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Abstract The molecular underpinnings of antibiotic resistance are increasingly understood, but

less is known about how these molecular events influence microbial dynamics on the population

scale. Here, we show that the dynamics of E. faecalis communities exposed to antibiotics can be

surprisingly rich, revealing scenarios where increasing population size or delaying drug exposure

can promote population collapse. Specifically, we demonstrate how density-dependent feedback

loops couple population growth and antibiotic efficacy when communities include drug-resistant

subpopulations, leading to a wide range of behavior, including population survival, collapse, or one

of two qualitatively distinct bistable behaviors where survival is favored in either small or large

populations. These dynamics reflect competing density-dependent effects of different

subpopulations, with growth of drug-sensitive cells increasing but growth of drug-resistant cells

decreasing effective drug inhibition. Finally, we demonstrate how populations receiving immediate

drug influx may sometimes thrive, while identical populations exposed to delayed drug influx

collapse.

Introduction
Antibiotic resistance is a growing public health threat (Davies and Davies, 2010). Decades of rapid

progress fueled by advances in microbiology, genomics, and structural biology have led to a

detailed but still growing understanding of the molecular mechanisms underlying resistance

(Blair et al., 2015). At the same time, recent studies have shown that drug resistance can be a col-

lective phenomenon driven by emergent community-level dynamics (Vega and Gore, 2014;

Meredith et al., 2015b). For example, drug degradation by a sub-population of enzyme-producing

cells can lead to cooperative resistance that allows sensitive (non-producing) cells to survive at other-

wise inhibitory drug concentrations (Yurtsev et al., 2013; Sorg et al., 2016; Yurtsev et al., 2016).

Additional examples of collective resistance include density-dependent drug efficacy (Brook, 1989;

Udekwu et al., 2009; Tan et al., 2012; Karslake et al., 2016), indole-mediated altruism (Lee et al.,

2010), and increased resistance in dense surface-associated biofilms (Davies, 2003). The growing

evidence for collective resistance underscores the need to understand not just the molecular under-

pinnings of resistance, but also the ways in which these molecular-level events shape population

dynamics at the level of the bacterial community. Indeed, a wave of recent studies are inspiring

novel strategies for combating resistance by exploiting different features of the population dynam-

ics, ranging from competition for resources (Hansen et al., 2017; Hansen et al., 2019) or synergy

with the immune system (Gjini and Brito, 2016) to temporal and spatial features of growth, selec-

tion, or the application of drug (Lipsitch and Levin, 1997; Meredith et al., 2015a; Fuentes-

Hernandez et al., 2015; Zhang et al., 2011; Baym et al., 2016a; Greulich et al., 2012;
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Hermsen et al., 2012; Moreno-Gamez et al., 2015; De Jong and Wood, 2018; Trindade et al.,

2009; Borrell et al., 2013; Bonhoeffer et al., 1997; Bergstrom et al., 2004; Bonhoeffer et al.,

1997; Yoshida et al., 2017; Nichol et al., 2015; Roemhild et al., 2018; Baym et al., 2016b;

Michel et al., 2008; Hegreness et al., 2008; Pena-Miller et al., 2013; Rodriguez de Evgrafov

et al., 2015; Munck et al., 2014; Torella et al., 2010; Imamovic and Sommer, 2013; Kim et al.,

2014; Pál et al., 2015; Barbosa et al., 2017; Barbosa et al., 2018; Nichol et al., 2019; Maltas and

Wood, 2019; Podnecky et al., 2018; Imamovic et al., 2018; Dean et al., 2020). As a whole, these

studies demonstrate the important role of community-level dynamics for understanding and predict-

ing how bacteria respond and adapt to antibiotics. Despite the relatively mature understanding of

resistance at the molecular level, however, the population dynamics of microbial communities in the

presence of antibiotics are often poorly understood.

Here we investigate dynamics of E. faecalis populations exposed to (potentially time-dependent)

influx of ampicillin, a commonly-used b-lactam. E. faecalis is an opportunistic pathogen that contrib-

utes to a number of clinical infections, including infective endocarditis, urinary tract infections, and

blood stream infections (Clewell et al., 2014; Huycke et al., 1998; Hancock and Gilmore, 2006;

Ch’ng et al., 2019). b-lactams are among the most commonly used antibiotics for treating E. faecalis

infections, though resistance is a growing problem (Miller et al., 2014). Resistance to ampicillin can

arise in multiple ways, including by mutations to the targeted penicillin binding proteins or produc-

tion of b-lactamase, an enzyme that hydrolyzes the b-lactam ring and renders the drug ineffective.

Enzymatic drug degradation is a common mechanism of antibiotic resistance across species and has

been recently linked to cooperative resistance in E. coli (Yurtsev et al., 2013) and S. pneumoniae

(Sorg et al., 2016). In addition, E. faecalis populations exhibit density-dependent growth when

exposed to a wide rang-lactamse of antibiotics (Karslake et al., 2016). Increasing population density

typically leads to decreased growth inhibition by antibiotics, consistent with the classical inoculum

eLife digest Antibiotic resistance is a threat to human and animal health worldwide. Although

we rely on antibiotics to treat diseases caused by bacteria, such as tuberculosis, some bacteria are

already resistant to many of the drugs available. Understanding the basis of resistance is crucial for

developing new antibiotics, and for using current drugs more efficiently.

One way that bacteria resist antibiotics is by producing enzymes that inactivate specific drugs. If

a community of bacteria contains both vulnerable and resistant cells, this can lead to a phenomenon

called ‘cooperative resistance’. When treated with antibiotics, vulnerable cells within the group are

shielded by their resistant neighbors, which effectively remove the drugs from the environment.

Cooperative resistance can make it difficult for researchers to understand how resistance

develops in different bacterial populations. This is because a large group of cells may collectively

behave in a different way than individual cells. This means that bacterial populations are a more

realistic model for ‘real-world’ infections and disease than studies of single cells. Now, Hallinen,

Karslake and Wood show how cooperation between cells affects the way bacterial communities

respond to beta-lactams, the most commonly prescribed class of antibiotic drugs.

Experiments using cultures of Enterococcus faecalis, a bacterium that often causes hospital

infections, revealed that the density of different bacterial populations changes the effectiveness of

drugs. Although increased cell density had a protective effect on populations containing only

resistant bacteria, it made non-resistant populations even more vulnerable.

Mathematical modelling using information from the culture experiments predicted that

interactions between vulnerable and resistant bacteria within a mixed community can determine

how populations change over time. For example, if the number of antibiotic-sensitive cells is too

high, this can cause the entire population to collapse. These predictions contradict the conventional

understanding of how antibiotic resistance spreads, where small numbers of resistant cells multiply

rapidly at the expense of vulnerable ones.

These results shed new light on the complex dynamics of antibiotic resistance within bacterial

populations as a whole. In the future, they may inspire new ecology-based strategies for slowing the

spread of resistance, ultimately helping reduce the burden of disease.
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effect (IE) (Brook, 1989). However, b-lactams can also exhibit a surprising ‘reverse’ inoculum effect

(rIE) characterized by increased growth of the population at lower densities (Karslake et al., 2016;

Jokipii et al., 1985). In E. faecalis , the rIE arises from a decrease in local pH at increasing cell densi-

ties (Karslake et al., 2016), which are associated with increased activity of ampicillin and related

drugs (Yang et al., 2014). Similar growth-driven changes in pH have been recently shown to modu-

late intercellular interactions (Ratzke and Gore, 2018), promote ecological suicide in some species

(Ratzke et al., 2018), and even to modulate antibiotic tolerance in multispecies communities (Ara-

nda-Dı́az et al., 2020). In addition to these in vitro studies, recent work shows that E. faecalis infec-

tions started from high- and low-dose inocula lead to different levels of immune response and

colonization in a mouse model (Chong et al., 2017).

In this work, we show that density-dependent feedback loops couple population growth and

drug efficacy in E. faecalis communities comprised of drug-resistant and drug-sensitive cells exposed

to time-dependent concentrations of antibiotic. By combining experiments in computer-controlled

bioreactors with simple mathematical models, we demonstrate that coupling between cell density

and drug efficacy can lead to rich dynamics, including bistabilities where low-density populations sur-

vive while high-density populations collapse. In addition, we experimentally show that there are cer-

tain scenarios where populations receiving immediate drug influx may eventually thrive, while

identical populations exposed to delayed drug influx–which also experience lower average drug con-

centrations–are vulnerable to population collapse. These results illustrate that the spread of drug

resistant determinants exhibits rich and counterintuitive dynamics, even in a simplified single-species

population.

Results

Resistant and sensitive populations exhibit opposing density-
dependent effects on antibiotic inhibition
To investigate the dynamics of E. faecalis populations exposed to b-lactams, we first engineered

drug resistant E. faecalis strains that contain a multicopy plasmid that constitutively expresses b-lac-

tamase (Materials and methods). Sensitive cells harbored a similar plasmid that lacks the b-lactamase

insert. To characterize the drug sensitive and drug resistant strains, we estimated the half maximal

inhibitory concentration, IC50, of ampicillin in liquid cultures starting from a range of inoculum densi-

ties (Figure 1A; Materials and methods). We found that the IC50 for sensitive strains is relatively

insensitive to inoculum density over this range, while b-lactam producing resistant cells exhibit

strong inoculum effects (IE) and show no inhibition for inoculum densities greater than 10-5 (OD

units) even at the highest drug concentrations (10 mg/mL). To directly investigate growth dynamics

at larger densities–similar to what can be resolved with standard optical density measurements–we

used computer controlled bioreactors to measure per capita growth rates of populations held at

constant densities and exposed to a fixed concentration of drug (as in Karslake et al., 2016). At

these higher densities, we found that resistant strains are insensitive to even very large drug concen-

trations (in excess of 103 mg/mL). By contrast, sensitive populations are inhibited by concentrations

smaller than 1 mg/mL, and the inhibition depends strongly on density, with higher density popula-

tions showing significantly decreased growth (Figure 1B)–indicative of a reverse inoculum effect

(rIE). Taken together, these results illustrate opposing effects of cell density on drug efficacy in sensi-

tive and resistant populations. In what follows, we focus on dynamics in the regime OD > 0.05,

where the interplay between these two opposing effects may dictate survival or extinction of resis-

tant populations.

Resistant populations exhibit bistability between survival and
extinction in the presence of constant drug influx
Bacteria in natural or clinical environments may often be exposed to drug concentrations that

change over time. To introduce non-constant antibiotic concentrations, we grew populations in com-

puter controlled bioreactors capable of precise control of inflow (e.g. drug and media) and outflow

in each growth chamber (Figure 1C; see also Toprak et al., 2012; Toprak et al., 2013;

Karslake et al., 2016). Cell density is monitored with light scattering (OD), and each chamber

received fresh media and drug at a rate m0 » 0.1 hr�1, which is approximately an order of magnitude
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Figure 1. Changes in cell density have opposing effects on b-lactam efficacy in drug sensitive and drug resistant populations. (A) Half-maximal

inhibitory concentration (IC50) of ampicillin as a function of inoculum density for resistant (red squares) and sensitive (blue circles) populations. IC50 is

estimated using a fit to Hill-like function f ðxÞ ¼ ð1þ ðx=KÞhÞ�1, where h is a Hill coefficient and K is the IC50. (B) Per capita growth rate of drug-sensitive

populations held at a density of OD = 0.2 (open squares) and OD = 0.8 (filled circles) following addition of ampicillin at time 0. Growth rate is

estimated, as in Karslake et al. (2016), from the average media flow rate required to maintain populations at the specified density in the presence of a

constant drug concentration of 0.5 mg/mL. Flow rate is averaged over sliding 20 min windows after drug is added. Note that drug-resistant populations

exhibit no growth inhibition over these density ranges, even for drug concentrations in excess of 103 mg/mL. (C) Schematic of experimental setup. Cell

density in planktonic populations is measured via light scattering from IR detector/emitter pairs calibrated to optical density (OD). Fresh media

(containing appropriate drug concentrations) is introduced over time using computer-controlled peristaltic pumps, and waste is simultaneously

removed to maintain constant volume (see Materials and methods). (D) Top panel: final cell density of drug sensitive populations exposed to constant

drug influx over a 20 hr period. Experiments were started from either ‘high density’ (OD = 0.6, red) or ‘low density’ (OD = 0.1, blue) initial populations.

Figure 1 continued on next page

Hallinen et al. eLife 2020;9:e52813. DOI: https://doi.org/10.7554/eLife.52813 4 of 21

Research article Microbiology and Infectious Disease Physics of Living Systems

https://doi.org/10.7554/eLife.52813


slower than the per capita growth rate of sensitive cells in drug-free media. In the absence of drug,

cells reach a steady state population size of Cð1� �Þ, where C is the carrying capacity (C » 1 in our

experiments), � ¼ �0=gmax, and gmax is the drug-free (maximum) per capita growth rate of bacteria.

By changing the concentration of drug Dr in the media reservoir, we can expose cells to effective

rates of drug influx F ¼ �0Dr.

We first characterized the population dynamics of each cell type (resistant, sensitive) alone in

response to different influx rates of ampicillin. In each experiment, we started one population at

OD = 0.6 (‘high-density’) and one at OD = 0.1 (‘low density’). Not surprisingly, sensitive only popula-

tions exhibit a monotonic decrease in final (20 hr) population size with increasing drug concentration

(Figure 1D, top panel), with both high- and low-density populations approaching extinction for

F >0.1 mg/mL/ per hr. By contrast, high- and low-density populations of resistant cells exhibit diver-

gent behavior, with high-density populations surviving and low-density populations collapsing

(Figure 1D, bottom panel). In addition, we note that the resistant strains have dramatically increased

minimum inhibitory concentrations (MIC), with high-density populations surviving at Dr ¼ 10
4 mg/mL

(an effective influx of over 1000 mg/mL/hr). Indeed, the half-maximal inhibitory concentrations (IC50)

for sensitive-only and resistant-only populations differ significantly even at very low densities

(Figure 1A), suggesting intrinsic differences in resistance even in the absence of density-dependent

coupling. This difference corresponds to a direct benefit provided to the enzyme-producing cells,

above and beyond any benefit that derives from drug degradation by neighboring cells.

These results, along with those in previous studies (Karslake et al., 2016), are consistent with a

picture of competing density-dependent feedback loops in populations comprised of both sensitive

and resistant sub-populations (Figure 1E). Increasing the total population density potentiates the

drug, a consequence of the pH-driven reverse inoculum effect (rIE). On the other hand, increasing

the size of only the b-lactamase producing subpopulation is expected to decrease drug efficacy as

enzymatic activity decreases the external drug concentration. These opposing effects couple the

dynamics of different subpopulations with drug efficacy, which in turn modulates both the size and

composition of the community.

Mathematical model of competing density effects predicts bistability
favoring survival of high-density populations at high drug influx rates
and low-density populations at low influx rates
To investigate the potential impact of these competing density effects on population dynamics, we

developed a simple phenomenological mathematical model that ascribes density-dependent drug

efficacy to a change in the effective concentration of the antibiotic (see SI for alternative models).

Specifically, the dynamics of sensitive and resistant populations are described by

dNs

dt
¼ gðDÞ 1� NsþNr

C

� �

Ns��Ns;

dNr

dt
¼ gðD0Þ 1� NsþNr

C

� �

Nr ��Nr

(1)

where Ns is the density of sensitive cells, Nr the density of resistant cells, C is the carrying capacity

(set to one without loss of generality), m is a rate constant that describes the removal of cells due to

(slow) renewal of media and addition of drug, D is the effective concentration of drug (measured in

units of MIC of the sensitive cells), and D0 ¼D=Kr, where Kr is a factor that describes the increase in

drug minimum inhibitory concentration (MIC) for the resistant (enzyme producing) cells in low-den-

sity populations where cooperation is negligible. The function gðxÞ is a dose response function that

Figure 1 continued

Bottom panel: cell density time series for drug-resistant populations exposed to ampicillin influx of approximately 1200 mg/mL per hour. In all

experiments media was refreshed and waste removed at a rate of m0 » 0.1 hr�1. E. In mixed populations containing both sensitive (green) and resistant

(blue, ‘R’) cells, there are opposing density-dependent effects on drug efficacy. Increasing the density of resistant cells is expected to decrease drug

efficacy as a result of increased b-lactamase production (left side). By contrast, increasing the density of the total cell population decreases the local pH

and increases the efficacy of b-lactam antibiotics (right side).

The online version of this article includes the following source data for figure 1:

Source data 1. Experimental data in Figure 1.
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describes the per capita growth rate of a population exposed to concentration x of antibiotic and is

given by Udekwu et al. (2009):

gðxÞ ¼
ð1� xhÞgmaxgmin
xhgmax þ gmin

(2)

where h is a Hill coefficient that describes the steepness of the dose response function, gmax is the

growth in the absence of drug, and gmin>0 is the maximum death rate. The function gðxÞ is a sigmoi-

dal function that equals gmax at x¼ 0 (no drug), decreases monotonically and crosses the horizontal

axis at x¼ 1, and then approaches the maximum death rate gmin as x approaches infinity

(gðxÞ!�gmin). Without loss of generality, we set gmax ¼ 1, which is equivalent to measuring all rates

in time units set by g�1

max (coincidentally, we find that drug-free growth rate under the current experi-

mental conditions is approximately gmax ¼ 1 hr-1, so measuring rates in units of g�1

max is equivalent to

measuring time in hours).

To account for the density dependence of drug efficacy, we model the effective drug concentra-

tion as

dD

dt
¼ Fþ �1ðNsþNrÞD� �2NrD�D� (3)

where �1>0 is an effective rate constant describing the reverse inoculum effect (proportional to total

population size), which is modeled as an increase in the effective drug concentration with cell den-

sity. We do not mean to imply that the cells physically produce antibiotic; instead, this phenomeno-

logical model is intended to capture the increase in drug efficacy due to acidification of the local

environment as density increases. Similarly, the parameter �2>0 describes the enzyme-driven ‘normal’

inoculum effect (proportional to the size of the resistant subpopulation), which corresponds mathe-

matically–and in this case, also physically–to a degradation of antibiotic. F ¼Dr� is rate of drug influx

into the reservoir, which can be adjusted by changing the concentration Dr in the drug reservoir.

When �2 � �1–when the per capita effect of the inoculum effect (IE) is less than or equal to that of its

reverse (rIE) counterpart–the �1 term is always larger in magnitude than the �2 term and the net

effect of increasing total cell density is to increase effective drug concentration, regardless of popu-

lation composition. This regime is inconsistent with experiments, where resistant-only populations

exhibit a strong IE and sensitive-only populations a rIE (Figure 1). We therefore focus on the case

�2>�1, where density and composition-dependent trade-offs may lead to counterintuitive behavior.

Despite the simplicity of the model, it predicts surprisingly rich dynamics (Figure 2). At rates of

drug influx below a critical threshold (F<Fc), populations reach a stable fixed point at a density

approaching Cð1� �Þ as influx approaches zero. On the other hand, populations go extinct for large

influx rates F � Fc, regardless of initial density or composition. Between the two regimes lies a

region of bistability, where populations are expected to survive or die depending on the initial con-

ditions. To characterize the behavior in this bistable region, we calculated the separatrix–the surface

separating regions of phase space leading to survival from those leading to extinction–for different

values of the antibiotic influx rate using an iterative bisection algorithm, similar to Cavoretto et al.

(2017). The analysis reveals that increasing total population size can lead to qualitatively different

behavior–survival or extinction–depending on the rate of drug influx.

For influx rates at the upper end of the bistable region–and for sufficiently high initial fractions of

resistant cells– high-density populations survive while low-density populations go extinct (Figure 2,

bottom right panel). For example, in populations with an initial resistant fraction of 3/4, small popu-

lations approach the extinction fixed point while large populations are expected to survive (Figure 2).

Intuitively, the high-density populations have a sufficiently large number of resistant cells, and there-

fore produce a sufficient quantity of b-lactamase, that effective drug concentrations reach a steady

state value below the MIC of the resistant cells, leading to a density-dependent transition from

extinction to survival as the separatrix is crossed (Figure 2, bottom right).

Behavior in the low-influx regime of bistability (F »Fc) is more surprising. In this regime, the model

predicts a region of bistability where initially high-density populations go extinct while low-density

populations survive (Figure 2, bottom left). For example, at a resistant fraction of 1/4, low-density

populations will approach the survival fixed point while high-density populations will approach

extinction as the separatrix is crossed. These counterintuitive dynamics, which we refer to as
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5

Figure 2. Mathematical model predicts bistability due to opposing density-dependent effects of sensitive and resistant cells on drug inhibition. Top:

bifurcation diagram showing stable (filled circles) and unstable (red dashed curves) fixed points for different values of drug influx (F) and the total

number of cells (Ns þ Nr ). Fc »�K is the critical value of drug influx above which the zero solution (extinction) becomes stable; m is the rate at which cells

and drugs are removed from the system (and is measure in units of gmax, the maximum per capita growth rate of cells in drug-free media, and Kr is the

factor increase in drug MIC of the resistant strain relative to the wild-type strain. Vertical black dashed lines correspond to F ¼ F1>Fc (small drug influx,

just above threshold) and F2 � Fc (large drug influx). Bottom panels: regions of survival (white) and extinction (grey) in the space of sensitive (Ns) and

resistant (Nr ) cells for flow rate F ¼ F1 (left) and F ¼ F2 (right). Dashed lines show separatrix, the contour separating survival from extinction. Multicolor

lines represent constant resistant fractions (1/5, left; 3/4, right) at different total population sizes (ranging from 0 (blue) to a maximum density of 1 (red)).

Figure 2 continued on next page
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‘inverted bistability’, are governed in part by the reverse inoculum effect, which leads to a rapid

increase in drug efficacy in the high-density populations and a corresponding population collapse.

Mathematically, the different behavior corresponds to a translation in the separatrix curve as the

influx rate is modulated (Figure 2; see also Figure 2—figure supplement 1). Interestingly, the stable

solutions that correspond to survival are comprised of only resistant cells. Hence, the model is not

predicting a stable coexistence of sensitive and resistant strains (though such coexistence can exist

under some conditions; Lenski and Hattingh, 1986); instead, the initial presence of sensitive cells

positions the population within the basin of attraction of states (like collapse) that would not be

favored in their absence.

To further characterize the dynamics of the model, we numerically solved the coupled equations

(Equations 1, 3) for different initial compositions (resistant cell fraction) and different drug influx

rates. In each case, we considered both high-density (OD = 0.6) and low-density (OD = 0.1) popula-

tions. As suggested by the bifurcation analysis (Figure 2), the model exhibits bistability over a range

of drug influx rates (Figure 3A). The qualitative behavior within this bistable region can vary signifi-

cantly. For small resistant fractions and low drug influx, bistability favors survival of low-density popu-

lations, while large resistant fractions and high drug influx favor survival of high-density populations.

The parameter space is divided into four non-overlapping regions, leading to a phase diagram that

predicts regions of extinction, survival, and bistabilities. These qualitative features are not unique

the specific model described here, but also occur in alternative models that include, for example,

more realistic Monod-style growth (SI; Figure 3—figure supplement 1 through Figure 3—figure

supplement 2). It is notable that the dynamics leading to the fixed points can be significantly more

complex than simple mononotic increases or decreases in population size (Figure 3A, top panels).

Small E. faecalis populations survive and large populations collapse
when drug influx is slightly supercritical and resistant subpopulations
are small
To test these predictions experimentally, we first performed a preliminary scan of parameter space

in short, 5-hr experiments starting from a wide range of initial population fractions and drug influx

rates (Figure 3—figure supplement 3). Based on these experiments, we then narrowed our focus to

a region of ‘high’ influx rate (F » 600� 700 mg/mL/hr), where conditions may favor ‘normal’ bistability,

and a region of ‘low’ influx rate (F » 15� 20 mg/mL per hour), where conditions may favor ‘inverted’

bistability. Then, we performed replicate (N ¼ 3) 20 hr experiments starting from a range of popula-

tion compositions. Note that in the absence of density-mediated changes in drug concentration,

these flow rates are expected to produce drug concentrations that increase over time, rapidly eclips-

ing the low-density limits for IC50’s of both susceptible and resistant cells (see Figure 1) and expo-

nentially approaching steady state values of D ¼ F=�» 8:5F with a time constant of ��1 » 8:5 (and

therefore �0 ¼ 8:5 hr).

The experiments confirm the existence of both predicted bistable regimes as well as the

expected regimes of survival and extinction (Figure 3B–C). At each of the two flow rates (F1 and F2),

we observe a transition from density-independent extinction–where populations starting from both

high and low-densities collapse–to density-independent survival–where both populations survive–as

the initial resistant population is increased (Figure 3B–C, left to right). However, in both cases, there

are intermediate regimes where initial population density determines whether the population will

survive or collapse. When drug influx is relatively high (F2) and the population is primarily comprised

of resistant cells (55 percent), initially large populations survive while small populations collapse

(Figure 3B, middle panel). On the other hand, when initial populations contain 11–15% resistant cells

and drug influx is relatively small (F1), we observe a clear region of ‘inverted’ bistability (Figure 3C,

middle panel). In this regime, high-density populations (red) grow initially before undergoing

Figure 2 continued

Cell numbers are measured in units of carrying capacity. Specific numerical plots were calculated with h ¼ 1:4, gmin ¼ 1=3, gmax ¼ 1, �1 ¼ 1:1, �2 ¼ 1:5,

g ¼ 0:1, Kr ¼ 14, F1 ¼ 1:4, and F2 ¼ 2:2.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Separatrix contours separating survival from extinction with and without reverse inoculum effect.
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dramatic collapse, while low-density populations (blue) initially decay before recovering and eventu-

ally plateauing near the carrying capacity. In contrast to predictions of the model, the collapsing

populations do not entirely go extinct. We confirmed that these populations do indeed contain liv-

ing cells, and single colony isolates exhibit dose-response characteristics similar to those of the origi-

nal sensitive and resistant strains, so there is no evidence that additional resistance has evolved

Figure 3. Bistability may favor survival of populations with highest or lowest initial density. (A) Main panel: phase diagram indicating regions of

extinction (black), survival (white), bistability (light gray; initially large population survives, small population dies), and ‘inverted’ bistability (dark gray;

initially small population survives, large population dies). Red ’x’ marks correspond to the subplots in the top panels. Top panels: time-dependent

population sizes starting from a small population (OD = 0.1, blue) and large population (OD = 0.6, red) at constant drug influx of F2 � Fc (large drug

influx) and F1>Fc (small drug influx). Fc is the critical influx rate above which the extinct solution (population size 0) first becomes stable; it depends on

model parameters, including media refresh rate (m), maximum kill rate of the antibiotic (gmin), the Hill coefficient of the dose response curve (h), and the

MIC of the drug-resistant population in the low-density limit where cooperation is negligible (K). Specific numerical plots were calculated with h ¼ 1:4,

gmin ¼ 1=3, gmax ¼ 1, �1 ¼ 1:1, �2 ¼ 1:5, g ¼ 0:1, Kr ¼ 14, F1 ¼ 1:4, and F2 ¼ 2:2. (B) Experimental time series for mixed populations starting at a total

density of OD = 0.1 (blue) or OD = 0.6 (red). The initial populations are comprised of resistant cells at a total population fraction of 0.2 (left), 0.55

(center), and 0.80 right) for influx rate F1 ¼ 650 mg/mL. Light curves are individual experiments, dark curves are means across all experiments. (C)

Experimental time series for mixed populations starting at a total density of OD = 0.1 (blue) or OD = 0.6 (red). The initial populations are comprised of

resistant cells at a total population fraction of 0.02 (left), 0.11 (center), and 0.35 right) for influx rate F1 ¼ 18 mg/mL. Light curves are individual

experiments, dark curves are means across all experiments.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Experimental data B in Figure 3.

Source data 2. Experimental data C in Figure 3.

Figure supplement 1. Alternative mathematical models exhibit similar qualitative features, including inverted bistability.

Figure supplement 2. Time series of cell density for simulations starting from high- or low-density populations in Monod growth model.

Figure supplement 3. Short experiments to explore parameter space for inverted bistability.

Figure supplement 4. Time series of cell density for simulations starting from high- or low-density populations in enzyme release model.

Figure supplement 5. Time series of cell density for simulations starting from high- or low-density populations in pH-IC50 model.

Figure supplement 6. Time series of cell density for simulations starting from high or low-density populations.

Figure supplement 7. Isolates from populations exhibiting collapse but not complete extinction show similar dose-response behavior as original

strains.

Figure supplement 8. Populations exhibit transient periods of approximately constant density near regions of inverted bistability.
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during the experiment (Figure 3—figure supplement 4). Mathematical models do indicate the exis-

tence of long-lived but transient states of non-zero density near the onset of inverted bistability (Fig-

ure 3—figure supplement 4), which may partially explain the lack of complete extinction. However,

it is also possible that it reflects features not included in the model. For example, while ampicillin is

generally considered to be stable in solution for several days, the degradation rate depends on both

temperature and pH (Hou and Poole, 1969), which could induce new dynamics on timescales of 10

s of hours. Similarly, b-lactamase activity can also vary slightly with pH, adding an additional layer of

coupling between the density effects driven by sensitive and resistant cells (Ohsuka et al., 1995).

Inverted bistability depends on pH-dependent reverse inoculum effect
The model predicts that the inverted bistability relies on the reverse inoculum effect–specifically, it

requires e1> 0 and is eliminated when e1 = 0 (Figure 4). Previous work showed that in this system,

the reverse inoculum effect is driven by density-modulated changes in the local pH (Karslake et al.,

2016). Conveniently, then, it is possible–in principle–to eliminate the effect by strengthening the

buffering capacity of the media. To test this prediction, we repeated the experiments in the inverted

bistable region in strongly buffered media (Figure 4). As predicted by the model, we no longer

observe collapse of high-density populations, indicating that the region of inverted bistability is now

a region of density-independent survival.
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Figure 4. Eliminating reverse inoculum effect eliminates inverted bistability. (A) Numerical phase diagram in absence of reverse inoculum effect (�1 ¼ 0)

indicating regions of extinction (black), survival (white), and bistability (light gray; initially large population survives, small population dies). There are no

regions of ‘inverted’ bistability (initially small population survives, large population dies). Red ’x’ marks fall along a line that previously traversed a region

of inverted bistability in the presence of a reverse inoculum effect (Figure 3) but includes only surviving populations in its absence. Fc is the critical

influx rate above which the extinct solution (population size 0) first becomes stable; it depends on model parameters, including media refresh rate (m),

maximum kill rate of the antibiotic (gmin), the Hill coefficient of the dose-response curve (h), and the MIC of the drug-resistant population in the low-

density limit where cooperation is negligible (K). Specific phase diagram was calculated with same parameters as in Figure 3 except �1, which

corresponds to the reverse inoculum effect, is set to 0. (B) Experimental time series for mixed populations starting at a total density of OD = 0.1 (blue)

or OD = 0.6 (red) in regular media (left panels) or strongly buffered media (right panels). The initial populations are comprised of resistant cells at a

total population fraction of 0.11 (top) and 0.15 (bottom) and for influx rate of F1 ¼ 18 mg/mL. Light curves are individual experiments, dark curves are

means across all experiments.

The online version of this article includes the following source data for figure 4:

Source data 1. Experimental data in Figure 4.
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Delaying antibiotic exposure can promote population collapse
The competing density-dependent effects on drug efficacy raise the question of whether different

time-dependent drug dosing strategies might be favorable for populations with different starting

compositions. In particular, we wanted to investigate the effect of delaying the start of antibiotic influx

for different population compositions and influx rates. Based on the results of the model, we hypothe-

sized that there would be two possible regimes where delay could dramatically impact survival dynam-

ics: one (corresponding to ‘normal bistability’) where delaying treatment would lead to larger end-

point populations, and a second (corresponding to“inverted bistabillity’) where delaying treatment

could, counterintuitively, promote population collapse (see Figure 5—figure supplement 1).

To test this hypothesis, we measured the population dynamics in mixed populations starting from

an initial OD of 0.1 at time zero. We then compared final population size for identical populations

experiencing immediate or delayed drug influx, with delay ranging from 0.5 to 2.5 hr. In experiments

with non-zero delays, antibiotic influx was replaced by influx of drug-free media (at the same flow

rate) during the delay period. In the first case, we chose a relatively small initial resistant fraction

(0.11) and a relatively slow drug influx rate (F ¼ 18 mg/mL), while in the second case we chose a

larger initial resistant fraction (0.55) and a faster drug influx (F ¼ 650 mg/mL).

Remarkably, we found that delaying treatment can have opposing effects in the two scenarios

(Figure 5). At high drug influx rates and largely resistant populations, immediate treatment leads to

smallest final populations (Figure 5, right panels), consistent with model predictions of bistability.

Intuitively, the delay allows the subpopulation of resistant cells to increase in size, eventually surpass-

ing a critical density where the presence of enzyme is sufficient to counter the inhibitory effects of

antibiotic. On the other hand, at lower influx rates and lower initial resistant fractions, we find that

immediate treatment leads to initial inhibition followed by a phase of rapid growth as the population

thrives; by contrast, delays in treatment allow the population to initially grow rapidly before collaps-

ing (Figure 5, left panels). It is particularly striking that delayed treatments–which also use signifi-

cantly less total drug–can promote population collapse when immediate treatments appear to fail.

Similar to the ‘inverted bistability’ observed earlier, the beneficial effects of delayed treatment can

be traced to density-dependent drug efficacy–in words, the delay means the drug is applied when

the population is sufficiently large that pH-mediated drug potentiation promotes collapse.

Discussion
We have shown that different types of coupling between cell density and drug efficacy can lead to

surprising dynamics in E. faecalis populations exposed to time-dependent ampicillin concentrations.

In regimes of relatively fast or slow rates of drug influx, the results are intuitive: populations either

survive or collapse, independent of initial population size (density). The intermediate regime, how-

ever, is characterized by bistability, meaning that population collapse will depend on initial popula-

tion size. In regimes where cooperative resistance–in this case, due to enzymatic degradation of

drug–dominates, larger populations are favored, similar to results predicted from the classical inocu-

lum effect (Udekwu et al., 2009; Karslake et al., 2016). Under those conditions, it is critical to

immediately expose cells to drug influx, as delays lead to increasingly resilient populations. Even

more surprisingly, regimes characterized by comparatively smaller resistant populations and slower

drug influx can lead to ‘inverted bistability’ where initially small populations thrive while large popu-

lations collapse. In this case, delays to drug exposure can paradoxically promote population col-

lapse. It is notable that the mathematical model suggests these results are not simply transient

effects but instead reflect asymptotic behavior where the system approaches one of two stable fixed

points (survival or extinction) with very different biological consequences.

Our goal was to understand population dynamics in simple, single-species populations where

environmental conditions–including drug influx rate and population composition–can be well con-

trolled. To make sense of experimental results and, more importantly, to generate new testable

hypotheses, we developed a minimal mathematical model and analyzed its qualitative behavior

using standard tools from dynamical systems and bifurcation theory. We chose to focus on a phe-

nomenological model in an effort to simplify the assumptions and limit the number of unconstrained

parameters. However, our model clearly omits a number of potentially relevant biological details.

For example, the model neglects evolutionary changes, such as de novo mutations, that would

impact behavior on longer time-scales. Similarly, previous work (Meredith et al., 2018) has shown
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Figure 5. Delaying antibiotic exposure tips populations toward survival or extinction depending on initial resistance fraction and drug influx rate. Top

panels: experimental time series for mixed populations with small initial resistance and low drug influx (left; initial resistance fraction, 0.11 mg/mL) or

large initial resistance and high drug influx (right; initial resistance fraction, 0.55 mg/mL). Antibiotic influx was started immediately (blue) or following a

delay of up to 2.5 hr (dark red). Light transparent lines are individual replicates; dark lines are means over replicates. In experiments with nonzero

delays, antibiotic influx was replaced by influx of drug-free media during the delay. Bottom panels: final cell density (15 hr) as a function of delay

(‘treatment start time’). small points are individual replicates; large circles are means across replicates.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Experimental data in Figure 5.

Figure supplement 1. Numerical results indicate that delaying antibiotic exposure tips populations toward survival or extinction depending on initial

resistance fraction and drug influx rate.
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that lysis of resistant cells can effectively increase the concentration of drug-degrading enzyme. We

find that extending our phenomenological model to account for free enzyme leads to qualitatively

similar behavior (see SI), but more accurate kinetic models may point to different dynamics in some

regimes. Constructing detailed mechanistic models is notoriously difficult, but recent work shows

that careful pairing of experiment and theory can be used to systematically overcome many common

obstacles (Hart et al., 2019). A similar approach could potentially be applied to this system, leading

to more accurate quantitative models that account for factors like spontaneous drug degradation

(Hou and Poole, 1969), the pH dependence of b-lactamase activity (Ohsuka et al., 1995), and the

kinetics of pH-modulated drug activity.

It is obvious that the specific in vitro conditions used here fail to capture numerous complexities

associated with resistance in clinical settings (Bonten et al., 2001), including substantial spatial het-

erogeneity, potential for biofilm formation, effects of the host immune system, and drug concentra-

tions that differ in both magnitude and time-course from the specific scenarios considered here. In

particular, the effects of delayed antibiotic exposure in a clinical setting will depend on many factors

not captured here, and there are unquestionably scenarios where such delay could be detrimental to

patient well-being. In fact, our results indicate that delaying drug exposure can have differing effects

in different parameter regimes, even in laboratory populations. Future work in clinically motivated in

vitro systems, such as biofilms, and ultimately in vivo are needed to assess the feasibility of delayed

dosing in more realistic scenarios. In addition, we note that b-lactamase producing enterococci are

thought to be relatively rare, though they have been associated with multi-drug resistant, high-risk

enterococcal infections (Murray, 1992; Wells et al., 1992; Arias et al., 2010) and may be more

widespread that initially believed because of the difficulty of detection in traditional laboratory tests

(Gagetti et al., 2019). Finally, our experimental model system is based on plasmid-mediated resis-

tance, and while this fact is not explicitly assumed in any of our mathematical models, horizontal

gene transfer may introduce new dynamics (Lopatkin et al., 2016; Lopatkin et al., 2017), particu-

larly in high-density populations where conjugation is frequent.

Our results show that the response of microbial populations to antibiotic can be surprisingly com-

plex, suggesting that the spread of resistance alleles may not always follow simple selection dynam-

ics. These findings underscore the need for additional metrics (similar to the proposed notion of

drug resilience; Meredith et al., 2018) that go beyond short-term growth measurements to for pop-

ulation dynamics over multiple timescales. More generally, we hope these results will motivate con-

tinued efforts to understand the potentially surprising ways that molecular level resistance events

influence dynamics on the scale of microbial populations.

Materials and methods

Key resources table

Reagent (species) Designation Source Additional info

Gene (E. faecalis ) b-lactamase Zscheck and Murray, 1991;
Rice et al. (1991);
Rice and Marshall (1992)

PCR from strain CH19

Gtrain (E. faecalis ) OG1RF Dunny et al. (1978); Oliver et al. (1977)

Plasmid pBSU101-DasherGFP Aymanns et al. (2011); Hallinen et al. (2019) Reporter plasmid

Plasmid pBSU101-BFP-BL Hallinen et al. (2019), this paper Expresses b-lactamase

Drug Spectinomcyin sulfate MP Biomedicals CAT 0215899302

Drug Ampicillin Sodium Salt Fisher CAT BP1760-25

Bacterial strains, media, and growth conditions
Experiments were performed with E. faecalis strain OG1RF, a fully sequenced oral isolate. Ampicil-

lin-resistant strains were engineered by transforming (Dunny et al., 1991) OG1RF with a modified

version of the multicopy plasmid pBSU101, which was originally developed as a fluorescent reporter

for Gram-positive bacteria (Aymanns et al., 2011). The plasmid was chosen because it can be con-

veniently manipulated and propagated in multiple species (including E. coli) and contains a fluores-

cent reporter that provides a redundant control for readily identifying the strains. The modified
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plasmid, named pBSU101-BFP-BL, expresses BFP (rather than GFP in the original plasmid) and also

constitutively expresses -lactamase driven by a native promoter isolated from the chromosome of

clinical strain CH19 (Rice et al., 1991; Rice and Marshall, 1992). The b-lactamase gene and reporter

are similar to those found in other isolates of enterococci and streptococci (Murray and Mederski-

Samaroj, 1983; Zscheck and Murray, 1991). Similarly, sensitive strains were transformed with a sim-

ilar plasmid, pBSU101-DasherGFP, a pBSU101 derivative that lacks the b-lactamase insert and where

eGFP is replaced by a brighter synthetic GFP (Dasher-GFP; ATUM ProteinPaintbox, https://www.

atum.bio/). The plasmids also express a spectinomycin resistance gene, and all media was therefore

supplemented with spectinomycin.

Antibiotics
Antibiotics used in this study included Spectinomycin Sulfate (MP Biomedicals) and Ampicillin

Sodium Salt (Fisher).

Estimating IC50 for sensitive and resistant strains
Experiments to estimate the half-maximal inhibitory concentration (IC50) for each population were

performed in 96-well plates using an Enspire Multimodal Plate Reader. Overnight cultures were

diluted 102 - 108 fold into individual wells containing fresh BHI and a gradient of 6–14 drug concen-

trations. After 20 hr of growth, the optical density at 600 nm (OD) was measured and used to create

a dose response curve, which was fit to a Hill-like function f ðxÞ ¼ ð1þ ðx=KÞhÞ�1 using nonlinear least

squares fitting, where K is the half-maximal inhibitory concentration (IC50) and h is a Hill coefficient

describing the steepness of the dose-response relationship.

Continuous culture device
Experiments were performed in custom-built, computer-controlled continuous culture devices (CCD)

as described in Karslake et al. (2016). Briefly, bacterial populations are grown in glass vials contain-

ing a fixed volume of 17 mL media. Cell density was measured at 1.5 s intervals in each vial using

emitter/detector pairs of infrared LEDs (Radioshack). Detectors register a voltage output that is then

converted to optical density using a calibration curve performed with a table top OD reader. Each

vial contains input and output channels connected to silicone tubing and attached to a system of

peristaltic pumps (Boxer 15000, Clark Solutions) that add drug and/or media and remove excess liq-

uid on a schedule that can be programmed in advance or determined in real time. The entire system

is controlled using a collection of DAQ and instrument control modules (Measurement Computing)

along with the Matlab (MathWorks) Instrument Control Toolbox.

Drug dosing protocols
In ‘constant flow’ experiments, media (with drug, when relevant) is added at a rate of 1 mL/min for a

total of 7.5 s every 3.75 min for an effective flow rate of 2 mL/hr (corresponding to a rate constant

of m = 10.12 hr-1 in 17 mL total volume). Media (plus cells and drug) is removed at an identical rate

to maintain constant volume. While drug influx (and waste removal) strictly occurs on discrete on-off

intervals, the timescale of those intervals (3–4 min) is an order of magnitude slower than the maxi-

mum bacterial growth rate under these conditions, which corresponds to a doubling time of approx-

imately 30–40 min. The influx of drug is therefore approximately continuous on the timescale of

bacterial dynamics. We experimentally modulate the influx rate of drug, F, without changing the

background refresh rate (m) by changing the drug concentration in the drug reservoir. For experi-

ments involving time-dependent drug influx–for example, those in Figure 5, the media in the drug

reservoirs is exchanged manually at specified times to mimic, for example, delayed treatment start

times.

Experimental mixtures and set up
All experiments were started from overnight cultures inoculated from single colonies grown on BHI

agar plates with streptomycin and incubated in sterile BHI (Remel) with streptomycin (120 mg/mL)

overnight at 37C. Highly buffered media was prepared by supplementing standard BHI with 50 mM

Dibasic Sodium Phosphate (Fisher). Overnight cultures were diluted 100–200 fold with fresh BHI in

continuous culture devices and populations were allowed to reach steady state exponential growth
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at the specified density (typically OD = 0.1 or OD = 0.6) prior to starting influx and outflow of media

and waste. Experiments were typically performed in triplicate.
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Appendix 1

Alternative Models
In what follows, we outline three alternative but related models, each of which exhibits similar

qualitative behavior to the one proposed in the main text (Figure 3—figure supplement 1).

More specifically, all models are characterized by a region of extinction for sufficiently large

drug influx, survival for sufficiently low drug influx, and a region of bistable behavior for

intermediate rates of influx. The bistable regime in all cases consists of a region of ’inverted

bistability’, where low density populations survive while high-density populations collapse, and

a region of ’normal bistability’ where low density populations collapse while high-density

populations survive. In all cases, the inverted bistable region occurs in regions of smaller drug

influx and lower initial resistant fraction, while normal bistability occurs for larger rates of influx

and higher initial resistant fractions.

Enzyme Release Model
Recent work has shown that lysis of enzyme-producing cells may lead to the release of enzyme

into the media, which can continue to degrade drug even in the absence of the original (now

lysed) cell. To capture this effect, we modify the original model to

dNs

dt
¼ gðDÞ 1� NsþNr

C

� �

Ns��Ns;

dNr

dt
¼ gðD0Þ 1� NsþNr

C

� �

Nr ��Nr;

dD

dt
¼ Fþ �1ðNsþNrÞD� �2NrD�D���ED;

dE

dt
¼ rdeath 1� NsþNr

C

� �

Nr �E�;

(4)

where E describes lysed (resistant) cells, rdeath is the death rate of resistant cells due to

antibiotic (rdeath � gmax � gðD0Þ) and � is a parameter that sets the degradation rate of antibiotic

per lysed cell (due to cell-free enzyme). We take �¼ 0:1 for the simulations in Figure 3—

figure supplement 1; Figure 3—figure supplement 4.

As before, Ns is the density of sensitive cells, Nr the density of resistant cells, C is the

carrying capacity (set to one without loss of generality), m is a rate constant that describes the

removal of cells due to (slow) renewal of media and addition of drug, D is the effective

concentration of drug (measured in units of MIC of the sensitive cells), and D0 ¼ D=Kr, where

Kr is a factor that describes the increase in drug minimum inhibitory concentration (MIC) for

the resistant (enzyme producing) cells in low density populations where cooperation is

negligible, and the function gðxÞ is a dose response function with parameters h (a Hill

coefficient), gmax (the growth in the absence of drug), and gmin>0 (the maximum death rate). In

addition, �1>0 is an effective rate constant describing the reverse inoculum effect (proportional

to total population size), �2>0 describes the enzyme-driven ‘normal’ inoculum effect, and F ¼

Dr� is rate of drug influx into the reservoir, which can be adjusted by changing the

concentration Dr in the drug reservoir.

pH-IC50 Model
The original model captures the pH-driven rIE using a density-dependent increase in the

effective drug concentration. An alternative, and perhaps more intuitive (but related)

phenomenological model assumes that the rIE leads directly to a density dependent change in

the IC50 of the drug. In principle, the dependence of IC50 on density can be estimated from

independent experiments, leading to a more quantitatively constrained model (similar to the

approach in Hart et al., 2019). Specifically, we have
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dNs

dt
¼ gðD=KdðnÞÞ 1� NsþNr

C

� �

Ns��Ns;

dNr

dt
¼ gðD0=KdðnÞÞ 1� NsþNr

C

� �

Nr ��Nr;

dD

dt
¼ F� �2NrD�D�;

(5)

where we have now explicitly noted the dependence of the IC50, which we denote KdðnÞ, on

the total cell density n¼NsþNr. For simplicity, we take

KdðnÞ ¼
K0

1þ n=�3
(6)

where K0 is the low density limit of the IC50 and �3 sets the density scale at which the pH

effects are half maximal. We take K0 ¼ 1 and �3 ¼ 1=5 for the simulations in Figure 3—figure

supplement 1; Figure 3—figure supplement 5.

Monod Growth Model
Because experiments take place in a chemostat, a more realistic description of growth is given

by the classic Monod growth model, where growth is explicitly exponential (rather than

logistic) but the rate depends on the concentration of a limiting nutrient S (Edelstein-

Keshet, 2005; Allen and Waclaw, 2019). Specifically, we have

dNs

dt
¼ gðDÞgMðSÞNs��Ns;

dNr

dt
¼ gðD0ÞgMðSÞNr ��Nr;

dD

dt
¼ Fþ �1ðNsþNrÞD� �2NrD�D�;

dS

dt
¼ �ðC0 � SÞ�hðNsþNrÞgMðSÞ;

(7)

where we have introduced a new equation for S, the limiting nutrient S, and where C0 is the

concentration of nutrient in the stock (influx) reservoir and gMðSÞ is the nutrient-dependent

Monod growth, given by

gMðSÞ ¼
S

SþKs

: (8)

For simplicity, we take C0 ¼Ks ¼ h¼ 1, which leads to a drug-free steady state cell density

similar to that in the other models (Figure 3—figure supplement 1; Figure 3—figure

supplement 2).
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