AdEasy Adenoviral Vector System
(Agilent, Santa Clara, CA, USA) in the N52E6 adenovirus producer cell line. SW1353,
already transfected with SBE-pNL1.2, was transduced with adenovirus of the different
SMAD3 linker mutants. To compare equal over-expression of the different mutants, flow
cytometry was used to quantify FLAG-tag expression with PE anti-FLAG tag Antibody
(clone L5, Biolegend, San Diego, CA, USA) using a Gallios flow cytometry analyzer and
analyzed using Kaluza software version 2.1 (both from Beckman Coulter, Brea, CA, USA).

4.5. SMAD-Luciferase Transcriptional Reporter Assay

After transfection with 1.0 µg SBE-pNL1.2 per 100,000 cells, cells were detached by
trypsinization and seeded in white polystyrene 96-well plates at a density of 3 × 104 cells/cm2

for the SW1353 and 8 × 104 cells/cm2 for the G6 and H11 chondrocytes. Cells were serum-
starved overnight, 1 h pre-incubated with DMEM/F12 (control), rhIL-1β (R&D Systems,
Minneapolis, MN, USA) or OAS-cm and then stimulated with rhTGF-β1 (Biolegend,
San Diego, CA, USA) for 5 h. Cells were lysed 5 h post-stimulation using 30 µL ultra-pure
water. An equal amount of Nano-Glo luciferase reagent (Promega, Madison, WI, USA)
was added and luminescence was determined at 470–480 nm (Clariostar, BMG Labtech,
Ortenberg, Germany). Each condition was performed in quadruple and the mean per
experiment was depicted.

4.6. Protein Isolation and Western Blot

Chondrocytes were lysed in lysis buffer (Cell Signaling, Danvers, MA, USA) contain-
ing complete protease inhibitor cocktail (Roche Diagnostics, Basel, Switzerland). Samples
were sonicated on ice, using a Bioruptor (Diagenode, Liege, Belgium; 10 cycles of 30 s
sonication and 30 s rest). Protein concentration was determined with a BCA-assay (Thermo
Scientific, Waltham, MA, USA) and normalized. Reducing Laemmli Sample buffer (2% SDS,
10% glycerol, 100 mM Tris HCl, pH 6.8, 100 mM DTT and Bromophenol bleu) were added
and samples were boiled at 95 ◦C for 5 min. Protein samples were separated on a 10%
bis-acrylamide SDS-PAGE gel and transferred to 0.45 µm pore nitrocellulose membrane
using wet transfer (Towbin buffer, 2 h, 275 mA at 4 ◦C). Non-specific antibody binding was
blocked for 1 h with 5% non-fat dry milk (Friesland Campina, Amersfoort, The Netherlands)
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or 5% BSA in TBS-T (15 mM Tris-HCl, pH 7.4, 0.1% Tween). Cells were incubated overnight
at 4 ◦C with primary antibodies directed against pSMAD2/3C-Ser463/467 (1:1000, CST
3101), pSMAD1/5C-Ser426/428 (1:1000, CST 9511), pSMAD2L-Ser245/250/255 (1:1000,
CST 3104), pSMAD2L-Thr220 (1:1000, NBP 1-004982), pSMAD3L-Ser204 (1:1000, Abcam
63402), pSMAD3L-Ser208 (1:1000, Abcam 138659), pSMAD3L-Ser213 (1:1000, Abcam 63403),
pSMAD3L-Thr179 (1:1000, Abcam 74062) or anti-FLAG (1:10,000, Sigma-Aldrich 3165).
Afterwards, membranes were incubated with polyclonal Goat anti-Rabbit or Rabbit anti-
Mouse coupled to horseradish peroxidase (1:1500, Dako) for 1 h at RT. Signal was detected
using enhanced chemiluminescence (ECL) prime kit (GE Healthcare, Chicago, IL, USA) on
an ImageQuant LAS4000 (Leica, Wetzlar, Germany). As loading control, GAPDH (1:10,000,
Sigma-Aldrich 1403850) was used and ImageJ (Fiji 1.51n) was used for quantification.

4.7. RNA Isolation and Quantitative Real-Time PCR

Cartilage explants were homogenized using a micro-dismembrator (B. Braun, Oss,
The Netherlands) for 1 min at 1500 rpm. Subsequently, total messenger RNA (mRNA)
was isolated using RNeasy Fibrous tissues kit (Qiagen, Hilden, Germany) according to
manufacturer’s protocol. From cell lines and primary chondrocytes cultured in monolayer,
mRNA was isolated using 500 µL TRIzol (Sigma-Aldrich, Burlington, MA, USA), according
to manufacturer’s protocol. After isolation, a maximum of 1 µg of mRNA was treated with
1 µL DNAse (Life Technologies, Carlsbad, CA, USA) for 15 min at room temperature to
remove possible genomic DNA, followed by 10 min inactivation by incubation at 65 ◦C with
1 µL 25 mM EDTA (Life Technologies). mRNA was reverse transcribed to complementary
DNA using 1.9 µL ultrapure water, 2.4 µL 10x DNAse buffer, 2.0 µL 0.1 M dithiothreitol,
0.8 µL 25 mM dNTP, 0.4 µg oligo dT primer, 200 U M-MLV reverse transcriptase (all Life
Technologies, Carlsbad, CA, USA) and 0.5 µL 40 U/mL RNAsin (Promega, Madison, WI,
USA) and incubated for 5 min at 25 ◦C, 60 min at 39 ◦C, and 5 min at 95 ◦C using a
thermocycler. Gene expression was measured using SYBR Green Master Mix (Applied
Biosystems, Waltham, MA, USA) and 0.25 mM primers (Biolegio, Nijmegen, the Neterlands)
(Table 1) with a StepOnePlus real-time PCR system (Applied Biosystems, Waltham, MA,
USA). The amplification protocol was 10 min at 95 ◦C, followed by 40 cycles of 15 s at
95 ◦C and 1 min at 60 ◦C. Melting curves were analyzed to confirm product specificity. To
calculate the relative gene expression (−∆Ct), the average of three reference genes was
used: bGAPDH, bRPL22 and bRPS14 for bovine chondrocytes or hGAPDH, hRPL22 and
hRPS27A for human chondrocyte cell lines.

4.8. Statistical Analysis

Quantitative data of gene expression analysis were expressed as column scatter graphs
and displayed mean values of a technical duplicate sample per donor (primary chondro-
cytes) or separate experiments (SW1353 cells) with corresponding 95% confidence interval
(CI) or standard deviations (SD) (see Figure legends). For SBE-pNL1.2 transcriptional
assays, conditions were investigated in quadruplo and expressed as mean per experiment
with corresponding 95% confidence interval (CI). Area under the curve (AUC) was cal-
culated for three separate experiments. Differences were tested using displayed means
with analysis of variance (ANOVA) followed by Dunnett’s or Bonferroni’s post-test to
take multiple comparisons into account (see Figure legends). Differences in pSMAD2
and pSMAD3L protein were tested using an unpaired two-tailed t-test and displayed as
mean ± SD. Statistical differences were considered as significant if the p-value was below
0.05. All analyses were performed using Graph Pad Prism version 7.0 (GraphPad Software,
San Diego, CA, USA).
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Table 1. Primer sequences as used in this study.

Gene and Species Forward Sequence (5′ → 3′) Reverse Sequence (5′ → 3′)

bGAPDH CACCCACGGCAAGTTCAAC TCTCGCTCCTGGAAGATGGT
bRPS14 CATCACTGCCCTCCACATCA TTCCAATCCGCCCAATCTTCA
bRPL22 GTTCGCTCACCTCCCTTTCTG GCAGCATCCATGATTCCATCT

bCOL10A1 CCATCCAACACCAAGACACAGT TGCTCTCCTCTCAGTGATACACCTT
bMMP3 AAACTCACCTCACGTACAGAATTG TCCCAGACCGTCAGAGCTTT

bSMAD7 GGGCTTTCAGATTCCCAACTT CTCCCAGTATGCCACCACG
bTGFBR2 GGCTGTCTGGAGGAAGAATGA GTCTCTCCGGACCCCTTTCT

bALK5 CAGGACCACTGCAATAAAATAGAACTT TGCCAGTTCAACAGGACCAA
hGAPDH ATCTTCTTTTGCGTCGCCAG TTCCCCATGGTGTCTGAGC
hRPL22 TCGCTCACCTCCCTTTCTAA TCACGGTGATCTTGCTCTTG

hRPS27A TGGCTGTCCTGAAATATTATAAGGT CCCCAGCACCACATTCATCA
hSMAD7 CCTTAGCCGACTCTGCGAACTA CCAGATAATTCGTTCCCCCTGT
hTGFBR2 CTGGTGCTCTGGGAAATGACA TCGCCCTCGATCTCTCAACA

hALK5 CGACGGCGTTACAGTGTTTCT CCCATCTGTCACACAAGTAAA
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Appendix A

Scheme A1. Dose response curves for IL-1β and OAS-cm and the effect of these stimuli on collagen type 10 expression.
To calculate which concentrations of IL-β and OAS-cm we should use in our hypertrophy-model we performed a dose
response curve with IL-1β (A) and with OAS-cm (B) in bovine cartilage explants. Explants were cultured in the presence
of IL-1β or OAS-cm as indicated on the X-axis for 2 weeks, and medium was refreshed every 3rd day. Relative gene
expression of the read-out gene matrix metalloproteinase 3 (MMP3) and of collagen type 10 (COL10A1) was measured
using qPCR. The concentrations of 0.1 ng/mL IL-1β and 0.5% OAS-cm were chosen for further experiments since these
match the EC-50 in inducing MMP3 expression. (C) Interaction of these inflammatory stimuli with TGF-β in regulating
hypertrophic differentiation, as calculated with measuring gene expression COL10A1 was investigated in several cow
donors. It was established that the concentrations of 0.1 ng/mL IL-1β and 0.5% OAS-cm did not modulate COL10A1
expression themselves. Data are plotted as mean ± 95 % CI with each dot representing the average of 2 replicates of
4 explants in one cow. Statistical analysis was performed using a repeated measures one-way analysis of variance with
Bonferroni’s post-hoc test: ns = non-significant.

Appendix B

Scheme A2. Cont.
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Scheme A2. The SBE-pNL1.2 luciferase reporter assay is SMAD2, SMAD3 and SMAD4 dependent. (A) SW1353 cells
were transfected with the SBE-pNL1.2 luciferase construct, where after they were transfected with short hairpin (sh)
lentivirus to knockout SMAD2 (shSMAD2), SMAD3 (shSMAD3) or SMAD4 (shSMAD4) or control (shSham). At 48 h after
transduction, SW1353 cells were stimulated with 0.1 or 1 ng/mL TGF-β and after 5h SMAD2/3 transcriptional activity
was determined. Data is expressed as fold change with TGF-β relative to medium control and plotted as mean ± SD of
a technical triplicate. (B) To study interaction between OA-related inflammation and functional TGF-β signaling three
chondrocyte-like cell lines (SW1353, G6 and H11) were transfected with the SBE-pNL1.2 construct. After transfection, cells
were re-plated, pre-incubated for 1 hour with medium, 0.1 ng/mL IL-1β or 0.5 % OAS-cm and thereafter stimulated for
5h with 0.1 ng/mL TGF-β. Luciferase activity was measured relative to experimental condition stimulated with TGF-β,
as set at 100% (ctrl level). Data represents mean ± 95 % CI of four independent experiments performed in quadruple.
Statistical analysis was performed using (A) Two-way ANOVA with Bonferroni’s post-hoc test or (B) a one-way ANOVA
with Dunnett’s multiple comparison test comparing the mean to the mean of the condition stimulated with solely TGF-β:
* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001.

Appendix C

Scheme A3. Cont.
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Scheme A3. High and equal over-expression between SMAD variants. To compare conditions between the SMAD3
linker mutants and normal SMAD3 equal over-expression is required. SW1353 cells were transfected with the SBE-pNL1.2
construct, re-plated afterwards and transduced with adenoviral vectors (Ad) with the different SMAD variants, a control
virus (LacZ) or left untreated (non transduced). (A) Flow cytometry was used to quantify FLAG-tag expression with
PE anti-FLAG Tag Antibody. First, debris was excluded based on forward and side scatter, followed by the selection of
single and viable (stained with eFLuor780 viability dye) cells. Afterwards, FLAG-positive cells were gated based on the
autofluorescence of unlabeled cells. Histograms of the FLAG-PE stainings of four individual experiments were displayed.
(B) Flow cytometric analysis showed that with adenoviral transduction in all conditions with the SMAD variants over
90% of all living cells were positively stained for FLAG and (C) the geometric mean of this over-expression was not
different between conditions with normal SMAD3 and the SMAD3 linker mutants, meaning that all SMAD3 variants were
overexpressed equally. Therefore, we were able to fairly compare conditions. Data is represented as dot plots with every dot
representing an individual experiment and is plotted as mean ± SD and statistical analysis was performed using one-way
ANOVA with Dunett’s post-hoc test compared to the condition transduced with normal SMAD3. No significant results
compared to normal SMAD3 condition were measured.
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