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Abstract

Optical coherence tomography (OCT) based measurements of retinal layer thickness, such

as the retinal nerve fibre layer (RNFL) and the ganglion cell with inner plexiform layer

(GCIPL) are commonly employed for the diagnosis and monitoring of glaucoma. Previously,

machine learning techniques have relied on segmentation-based imaging features such as

the peripapillary RNFL thickness and the cup-to-disc ratio. Here, we propose a deep learn-

ing technique that classifies eyes as healthy or glaucomatous directly from raw, unseg-

mented OCT volumes of the optic nerve head (ONH) using a 3D Convolutional Neural

Network (CNN). We compared the accuracy of this technique with various feature-based

machine learning algorithms and demonstrated the superiority of the proposed deep learn-

ing based method. Logistic regression was found to be the best performing classical

machine learning technique with an AUC of 0.89. In direct comparison, the deep learning

approach achieved a substantially higher AUC of 0.94 with the additional advantage of pro-

viding insight into which regions of an OCT volume are important for glaucoma detection.

Computing Class Activation Maps (CAM), we found that the CNN identified neuroretinal rim

and optic disc cupping as well as the lamina cribrosa (LC) and its surrounding areas as the

regions significantly associated with the glaucoma classification. These regions anatomi-

cally correspond to the well established and commonly used clinical markers for glaucoma

diagnosis such as increased cup volume, cup diameter, and neuroretinal rim thinning at the

superior and inferior segments.

Introduction

Glaucoma is a chronic degenerative disease that affects the optic nerve and is one of the leading

causes of blindness worldwide. It is characterized by changes to the optic disc, where the neu-

roretinal rim of the nerve becomes progressively thinner. While the disease is diagnosed using

a variety of tests (including pachymetry, tonometry, and visual field tests [1]), imaging tech-

niques such as fundus photography and optical coherence tomography (OCT) have begun to

find widespread use in the diagnosis and management of glaucoma.
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OCT [2] is a non-invasive imaging modality using low coherence interferometry to gener-

ate high-resolution images of the retina in 3-D. Additionally, this modality allows for the quan-

tification of various retinal structures. In glaucoma, the retinal nerve fiber layer (RNFL) and

combined ganglion cell with inner plexiform layer (GCIPL) have been found to be clinically

useful biomarkers of glaucoma and begin to thin significantly as the disease progresses [3, 4].

Recently machine learning methods have been employed to automatically detect glaucoma.

These methods can be grouped into two categories: classical machine learning applied to fea-

tures extracted from segmented OCT volumes such as k-Nearest Neighbor, Support Vector

Machines, Random Forests and others [5], and deep learning methods such as Convolutional

Neural Networks (CNN). Classical machine learning techniques rely on established features

such as the peripapillary RNFL thickness and macular GCIPL thickness to differentiate

between healthy and glaucomatous eyes. Thus, such techniques require the segmentation and

quantification of the relevant retinal structures. CNNs, on the other hand, can directly operate

on OCT volumes and are feature-agnostic in the sense that no human-designed disease mark-

ers are needed. CNNs have been successfully utilized for a variety of computer vision problems

such as natural image classification [6, 7], and offer a powerful, alternative approach for the

identification of glaucoma from OCT data.

Early work by Huang et al. [8] extracted 25 features such as average RNFL thickness, 4

quadrants, 12 clock hours, vertical rim area, horizontal rim area, disc area, cup area, rim area,

cup-to-disc area ratio, cup-to-disc horizontal ratio and cup-to-disc vertical ratio extracted

from Stratus OCT scans. The data set was composed of 89 patients with glaucoma and 100

health patients. Classical methods such as Linear discriminant analysis, Mahalanobis distance,

and Artificial neural network were employed to identify glaucoma patients. The highest AUC

of 0.991 was achieved by Mahalanobis distance in combination with Principal Component

Analysis.

Silva et al. [9] trained 10 classical machine learning methods on 20 features such as average

RNFL thickness, 4 quadrants, 12 clock hours and visual field test parameters—mean deviation

(MD), pattern standard deviation (PSD), glaucoma hemifield test (GHT), extracted from a

dataset composed of 62 glaucoma patients and 48 healthy individuals. The highest AUC of

0.946 was obtained by a Random Forest [10] classifier. It is noteworthy that a single feature

(PSD) achieved an AUC of 0.915; not significantly (p = 0.37) different from the top AUC of

0.946 based on the complete set of features.

Kim et al. [11] conducted a similar experiment in a larger cohort of 297 glaucomatous eyes

and 202 healthy eyes. Seven extracted features such as age, Intraocular pressure (IOP), mean

RNFL thickness, corneal thickness, MD, Glaucoma Hemifield Test (GHT) numbers and PSD

were used to train four machine learning algorithms (C5.0, Random Forest (RF), Support Vec-

tor Machine (SVM) and k-Nearest Neighbor (KNN)) to detect glaucoma. The highest AUC of

0.979 was achieved with RF and C5.0.

While these approaches produced high AUC values, the use of image-based features

depends on the accurate segmentation of OCT layers, which is often difficult in advanced glau-

coma cases, low quality scans and with co-existing retinal pathologies such as diabetic retinop-

athy (DR) or age-related macular degeneration (AMD). Furthermore, the use of human-

selected disease markers potentially limits the classification accuracy achievable.

Muhammad et al. [12] employed a CNN, utilizing transfer learning based on AlexNet [6]

and a Random Forest classifier trained on the features extracted by the CNN to discriminate

between 45 healthy eyes and 57 eyes diagnosed with open-angle glaucoma. This method, like

the previous approaches, relied on features such as the RNFL and GCIPL thickness extracted

from wide-field swept-source OCT scans and furthermore included thickness probability

maps. The latter are derived from the thickness distribution of a population of healthy subjects
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and therefore contain information beyond mere scans or individual patients. The highest

AUC score of 0.979 was achieved using RNFL thickness probability maps as input feature.

In this work, we explore CNNs for the detection of glaucomatous eyes directly from unpro-

cessed OCT volumes, thus, by-passing the segmentation steps required to extract features

(such as retinal layer thicknesses, rim volume, etc.). The method utilizes optic nerve head

(ONH) centered OCT scans only and does not rely on visual field tests or statistical informa-

tion of healthy subjects such as thickness probability profiles. We compare the classification

accuracy of this CNN with classical machine learning methods trained on traditional segmen-

tation-based features extracted from the same dataset of ONH scans.

Material and methods

This study was an observational study that was conducted in accordance with the tenets of the

Declaration of Helsinki and the Healthy Insurance Portability and Accountability Act. The

Institutional Review Board of New York University and the University of Pittsburgh approved

the study, and all subjects gave written consent before participation.

In the following we will distinguish between two approaches: the feature-based approach,

where machine learning algorithms are trained on established, segmentation-based features

extracted from segmented OCT volumes, and the feature-agnostic approach, where a CNN is

directly trained on raw OCT volumes without the need of segmentation and/or feature

selection.

Performance metric

We measured the classification accuracy of the methods based on the Area under the Receiver

Operator Characteristic (AUC) curve, which is defined as

AUC ¼
1

2

Xn

k¼1

ðXk � Xk� 1ÞðYk þ Yk� 1Þ ð1Þ

where Xk is the false positive rate and Yk is the true positive rate for the k-th output in the

ranked list of n confidence scores generated by the classifier. AUCs are reported for the valida-

tion and the test data.

Data

OCT scans centered on the ONH were acquired from 624 patients on a Cirrus SD-OCT Scan-

ner (Zeiss, Dublin, CA, USA). The scans had physical dimensions of 6x6x2 mm with a corre-

sponding size of 200x200x1024 voxels per volume. Scans with signal strength less than 7 were

discarded, resulting in a total of 1110 scans for the experiments. The scans were kept in their

original laterality (no flipping of left into right eye). 263 of the 1110 scans were diagnosed as

healthy and 847 with primary open angle glaucoma (POAG). Glaucomatous eyes were defined

as those with glaucomatous visual field defects (at least 2 consecutive abnormal test results).

Demographical background such as gender and race distribution, and mean values with

standard deviations for patient’s age, Intraocular Pressure (IOP), Mean Field Defects (MD)

and Glaucoma Hemifield Test (GHT) [13] results are provided in Table 1. Note that for some

patients demographic data was incomplete and aggregate numbers therefore do not necessarily

add up to the data set size. Statistically significant differences (p< 0.0001) between the distri-

bution of healthy and patients diagnosed with POAG were found for age, IOP, MD and GHT.

The data set was split into 888 training samples, 112 validation samples and 110 test samples

(80%, 10%, 10%). It was ensured that eyes belonging to the same patient were not split across

Glaucoma detection from OCT volumes
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folds. We performed 5-fold cross-validation and the averaged numbers of healthy and eyes

with POAG within these folds are shown in Table 2.

Feature based approach

For the feature-based approach we used a set of 22 measurements computed by the Cirrus

OCT scanner. Specifically, for each ONH scan we collected peripapillary RNFL thickness at 12

clock-hours, peripapillary RNFL thickness in the four quadrants, average RNFL thickness, rim

area, disc area, average cup-to-disc ratio, vertical cup-to-disc ratio and cup volume [11]. All

features were normalized by subtracting the features mean and scaling to unit variance. Nor-

malization parameters were estimated on the training data only and then applied to training,

validation and test data. No further pre-processing steps were performed. All features were

real valued and contained no missing values.

We then trained the following machine learning algorithms as implemented in the Scikit-

learn library [14] on the extracted 22 features: Naïve Bayes (Gaussian) [5], Logistic Regression

[15], Support Vector Machine (linear, polynomial, RBF) [16], Random Forest [10], Gradient

Boosting [17] and Extra Trees [18].

The hyper-parameters of each classifier were optimized as follows: we selected important

hyper-parameters and reasonable ranges (see Table 3), and then uniformly sampled 1000

times for each training fold. The parameters resulting in the highest AUC on the validation set

were used to compute the AUC on the test set. This process was repeated 5 times (5-fold cross-

validation) and we report mean AUCs with standard deviations (STD) for the validation and

test sets.

Feature agnostic approach

The feature-agnostic approach does not extract manually designed features from the OCT vol-

ume but operates on the raw data. Apart from down-sampling (linear interpolation) from

Table 2. Average numbers of healthy eyes and eyes with POAG in training, validation and test set.

Healthy POAG

Training 216 672

Validation 30 82

Test 17 93

https://doi.org/10.1371/journal.pone.0219126.t002

Table 1. Demographic data: Gender and race distribution, and mean values with standard deviations and ranges

for age, IOP, MD and GHT.

Healthy POAG

#Female 88 217

#Male 49 215

#White 101 318

#Black 30 154

#Asian 5 12

Age 54.1±15.3 [22.1-88.9] 64.3±12.5 [25.2-93.8]

IOP 13.5±2.4 [9-23] 16.7±5.8 [2-51]

MD -0.8±1.7 [-9.9-2.8] -6.8±8.1 [-32.9-2.17]

GHT 1.6±1.0 [1-6] 2.4±0.9 [1-6]

https://doi.org/10.1371/journal.pone.0219126.t001
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200x200x1024 to volumes with dimensions 64x64x128 voxels due to constraints of the GPU

memory (12GB), no other pre-processing or data extraction was performed.

The downsampled volumes were inputted into a CNN [7], depicted in Fig 1. The network is

composed of five 3D-convolutional layers with ReLU activation, batch-normalization, filter

banks of sizes 32-32-32-32-32, filters of sizes 7-5-3-3-3 and strides 2-1-1-1-1. After the last con-

volutional layer Global Average Pooling (GAP) [19] is employed and a dense layer to the final

softmax output layer is added to enable the prediction of class labels and the computation of

CAMs.

An important aspect of the network architecture is the choice of 3D convolutions to allow

the computation of 3D Class Activation Maps (CAM) [19]. The input layer of a CNN aggre-

gates input data along the first axis (e.g. color channels). In the case of 2D convolutions the

resulting CAM would be 2D and the depth information lost. We therefore employed 3D con-

volutions, which allowed us to identify regions within the OCT volume that are important for

disease classification.

Various aspects of the network architecture such as the number of layers, number of filter

banks per layer, filter sizes, strides and the use of batch normalization were optimized by

Table 3. Hyper-parameters and parameter ranges used for parameter tuning on validation set.

Classifier Parameter ranges

Naïve Bayes none

Logistic regression C = [10−1. . .101]

penalty = {l1, l2}

Linear SVM C = [10−3. . .103]

Polynomial SVM C = [10−3. . .103]

degree = {2, 3}

RBF SVM C = [10−3. . .103]

γ = [10−3. . .103]

Random Forest max_features = [0.1. . .1.0]

n_estimators = {10, 50, 100, 500, 1000}

min_samples_split = {2, 4, 6, 8, 10, 20, 40, 60, 100}

min_samples_leaf = {1, 3, 5, 7, 9}

Gradient Boosting learning_rate = [10−1. . .100]

n_estimators = {100, 200, 500, 1000}

max_depth = [2. . .10]

min_samples_split = {2, 4, 6, 8, 10}

min_samples_leaf = {1, 3, 5, 7, 9}

Extra Trees max_features = [0.1. . .1.0]

n_estimators = {10, 50, 100, 500, 1000}

min_samples_split = {2, 4, 6, 8, 10, 20, 40, 60, 100}

min_samples_leaf = {1, 3, 5, 7, 9}

https://doi.org/10.1371/journal.pone.0219126.t003

Fig 1. Network architecture.

https://doi.org/10.1371/journal.pone.0219126.g001
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random hyper-parameter exploration; similar to the hyper-parameter optimization performed

for the feature-based approached. The AUC achieved by the network was used to select the

best network. We excluded max-pooling from the network architecture search since it can be

replaced by strided convolutions [20]. We also did not explore different activation functions

but used ReLU as proposed for CAM generation. However, we studied the impact of different

gradient based learning algorithms [21], namely RMSProp, Adam, NAdam and Stochastic

Gradient Decent (SGD) [22], and found NAdam to perform best.

The CNN was implemented in Keras [23] with Tensorflow [24] as the backend. Data split-

ting, stratification and pre-processing was performed with nuts-flow/ml [25]. Training was

performed on a single K80 GPU using NAdam with a learning rate of 1e − 4 over 100 epochs.

Data was stratified per epoch via down-sampling. Training data was augmented by random

occlusions, translations, left-right eye flipping, small rotations (±10 degrees) along the enface

axis, and mixup [26]. However, we also trained the network without any augmentation and

report the corresponding AUC. The network with the highest validation AUC during training

was saved (early stopping). Accuracies reported are AUCs on the independent test set and the

validation set.

CAMs were computed following [19], resized and overlayed on the input OCT scan. Note

that CAMs are computed for smaller input OCTs 64x64x128 and then mapped back to scans

with the original dimensions of 200x200x1024.

Results

In the following section we first report the prediction accuracies of the feature-based methods

and the feature-agnostic CNN, before analyzing a selection of the CAMs generated by the

CNN.

Disease detection

The prediction accuracies of the classical, feature-based machine learning methods on the vali-

dation and the test data is shown in Table 4. Logistic regression achieved the highest test AUC

of 0.89 closely followed by linear SVM. Differences between validation and test AUCs were

small for low-capacity classifiers such as Logistic Regression, Naive Bayes and linear SVM.

Tree based algorithms, such as Random Forest, Extra Trees and Gradient Boosting tended to

overfit—likely due to the larger capacity, the large number of hyper-parameters and the exten-

sive hyper-parameter optimization.

Using the Extra Trees classifier, we evaluated the importance of individual features [14].

We observed large variations in the importance of features and therefore performed 100-fold

Table 4. 5-fold cross-validated prediction performance (mean AUC) of feature-based methods on validation set

(AUCval) and test set (AUCtest) with standard deviation. Last column shows the differences between test and valida-

tion AUCs.

Algorithm AUCval AUCtest AUCval−test

Logistic Regression 0.88±0.035 0.89±0.028 -0.013

SVM (linear) 0.89±0.044 0.88±0.038 0.007

SVM (rbf) 0.90±0.045 0.86±0.039 0.033

Random Forest 0.91±0.034 0.86±0.027 0.043

Extra Trees 0.90±0.038 0.86±0.046 0.043

Naive Bayes 0.87±0.033 0.86±0.029 0.015

Gradient Boosting 0.87±0.033 0.82±0.043 0.049

SVM (poly) 0.85±0.030 0.82±0.033 0.034

https://doi.org/10.1371/journal.pone.0219126.t004
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cross-validation to achieve stable results. Hyper-parameters for the Extra Trees classifier were

optimized on the validation set by random search over 100 trials.

The bar plot in Fig 2 shows the mean importance with standard deviations of all features

used for glaucoma classification. We find the well known indicators for glaucoma such as 6

and 11 o’clock clock-hours, inferior and superior quadrant and vertical cup-to-disc ratio hav-

ing the largest importance.

Table 5 lists the 5-fold cross-validation accuracies of the CNN on the OCT data set. The fea-

ture-agnostic based approach achieved a peak test AUC of 0.94, which is substantially higher

(p< 0.05) than the best classical machine learning method (AUC of 0.89) on segmentation-

based features. We found that the extensive augmentation of training data had very little effect

on test or validation accuracy but training was considerably faster without augmentation.

Fig 2. Importance of individual features for glaucoma classification. Error bars show standard deviation. Features are peripapillary RNFL thickness at 12 clock-

hours (clockhour1..clockhour12), peripapillary RNFL thickness in the four quadrants (quad_t..quad_i), average RNFL thickness (avgthickness), rim area (rimeara),

disc area (discarea), average cup-to-disc ratio avg_cd_ratio), vertical cup-to-disc ratio (vert_cd_ratio) and cup volume (cupvol).

https://doi.org/10.1371/journal.pone.0219126.g002
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Visualizing CNN’s attention

We computed Class Activation Maps (CAMs) to identify the regions in an OCT volume the

CNN deems to be important for the classification decision. Fig 3 shows two representative

CAMs, one for a healthy eye (Fig 3a and 3b) and one for an eye with POAG (Fig 3c and 3d).

Note that aspect ratios of scans do not reflect physical dimensions of OCT volumes.

For healthy eyes the network tends to focus on a section across all layers but usually ignores

the optic cup/rim and the lamina cribrosa. In contrast, for POAG eyes the CAMs generally

highlight the optic disc cupping and neuroretinal rims as well as the lamina cribrosa and its

surrounding regions. These regions agree well with the established clinical markers for glau-

coma diagnosis (e.g. cup diameter/volume and rim area/volume).

The visualization software for CAM results with some example volumes is freely available at

https://zenodo.org/record/1344287#.W3EN3dUzbmE.

Discussion

Huang et al. [8], Kim et al. [11] and Silva et al. [9] used machine learning based on segmenta-

tion-based OCT and other features to detect glaucoma. They report considerably higher peak

AUCs between 0.95 and 0.99 than the test AUC of 0.89 we measured for classical machine

learning algorithms on our data set. There are several likely reasons for these large differences

in performance. Firstly, Kim et al. [11] and Silva et al. [9] utilized datasets that were 2 to 5

times smaller than our own. Over-fitting to smaller datasets is a commonly encountered issue

in machine learning. Furthermore, some of these methods were not evaluated on a hold-out

test set with additional steps such as a feature selection being performed on the validation set.

The further incorporation of IOP measurements and visual field tests (MD, PSD and GHT),

that are highly correlated with glaucoma, likely contributed to their higher prediction accu-

racy. Finally, and most importantly, our data set was not cleaned for this experiment, and argu-

ably represents the challenge as it exists in the clinic today. The signal strength threshold in

this experiment was 7, while many studies typically exclude scans with SS< = 8. While strict

exclusion criteria such as visual field defect thresholds and low corrected vision [8] are com-

mon, our cohort did not exclude such patients and was quite varied and challenging.

The work of Muhammad et al. [12] is most similar to our work, in that they employ a CNN

for glaucoma detection. It is, however, important to note that their method is still based on fea-

tures extracted from segmented volumes such as thickness maps. Other differences are specific

inclusion criteria for their cohort, the use of wide-field swept source OCT data and specific

design choices. While transfer learning has the advantage of not requiring a large dataset, the

architecture of the base network can be a severe limitation. AlexNet, is a 2D CNN and training

on thickness and probability maps that does not permit the computation of CAMs for OCT

volumes. Our approach, of training a 3D CNN from OCT volumes enables the computation of

CAMs in volumes. In addition to common disease markers such as increased cup volume, cup

diameter, thinning of neuroretinal rim at the superior and inferior segment, CAMs also con-

sistently highlighted changes at the lamina cribrosa and the surrounding areas (see Fig 3d). In

recent glaucoma studies [27, 28] the lamina cribrosa has become a focus as a potentially useful

Table 5. 5-fold cross-validated prediction performance (mean AUC) of feature-agnostic CNN on validation set (AUCval) and test set (AUCtest) with standard devia-

tion. Last column shows the differences between test and validation AUCs. Results are reported for training with and without augmentation.

Algorithm augmentation AUCval AUCtest AUCval−test

CNN no 0.93±0.015 0.94±0.036 -0.003

CNN yes 0.95±0.018 0.92±0.046 0.027

https://doi.org/10.1371/journal.pone.0219126.t005
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structure that can be directly visualized and quantified in vivo and may provide new clinical

biomarkers for glaucoma assessment.

The present CAM outcome implies a potential of establishing such biomarkers. However,

the usefulness of CAMs depends to a large degree on the network architecture. Since CAMs

Fig 3. CAMs of a healthy and a POAG eye. Top row shows enface (a) and side (b) view of healthy eye. Bottom row shows enface (c) and side (d) view of POAG

eye. (N:Nasal, T:Temporal, S:Superior, I:Inferior).

https://doi.org/10.1371/journal.pone.0219126.g003
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are derived from the global-averaging-pooling (GAP) layer their resolution depends on the

number of max-pooling operations or strided convolutions performed in earlier layers. For

instance, an input volume of 128x128x128 will be reduced to a tiny CAM of size 4x4x4 pixels

after five convolutions with stride 2 (128 / 2x2x2x2x2), resulting in blurry CAMs that fail to

highlight distinct regions when mapped back to the input volume. We therefore chose a CNN

architecture with good classification accuracy but small strides and filters sizes. The large size

of an OCT volume and the limited GPU memory (12GB) also forced us pick a comparatively

shallow network with five layers. Higher classification accuracies may be achieved with deeper

networks of different architecture.

It is noteworthy, that during our empirical exploration of hyper-parameters we did not

identify any specific network properties of importance for good classification performance

apart from batch normalization and learning algorithm (NAdam performed best). All other

parameters such as number of filter banks, filter sizes, strides or learning rate showed no corre-

lation with prediction accuracy. On the contrary, very different architectures achieved very

similar validation AUCs. Even attempts to flatten and crop the retinal layers in order to nor-

malize OCT scans had little effect on classification accuracy.

Finally, our data set showed statistically significant differences between healthy and glau-

coma patients for age, IOP, MD and GHT. While the IOP and visual function measurements

are expected to differ between the two groups, the inclusion of age might influence the perfor-

mance of the CNN. For visual function measurements such as MD and GHT these differences

are expected and aimed for. Similarly, differences in IOP between healthy and eyes with glau-

coma are expected. Age can be inferred from OCT, e.g. due to progressive layer thinning with

advancing age, and while age was not directly included as a feature the CNN potentially takes

advantage of it.

Conclusions

In this work we demonstrated that the detection of glaucoma from raw OCT volumes is

achievable with an accuracy comparable or better than traditional, feature-based approaches

that rely on manually designed features extracted from segmented OCTs. The feature-agnostic

approach potentially widens the range of application and improves detection accuracy, since

OCT scans of older patients or extreme cases of glaucoma are often difficult to segment

accurately.

Manually designed features have the advantage of human interpretability. We employed

CAMs with similar purpose and result. They allowed us to identify OCT regions important for

glaucoma classification and potentially are helpful for the discovery of novel or more robust

disease markers.

Our results are based on the largest OCT glaucoma data set so far but were limited to ONH

scans only. Including Macula scans and other readily available features such as IOP and visual

test measurements are likely to increase the accuracy of the method further.
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