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Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels in pancreatic β-cells play a crucial role in insulin secretion 
and glucose homeostasis. These channels are composed of two subunits: a pore-forming subunit (Kir6.2) and a regulatory sub-
unit (sulphonylurea receptor-1). Recent studies identified large number of gain of function mutations in the regulatory subunit 
of the channel which cause neonatal diabetes. Majority of mutations cause neonatal diabetes alone, however some lead to a severe 
form of neonatal diabetes with associated neurological complications. This review focuses on the functional effects of these mu-
tations as well as the implications for treatment.
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INTRODUCTION 

Neonatal diabetes mellitus (NDM) is a form of diabetes that is 
diagnosed under the age of 6 months. The most common 
causes of neonatal diabetes are activating mutations in the ad-
enosine triphosphate (ATP)-sensitive potassium (KATP) chan-
nel. This review discusses functional effects and therapy impli-
cations of NDM mutations in the regulatory subunit of the 
KATP channel—sulphonylurea receptor-1 (SUR1). 

NEONATAL DIABETES

Neonatal diabetes mellitus (NDM) is defined as hyperglycemia 
that presents within the first 6 months of life. It is a rare disor-
der that can be either permanent throughout life (permanent 
NDM, PNDM) or transient (transient NDM, TNDM), with a 
period of remission. 
 TNDM accounts approximately for 50% cases of neonatal 

diabetes (ND) and affects approximately one in 100,000 live 
births. The majority (about 80%) of cases of TNDM are caused 
by abnormalities of an imprinted locus on chromosome 6q24 
that results in the overexpression of a paternally expressed gene 
[1]. Most of remaining cases are caused by mutations in either 
KCNJ11 or ABCC8 genes that encode the ATP-sensitive potas-
sium (KATP) channel respectively [2]. The precise mechanism 
of TNDM is unknown; it has been proposed that it could be 
due to either a reduced insulin requirement at the time of re-
mission or because of some compensation effects at the level 
of the β-cell, pancreas, or whole body [3].
 PND may be either isolated or form part of a syndrome, 
such as Wolcott-Rallinson syndrome due to mutations in the 
EIF2AK3 gene, pancreatic agenesis due to mutations in IPF-1 
gene and ND with cerebellar agenesis due to mutations in the 
PTF-1A gene [4]. The most common cause of isolated PNDM 
are mutations in the genes that encode insulin (INS) and the 
KATP channel (KCNJ11 and ABCC8).
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THE β-CELL KATP CHANNEL

KATP channels act as metabolic sensors, coupling the metabo-
lism of a cell to its membrane potential and electrical excitabil-
ity. Their activity is primarily regulated by intracellular ade-
nosine nucleotides, with ATP having an inhibitory and mag-
nesium adenosine diphosphate (MgADP) or magnesium ade-
nosine triphosphate (MgATP) a stimulatory effect on channel 
activity. KATP channels are expressed in many tissues including 
pancreas, skeletal and smooth muscle, and the brain. In these 
tissues, KATP channels play a multitude of physiological roles 
[5]; however, their physiological role has been best character-
ized in the pancreatic β-cell.
 The β-cell KATP channel links glucose metabolism and insu-
lin release [6]. At substimulatory glucose concentrations (Fig. 
1A), KATP channels are open. Hence the cell membrane is hy-
perpolarised, voltage-gated calcium channels are closed and 
no insulin is released. When blood glucose concentration ris-
es, glucose is transported into pancreatic β-cells and metabo-
lised, thereby increasing the ratio of ATP:adenosine diphos-
phate (ADP) concentrations (Fig. 1B). This closes the KATP 
channel, produces a membrane depolarisation that opens 
voltage-gated calcium channels; resulting in influx of calcium 
into the β-cell which triggers insulin exocytosis.
 Given the crucial role of the β-cell KATP channel in insulin 
secretion and glucose homeostasis, it is not surprising that 

mutations in this channel can lead to diseases of both hypo-
glycaemia and hyperglycaemia [7]. Loss of function mutations 
in KATP channels cause over-secretion of insulin and result in 
hyperinsulinaemia. Conversely, gain of function mutations 
cause undersecretion of insulin, hyperglycemia and result in 
ND.
 The β-cell KATP channel is a hetero-octameric complex com-
prising four Kir6.2 subunits (encoded by the KCNJ11 gene) 
and four sulphonylurea receptor-1 (SUR1) subunits (encoded 
by the ABCC8 gene). Kir6.2 is an inwardly rectifying K-chan-
nel that forms the potassium-selective pore and possesses an 
inhibitory site for ATP [8-10]. SUR1 is a member of the ATP 
binding cassette (ABC) superfamily [11]. This subunit plays 
multiple regulatory roles [10-13]. It confers channel sensitivity 
to stimulation by Mg-nucleotides, activation by K+ channel 
openers, such as diazoxide; and inhibition by sulphonylureas. 
In addition, SUR1 also enhances the inhibitory effect of ATP 
and stabilizes the open state of the channel in the absence of 
nucleotides.

SUR1 AND NEONATAL DIABETES

The SUR1 protein contains three transmembrane domains 
(TMDs) linked by the cytosolic linker region and two nucleo-
tide-binding domains (NBDs) (Fig. 2). TMD1 and TMD2 
contain six transmembrane helices and TMD0, sited at the hy-
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Fig. 1. Stimulus-secretion coupling in pancreatic β-cells. (A) When extracellular glucose, and thus pancreatic β-cell metabolism, 
is low, adenosine triphosphate (ATP)-sensitive potassium (KATP) channels are open. As a result, the cell membrane is hyperpolar-
ised. This keeps voltage-gated Ca2+ channels closed, so that Ca2+ influx remains low and no insulin is released. (B) When extracel-
lular glucose concentration rises, glucose is taken up by the β-cell and metabolised. Metabolism generates ATP at the expense of 
magnesium adenosine diphosphate (MgADP), thereby closing KATP channels. This causes membrane depolarization, opening of 
voltage-gated Ca2+ channels, Ca2+ influx and insulin secretion.
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drophobic N-terminus and important for interactions with 
Kir6.2, contains five transmembrane helices. Each of the NBDs 
contains sequence motifs called Walker A and Walker B that 
are essential for binding the phosphate groups of nucleotides. 
ATP binding to SUR1 causes head to tail dimerization of the 
NBDs and formation of two nucleotide binding sites (NBS1 
and NBS2) within the dimer interface. NBS2 possesses greater 
ATPase activity than NBS1 and its occupancy by MgADP stim-
ulates KATP channel activity [14]. 
 Mutations in the SUR that cause ND were first identified in 
2006 [15,16]. Most of patients with SUR1 mutations have iso-
lated diabetes; approximately 30% of patients have additional 
neurological features. These include developmental delay, learn-
ing difficulties, epilepsy, minor dystonia, tonic posturing, and 
muscle weakness [17,18]. These features are consistent with 
the expression of KATP channels containing the SUR1 subunit 
in the central nervous system [9,19]. To date, only two SUR1 
mutations (F132L [15,18] and I49F [20]) were identified that 
cause the most severe form of ND with developmental delay 
and epilepsy (DEND syndrome). One mutation (L213R [16]) 
caused ND with developmental delay but without epilepsy—

intermediate DEND (i-DEND) syndrome. Unlike in some 
other cases of i-DEND syndrome, mutation L213R did not 
cause muscle weakness.
 ND mutations in SUR1 are all missense mutations and ac-
count for more than 10% of PNDM and a frequent cause of 
TNDM [21]. In contrast to mutations in Kir6.2 which are all 
dominant heterozygous, SUR1 mutations can be either domi-
nant or recessively inherited [18]. Recessive mutations could 
be homozygous, mosaic due to segmental uniparental isodiso-
my or compound heterozygous for another activating mutation 
or if the second allele is inactivated. Approximately 50% of 
SUR1 mutations are spontaneous, arising de novo during em-
bryogenesis [22]. To date, over 60 mutations in SUR1 have been 
identified; they are scattered throughout the protein sequence, 
but are particularly concentrated in TMD0 and their connect-
ing loops, in the CL3 linker connecting NBD0 with NBD1 and 
in NBD2 (Fig. 2). The most commonly occurring mutations in 
SUR1 are at positions R1183 and R1380, both of which cause 
TNDM [22].
 Not all gain of function mutations in SUR1 result in ND, for 
example, mutation S1369A (the most important polymorphism 
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Fig. 2. Location of neonatal diabetes mutations in the sulphonylurea receptor. Membrane topology of the sulphonylurea receptor 
with schematic representation of mutations which cause neonatal diabetes. Mutations showed in red and orange represent neo-
natal diabetes with developmental delay and epilepsy (DEND) and intermediate DEND syndrome respectively and grey colored 
mutations in italics transient neonatal diabetes; the rest of the mutations cause permanent neonatal diabetes. TMD, transmem-
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of the ABCC8 gene) merely increases risk for the type 2 diabe-
tes [23].

FUNCTIONAL EFFECTS OF SUR1 
MUTATIONS

Gain of function mutations in the SUR1 subunit increase KATP 
current in the presence of MgATP. In general, there is a good 
correlation between the magnitude of KATP current and disease 
severity; thus mutations that cause largest increase KATP chan-
nel lead to the most severe form of ND with associated neuro-
logical complications—DEND syndrome [15,18]. To date, 
available functional studies show that increase in current pro-
duced by mutations in SUR1 is smaller than that caused by 
Kir6.2 mutations [14,15,18]. This may explain the relative high 
incidence of TNDM than PNDM among patients with ABCC8 
mutations as well as why most patients with DEND syndrome 
(>90%) have mutations in Kir6.2. 
 SUR1 mutations mediate their effect on channel activity via 
two main mechanisms—by reducing the inhibition produced 
by ATP binding at Kir6.2 and by enhancing channel activation 
by Mg-nucleotides.
 Mutations in SUR1 that decrease the amount of inhibition 
at Kir6.2 may do so in one of two ways. Firstly, they could re-
duce ATP binding directly. It is well established that the pres-
ence of SUR1 enhances ATP inhibition at Kir6.2, which sug-
gests that SUR1 either contributes to the ATP binding site it-
self, or influences it allosterically [10]. Disruption of this could 
reduce ATP binding directly; mutations in SUR1 that are likely 
to act via this mechanism include A30V in TMD0 and G296R 
in TMD1 which together form a compound heterozygous mu-
tation that results in PNDM [24]. Alternatively, SUR1 muta-
tions can also disrupt ATP inhibition indirectly by impairing 
channel gating. These mutations stabilize the open state of the 
channel and thus increase its single channel open probability. 
This impairs channel ability to close both in the absence and 
presence of nucleotides [25]. Examples include F132L in TMD0 
[15,26], L213R in the CL3 linker between TMD0 and TMD1 
[27] and V324M in TMD1 [28].
 Among the mutations that enhance the activatory effect of 
Mg-nucleotides, many are found in NBD2 [18,29-31]. Only 
one SUR1-PNDM mutation (R826W) is found in NBD1 [32], 
nevertheless this mutation lies in the linker that is predicted to 
form part of NBS2. Functional studies showed that these mu-
tations enhance the time that NBS2 spends in the activating 

MgADP-bound state either directly by enhancing MgADP 
binding [31] or indirectly by altering other reaction steps of 
the ATPase [29,32]. Some ND mutations which enhance Mg-
nucleotide activation are located outside the NBDs [16,28,33]. 
These mutations may exert their effect via enhancing the 
transduction of the Mg-nucleotide stimulation from the NBSs 
of SUR1 to the channel pore at Kir6.2; alternatively, they may 
also allosterically affect nucleotide handling at the NBDs.
 In addition to affecting channel activity, some SUR1 muta-
tions can also affect channel expression at the plasma mem-
brane. An example of such mutation is V324M, of which the 
activating effect (enhanced Mg-nucleotide activation, en-
hanced stability of channel open state) is dampened by reduced 
channel expression at the cell surface [28]. The interplay be-
tween the two types of opposing defects may be responsible 
for the fact that the V324M mutation results only in the tran-
sient form of the disease. 
 In general, there is no correlation between the position of 
the mutation in the SUR1 and the clinical phenotype—muta-
tions in the same residue may result in different types of dis-
ease. For example, mutations of the conserved glutamate resi-
due E1506 in NBD2 can result in either hyperinsulinism or 
ND [30].
 It is important to point out that several SUR1 mutations have 
been identified in patients with ND which were later found not 
to be responsible for the disease [14]. In some cases, no func-
tional effects have been found, in others the parents were non-
symptomatic carriers of the mutation. This emphasizes the 
need of the functional study in order to confirm that the mu-
tation is the cause of the disease. 

SULPHONYLUREA THERAPY

Prior to the discovery that ND can be caused by mutations in 
the KATP channel, many patients were assumed to be suffering 
from early-onset type 1 diabetes. Accordingly they were treat-
ed with insulin injections. Recognition that these patients ac-
tually possess gain of function mutations in KATP channel genes 
rapidly led to a switch to sulphonylurea treatment. Fortunate-
ly, since sulphonylureas had been used to safely treat patients 
with type 2 diabetes for many years, no clinical trials were re-
quired.
 Sulphonylurea drugs bind to both Kir6.2 and SUR1 subunits 
of the KATP channel with very different affinities [34]. The low-
affinity binding site, which lies on Kir6.2, is of no clinical rele-
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vance as it is occupied only at concentrations much higher than 
those found in the plasma of patients treated with sulphonyl-
ureas. The primary effect of the drug is mediated via a high-af-
finity binding site on SUR1 with associated IC50 values for 
block of wild-type KATP channels being substantially lower than 
the usual therapeutic plasma concentrations of sulphonylureas 
[35]. 
 Depending on the type of sulphonylurea, the maximal ex-
tent of high-affinity block in the absence of nucleotides is only 
50% to 80%. In the presence of nucleotides, binding of sulpho-
nylureas to the high affinity site suppresses the activatory effect 
of MgADP and unmasks the inhibitory effect of nucleotides at 
Kir6.2. This leads to an apparent increase in the high-affinity 
block of wild-type KATP channels in the presence of Mg-nucle-
otides, which becomes virtually complete inside pancreatic 
β-cells [34,36]. 
 Thus, sulphonylureas exert dual action on KATP channel ac-
tivity: a direct block and indirect block via modulation of nu-
cleotide-dependent channel gating. Given their molecular 
mechanism of action, many ND mutations in SUR1 can be ex-
pected to affect sulphonylurea inhibition. Mutations that im-
pair ATP inhibition indirectly via stabilizing the open state of 
the channel will reduce both direct and indirect block of the 
drug. Mutations that reduce ATP binding to the inhibitory site 
on Kir6.2 directly will impair Mg-nucleotide-induced enhance-
ment of the high-affinity sulphonylurea block. Finally, muta-
tions that enhance MgADP activation may potentially impair 
the ability of sulphonylureas to suppress it. 
 Relatively little information is available at present about the 
efficacy of sulphonylurea block of KATP channels with ND mu-
tations in the SUR1 subunit. Impaired direct and indirect block 
of sulphonylureas has been demonstrated for mutation L213R, 
which disrupts gating [27]. As expected, direct block was un-
affected by SUR1 mutations that enhance Mg-nucleotide acti-
vation [16,33] or directly reduce ATP binding to Kir6.2 [24]. 
Functional studies further suggest that mutations that enhance 
Mg-nucleotide activation may have either no effect or cause 
small reduction in the indirect block of sulphonylureas [16,29, 
32,33,37]. The latter is likely to be mediated via displacement 
of sulphonylureas from SUR1 by Mg-nucleotide binding to 
NBS2 [38]. In support of this idea, two ND mutations that en-
hance ATP affinity for NBS2 were found to enhance gliben-
clamide displacement from SUR1 by the nucleotide [31].
 To date, most patients with ND caused by mutations in 
SUR1 were successfully transferred to sulphonylureas [16,33, 

39-43]. Major exceptions are patients with mutations in phe-
nylalanine 132—F132L and F132V [15,18,39,40]. Mutation 
F132L strongly impairs channel function via altering channel 
gating and causes the most severe form of the disease—DEND 
syndrome [15,18,26]; as demonstrated by previous studies on 
ND mutations in Kir6.2, successful transfer to sulphonylurea 
therapy of patients with this syndrome is quite rare [22,44]. It 
is currently unclear why patients with F132V mutation that 
causes PNDM alone are unable to transfer to sulphonylureas. 
Even more puzzling is that in the only other reported case of 
DEND syndrome due to mutations in SUR1 (I49F), the pa-
tient was able to transfer to sulphonylurea therapy [20]. Fur-
ther studies are needed to gain insight into the functional ef-
fects of these two mutations. 
 An important contributing factor for successful transfer to 
sulphonylurea treatment is the age of the patient [39]; the soon-
er the transfer is carried out the better. Studies of mouse mod-
els of ND suggest that this could be due to gradual loss of 
β-cell mass which can be prevented by therapy [45]. 
 Successful treatment of patients with ND demands higher 
doses of sulphonylureas compared to those with type 2 diabe-
tes [39]. As discussed above, this may be caused, at least in part, 
due to the fact that many ND mutations impair sulphonylurea 
block. Additional factors, such as reduced β-cell mass can also 
contribute. 
 Patients with mutations in SUR1 require lower doses of sul-
phonylureas than those with mutations in Kir6.2 [39,44], con-
sistent with the idea that the former mutations cause in gener-
al milder impairment of channel function than the latter. In 
spite of relatively high doses, the only side effects reported in-
clude transitory diarrhea [39] or tooth discoloration in a few 
patients [46].
 Transfer to sulphonylurea treatment does not only improve 
quality of life of patients with ND; it also appears to enhance 
their blood glucose control. Fluctuations in blood glucose are 
reduced and there is also a decrease in the hemoglobin A1c 
(HbA1c) levels [39,47]. This improvement in glycemic control 
is predicted to reduce the risk of diabetic complications [48,49]. 

CONCLUSIONS

The discovery that mutations in SUR1 can cause ND has led to 
more insight into the role of this regulatory subunit in the KATP 
channel function and transformed therapy for patients with 
these mutations. Nevertheless, many questions remain to be 
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answered. More functional analysis as well as high resolution 
crystal structure of the whole KATP channel complex are neces-
sary in order obtain detail understanding how the SUR1 
ATPase works and how it is coupled to KATP channel gating. 
Further studies are required to identify binding sites for thera-
peutic drugs. Finally, mouse models of ND will help us to un-
derstand why some mutations in SUR1 result in remitting-re-
lapsing form of ND and why others cause additional neuro-
logical problems.
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