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Abstract. The placenta may play a key role in the activa-
tion of inflammation and initiation of insulin resistance (IR) 
during gestational diabetes mellitus (GDM) pathogenesis. 
Interleukin (IL)‑1β and IL‑18, regulated by NLR family pyrin 
domain containing‑3 (NLRP3) inflammasome, are important 
inflammatory cytokines in the initiation of maternal IR during 
GDM. However, the mechanism responsible for the regula-
tory of NLRP3 inflammasome in placenta remains unknown. 
Hydrogen sulfide (H2S) exerts anti‑inflammatory function 
partially via suppressing the activation of the NLPR3 inflam-
masome. The present study aimed to investigate the role of 
NLRP3 inflammasome, H2S synthetase cystathionine‑γ‑lyase 
(CSE) and cystathionine‑β‑synthetase (CBS) in placenta in the 
pathogenesis of GDM. Clinical placenta samples were collected 
from pregnant women with GDM (n=16) and healthy pregnant 
women at term (n=16). Western blot analysis was performed 
to detect the protein expression levels of NLRP3, cleaved 
caspase‑1, CBS and CSE in the placenta samples. Pearson's 
correlation analysis was performed to assess the correlation 
between NLRP3 inflammasome and H2S synthetase. Human 
placental cells were cultured and treated with different concen-
trations of NaHS (0, 10, 25 and 50 nmol/l) or L‑cysteine (0, 
0.25, 0.50 and 1.00 mmol/l). In addition, western blot analysis 
was performed to detect the protein expression levels of 
NLRP3 and cleaved caspase‑1, while ELISA was performed 
to measure the production of IL‑1β and IL‑18 in the culture 
media. The results demonstrated that the expression levels of 
NLRP3 and cleaved caspase‑1 increased, while the expression 

levels of CBS and CSE decreased in the placenta samples. In 
addition, the expression levels of NLRP3 and cleaved caspase‑1 
were inversely correlated with the expression levels of CBS and 
CSE. Notably, NaHS and L‑cysteine significantly suppressed 
the expression levels of NLRP3 and cleaved caspase‑1, and 
the production of IL‑1 and IL‑18 in human placental cells. 
Taken together, the results of the present study suggest that H2S 
synthetase deficiency in placenta may contribute to excessive 
activation of NLRP3 inflammasome in GDM.

Introduction

Gestational diabetes mellitus (GDM) is a form of diabetes first 
recognized during pregnancy, which is characterized by glucose 
intolerance and insulin resistance (IR) (1). Epidemiological 
studies have reported that GDM affects ~15.5‑19.9% of all 
pregnant women in China (2,3). GDM is associated with several 
adverse events, including stillbirth, fetal macrosomia and 
development of type 2 DM later in life (4‑6). The activation of 
inflammation in placenta and adipose tissue plays key roles in 
IR during the pathogenesis of GDM (7,8). Several inflammatory 
cytokines derived from placenta and adipose tissue participate 
in the activation of inflammation and initiate or aggravate IR 
during pregnancy (9‑11). The placenta is a highly specialized 
organ during pregnancy that releases various cytokines and 
hormones, and contributes to the maternal IR (12‑14). Since 
IR significantly improves immediately after delivery in GDM 
women (15,16), it is speculated that the placenta may play a key 
role in the activation of inflammation and initiation of IR during 
GDM pathogenesis. However, the mechanism responsible for the 
regulation of inflammation in GDM placenta remains unclear.

Interleukin (IL)‑1β and IL‑18 are important inflammatory 
cytokines in the initiation of maternal IR during GDM (17‑19). 
The animal experimental study by Schulze  et  al  (20) 
reported that treatment with an anti‑IL‑1β antibody improved 
glucose‑tolerance of GDM mice. The nucleotide binding 
and oligomerization domain‑like receptor family pyrin 
domain‑containing 3 (NLRP3) inflammasome participates 
in the regulation of IL‑1β and IL‑18 production (21,22). The 
NLRP3 inflammasome can be activated by a wide range of 
pathogens and cellular damages, resulting in the generation 
of cleaved caspase‑1, and produces IL‑1β and IL‑18 (21,22). 
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Previous studies have demonstrated that activation of the 
NLRP3 inflammasome is significantly elevated in patients 
with obesity, dyslipidemia and diabetes (23‑25). According to 
the animal experimental study by Zhang et al (26), the expres-
sion levels of NLRP3 and caspase‑1 are elevated in the placenta 
tissues of GDM mice. However, given that the expression of 
the NLRP3 inflammasome has not yet been investigated in 
clinical GDM placenta samples, further studies are required 
to determine the mechanism of the excessive activation of the 
NLPR3 inflammasome in placenta of GDM.

Known as ‘the third endogenous gaseous signaling 
transmitter’, hydrogen sulfide (H2S) exerts biological func-
tions, including anti‑inflammatory, anti‑oxidative stress and 
anti‑apoptosis (27,28). Our previous study demonstrated that 
H2S suppresses activation of the NLPR3 inflammasome in 
adipocytes (29). Teng et al (30) reported that H2S concentra-
tion significantly decreases in parturient women with GDM, 
suggesting that decreasing H2S may be involved in the patho-
genesis of GDM. H2S is synthesized by L‑cysteine in a range 
of mammalian tissues mainly by cystathionine‑γ‑lyase (CSE) 
and cystathionine‑β‑synthetase (CBS)  (31). Our previous 
study demonstrated that human placenta samples express H2S 
synthetase, CSE and CBS, and deficiency of CSE and CBS 
in the placenta is associated with preeclampsia (32). Previous 
studies have also reported that deficiency in H2S synthetase 
is associated with other pregnancy complications, including 
premature labor (33) and fetal growth restriction (34). Thus, 
H2S may participate in the pathogenesis of GDM by regulating 
activation of the NLPR3 inflammasome in placentas. The 
present study aimed to investigate the expression of the NLPR3 
inflammasome and H2S synthetases, CSE and CBS in clinical 
GDM placenta samples. In addition, the regulatory effect of 
H2S on the NLPR3 inflammasome in the cultured extravillous 
trophoblast cell line, HTR‑8/SVneo was investigated.

Materials and methods

Clinical samples. Human placenta tissues were collected 
from pregnant women with GDM (n=16) and healthy preg-
nant women at term (n=16) who underwent elective cesarean 
section between January 2019 and December 2020 at the 
Chinese PLA 903rd Hospital and Women's Hospital School 
of Medicine Zhejiang University. The clinical characteristics 
of the pregnant women are presented in Table I. The present 
study was approved by the Medical Ethics Committee of 
the Chinese PLA 903rd Hospital (ethics approval data and 
no. 2017/03/05) and written informed consent was provided 
by all participants prior to the study start. Clinical placenta 
samples were collected within 30  min of cesarean birth, 
and three small pieces of tissues from separate lobules were 
randomly taken from each placenta. The tissues were washed 
with normal saline, immediately frozen in liquid nitrogen and 
subsequently stored at ‑80˚C until subsequent experimentation.

Human placental cell culture and treatment. The human first 
trimester extravillous trophoblast cell line, HTR‑8/SVneo 
was gifted by Professor Xin Ni at the Research Center for 
Molecular Metabolomics, Xiangya Hospital Central. Cells 
were recovered and incubated in RPMI‑1640 media supple-
mented with 10% fetal bovine serum (both purchased from 

Gibco; Thermo Fisher Scientific, Inc.) at 37˚C with 5% CO2 
and 95% air, until they reached ~90% confluence.

Cells were subsequently digested with 0.25%  trypsin. 
Subsequently, 1x105  cells seeded into 12‑wells plates. To 
investigate the role of H2S in regulating the NLPR3 inflam-
masome, cells were treated with different concentrations of 
NaHS (0, 10, 25 and 50 nmol/l; (Sigma‑Aldrich; Merck KGaA) 
or L‑cysteine (0, 0.25, 0.50 and 1.00 mmol/l; Sigma‑Aldrich; 
Merck KGaA) for 24 h. The present study also investigated 
the role of the NLPR3 inflammasome in the production of 
IL‑1β and IL‑18, using the NLPR3 inflammasome inhibitor, 
N‑acetyl‑tyrosyl‑valyl‑alanyl‑aspartyl chloromethyl ketone 
(Ac‑YVAD‑CMK; Sigma‑Aldrich; Merck KGaA).

Western blotting. Placental tissues (~30‑40  mg) were 
homogenized using RIPA lysis buffer (Beyotime Institute of 
Biotechnology) containing protease inhibitor cocktail tablet 
(Roche Diagnostics). Cultured human placental cells were 
scraped off the plate using RIPA lysis buffer containing 
protease inhibitor cocktail tablet (Roche Diagnostics). 
The lysates were subsequently centrifuged in the speed of 
12,000 x g at 4˚C for 15 min and the supernatant was collected. 
The concentration of protein in the supernatant was determined 
using the BCA kit (Beyotime Institute of Biotechnology). 
According to the concentration of protein, samples containing 
30 µg of protein were used for western blot analysis. The 
protein samples were separated via 4 and 10% SDS‑PAGE, 
transferred onto nitrocellulose membranes and blocked by 
5% skim milk at room temperature for 2 h. The membranes 
were incubated with primary antibodies against NLRP3 
(1:1,000; ab263899; Abcam), cleaved caspase‑1 (1:1,000; 
ab179515; Abcam) and β‑actin (1:8,000; cat.  no.  A5441; 
Sigma‑Aldrich; Merck KGaA) overnight at 4˚C. Following the 
primary incubation, membranes were incubated with a goat 
anti‑rabbit secondary HRP‑conjugated antibody (1:5,000; 
cat. no. BA1054; Wuhan Boster Biological Technology, Ltd.) at 
room temperature for 1 h. Protein bands were visualized using 
the enhanced chemiluminescence substrate kit (Merck KGaA) 
and ChemiScope 6000EXP and the band intensities were 
calculated by ImageJ (version 1.51b; National Institutes of 
Health). Then ratio of band intensities to β‑actin was obtained 
to quantify the relative protein expression levels.

ELISA. Following treatment, the culture media of the human 
placental cells was collected and IL‑1β and IL‑18 production 
was determined using the IL‑1β ELISA kit (cat. no. F10770) 
and IL‑18 ELISA kit (cat. no. F10920) (both Shanghai Westang 
Biotech), according to the manufacturer's instructions. All 
experiments were performed in duplicate.

Statistical analysis. Data are presented as the mean ± SEM in 
SPSS (version 20; IBM Corp.). Each experiment in HTR‑8/SVneo 
was repeated four times. All data were tested for homogeneity 
of variance using the Bartlett's test before analyzing the signifi-
cance. Unpaired Student's t‑test was used to compare differences 
between two groups, while one‑way ANOVA followed by 
Bonferroni's post hoc test was used to compare differences 
between multiple groups. Pearson's analysis was used to analyze 
the correlation between two indexes. P<0.05 was considered to 
indicate a statistically significant difference.
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Results

Expression levels of NLRP3, cleaved caspase‑1, CBS and CSE 
in GDM and healthy placentas. To investigate the role of H2S in 
the excessive activation of the NLPR3 inflammasome in GDM 
placenta, the expression levels of NLRP3, cleaved caspase‑1, and 
the H2S synthetases CBS and CSE in placentas were determined. 
As presented in Fig. 1A‑D, the expression levels of NLRP3 
and cleaved caspase‑1 increased, while the expression levels 

of CBS and CSE decreased in GDM placentas compared with 
healthy placentas. The correlation between NLRP3 and cleaved 
caspase‑1 with the H2S synthetases were analyzed. As presented 
in Fig. 2A‑D, the levels of CBS and CSE were inversely corre-
lated with NLRP3 and cleaved caspase‑1 in GDM placentas.

Effect of H2S on the expression of the NLPR3 inflammasome 
in placental cells. Our previous study demonstrated that the 
expression of the NLPR3 inflammasome decreases via H2S in 

Figure 1. Comparison of NLRP3, cleaved caspase‑1, CBS and CSE expression levels between healthy placentas and GDM placentas. (A) Western blot analysis 
was performed to detect the protein expression levels of (A) NLRP3, (B) cleaved caspase‑1, (C) CBS and (D) CSE in healthy placentas and GDM placentas. 
Representative protein bands are presented on top of the corresponding histogram. Data are presented as the mean ± SEM. *P<0.05. NLRP3, NLR family pyrin 
domain containing‑3; CBS, cystathionine‑β‑synthetase; CSE, synthetase cystathionine‑γ‑lyase; GDM, gestational diabetes mellitus.

Table I. Clinical characteristics of the pregnant women enrolled in the present study.

Clinical characteristic	 Normal pregnant women (n=16)	 GDM pregnant women (n=16)	 P‑value

Maternal age, years	 31.10±3.28	 32.42±4.51	 0.300
Gestational age, week	 38.60±0.94	 38.05±1.22	 0.125
BMI, kg/m2	 26.75±1.75	 27.60±3.34	 0.326
Blood pressure, mmHg
  Systolic 	 116.05±11.17	 117.58±10.65	 0.665
  Diastolic 	 73.45±9.67	 73.37±9.17	 0.979
Blood glucose, mmol/l
  OGTT 0 h	 4.46±0.31	 4.88±0.56	 0.043a

  OGTT 1 h	 6.59±1.13	 10.94±2.12	 <0.001b

  OGTT 2 h	 5.89±0.75	 9.66±1.92	 <0.001b

HbA1c, %	 4.95±0.27	 5.28±0.45	 0.014a

Infant birth weight, g	 3407.75±349.45	 3315.79±417.34	 0.459

aP<0.05; bP<0.01. GDM, gestational diabetes mellitus; BMI, body mass index.
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adipocytes (29). To investigate the role of H2S in the regulation 
of the NLPR3 inflammasome in placenta, placental cells were 
cultured and treated with H2S donor NaHS or H2S precursor 
L‑cysteine. As presented in Fig. 3A‑D, treatment with NaHS 
and L‑cysteine significantly inhibited the expression levels of 
NLRP3 and cleaved caspase‑1, in dose‑dependent manners.

Effect of H2S on the production of IL‑1β and IL‑18 in placental 
cells. Activation of the NLPR3 inflammasome releases IL‑1β 
and IL‑18 (21,22). To confirm the role of H2S in the regula-
tion of the NLPR3 inflammasome in placenta, the contents of 
IL‑1β and IL‑18 in the culture media of placental cells were 
determined. As presented in Fig. 4, treatment with NaHS and 

Figure 3. Effects of NaHS and L‑cysteine on the expression levels of NLRP3 and cleaved caspase‑1 in human placental cells. Western blot analysis was 
performed to detect the protein expression levels of NLRP3 and cleaved caspase‑1 in cells. NaHS regulated the expression levels of (A) NLRP3 and (B) cleaved 
caspase‑1 in human placental cells. L‑cysteine regulated the expression levels of (C) NLRP3 and (D) cleaved caspase‑1 in human placental cells. Representative 
protein bands are presented on top of the corresponding histogram. Data are presented as the mean ± SEM (n=4). *P<0.05 and **P<0.01. NLRP3, NLR family 
pyrin domain containing‑3.

Figure 2. Correlation between NLRP3, cleaved caspase‑1 and CBS and CSE in GDM placentas. Pearson's correlation analysis was performed to determine 
the correlation between NLRP3, cleaved caspase‑1 and CBS and CSE in GDM placentas. (A) CSE was inversely correlated with NLRP3 in GDM placentas. 
(B) CSE was inversely correlated with cleaved caspase‑1 in GDM placentas. (C) CBS was inversely correlated with NLRP3 in GDM placentas. (D) CBS was 
inversely correlated with cleaved caspase‑1 in GDM placentas. NLRP3, NLR family pyrin domain containing‑3; CBS, cystathionine‑β‑synthetase; CSE, 
synthetase cystathionine‑γ‑lyase; GDM, gestational diabetes mellitus.



EXPERIMENTAL AND THERAPEUTIC MEDICINE  23:  94,  2022 5

L‑cysteine decreased the production of IL‑1β and IL‑18, in 
dose‑dependent manners.

Effect of the NLRP3 inflammasome inhibitor on the produc‑
tion of IL‑1β and IL‑18 in placental cells. To confirm the role 
of the NLRP3 inflammasome in the production of IL‑1β and 
IL‑18 in placental cells, the NLRP3 inflammasome inhibitor, 
Ac‑YVAD‑CMK was used. As presented in Fig. 5, treatment 
with Ac‑YVAD‑CMK decreased the release of IL‑1β and 
IL‑18.

Discussion

The results of the present study demonstrated that the reduced 
expression of H2S synthetases, CSE and CBS was correlated 
with the excessive activation of the NLPR3 inflammasome in 
GDM placenta. H2S significantly suppressed the activation of 
the NLPR3 inflammasome in human placental cells in vitro. 
Furthermore, the NLPR3 inflammasome was involved in the 
production of IL‑1β and IL‑18 in human placental cells.

Known as a highly specialized organ during pregnancy, 
the placenta serves as the interface between maternal and fetal 
circulation (35). In recent years, the key role of the placenta in 
the occurrence and development of GDM has been reported 
by multiple studies  (36‑38). Currently, IR is the critical 
pathophysiological characteristic of GDM, which is also 
found during normal pregnancy. Placenta derived hormones, 
cytokines and gaseous signaling transmitter can induce IR by 
interfering with insulin receptor signal transduction (12‑14). 
Furthermore, the dysregulation of hormones, cytokines and 
gaseous signaling transmitter in placenta may aggravate IR 
and trigger abnormal glucose metabolism (12‑14). Thus, the 
present study investigated the key molecules in the placenta 
responsible for the pathogenesis of GDM.

The overactive inflammatory response may be the initiating 
factor for IR. Cytokines of the IL‑1 family critically regulate 
the inflammatory response by controlling several inflamma-
tion processes (39,40). Both IL‑1β and IL‑18, which are classic 
pro‑inflammatory cytokines of the IL‑1 family, participate 
in the initiation of IR of GDM and type 2 DM (17‑19). The 

Figure 5. Effects of the NLRP3 inflammasome inhibitor, Ac‑YVAD‑CMK on the contents of IL‑1β and IL‑18 in the culture media of human placental cells. ELISA 
was performed to determine the contents of IL‑1β and IL‑18 in the culture media. Ac‑YVAD‑CMK regulated the contents of (A) IL‑1β and (B) IL‑18 in the culture 
media. Data are presented as the mean ± SEM (n=4). **P<0.01. NLR family pyrin domain containing‑3; Ac‑YVAD‑CMK, N‑acetyl‑tyrosyl‑valyl‑alanyl‑aspartyl 
chloromethyl ketone; IL, interleukin; LG, low glucose; HG, high glucose.

Figure 4. Effects of NaHS and L‑cysteine on the contents of IL‑1β and IL‑18 in the culture media of human placental cells. ELISA was performed to determine 
IL‑1β and IL‑18 contents. NaHS regulated the contents of (A) IL‑1β and (B) IL‑18 in the culture media. L‑cysteine regulated the contents of (C) IL‑1β and 
(D) IL‑18 in the culture media. Data are presented as the mean ± SEM (n=4). *P<0.05 and **P<0.01. IL, interleukin.
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production of IL‑1β and IL‑18 is regulated by the NLRP3 
inflammasome in different types of tissues and cells. The 
NLRP3 inflammasome complex is composed of NLRP3, ASC 
and pro caspase‑1. Activation of the inflammasome recruits 
and cleaves pro caspase‑1, which results in the formation of 
cleaved caspase‑1. Subsequently, cleaved caspase‑1 converts 
pro‑IL‑1β and pro‑IL‑18 into the mature forms, IL‑1β and 
IL‑18 (21,22). According to the animal experimental study by 
Zhang et al (26), the expression levels of NLRP3 and cleaved 
caspase‑1 are elevated in the placenta tissues of GDM mice. 
The results of the present study demonstrated that the expres-
sion levels of NLRP3 and cleaved caspase‑1 were elevated in 
the clinical placenta samples collected from pregnant women 
with GDM. Taken together, the results of the present study 
suggest that excessive activation of the NLRP3 inflammasome 
in the placenta may be involved in the development of GDM.

Further research on the mechanism of the regulation of 
the NLRP3 inflammasome in the placenta is required. H2S is 
a lately identified gaseous signaling transmitter that mediates 
a variety of biological activities, including, anti‑apoptotic and 
anti‑oxidative stress (27,28). During pregnancy, the abnormal 
production of H2S and the dysregulation of the H2S synthetases, 
CBS and CSE are associated with various pregnancy complica-
tions (32,41,42). The results of the present study demonstrated 
that the expression of the H2S synthetases, CBS and CSE were 
significantly downregulated in GDM placenta samples, which 
was consistent with the findings reported by Teng et al (30). 
Our previous study investigated the regulatory effect of H2S 
on the NLRP3 inflammasome in the pathogenesis of vascular 
complications of type 2 DM, and the results demonstrated that 
H2S significantly suppressed activation of the NLRP3 inflam-
masome in adipocyte (23). Other studies have also reported 
the role of H2S in regulating the NLRP3 inflammasome. 
For example, Jia et al (43), Zheng et al (44) and Su et al (45) 
reported the inhibitory effect of H2S on the NLRP3 inflamma-
some in diabetic myocardial injury model, diabetes‑accelerated 
atherosclerosis model and renal injury model.

The results of the present study demonstrated an inverse 
correlation between the H2S synthetases and the NLRP3 
inflammasome in GDM placentas, suggesting that H2S 
may participate in regulating the NLRP3 inflammasome in 
placenta. The effect of H2S on the NLRP3 inflammasome 
in vitro was also investigated. In human placental cells, both 
the H2S donor and precursor decreased the expression levels 
of NLRP3 and cleaved caspase‑1, as well as the production 
of IL‑1β and IL‑18. In addition, the NLRP3 inflammasome 
inhibitor decreased the production of IL‑1β and IL‑18 in 
human placental cells. Collectively, these results suggest that 
H2S plays a regulatory role in the activation of the NLRP3 
inflammasome, and H2S synthetase deficiency results in exces-
sive activation of the NLRP3 inflammasome and excessive 
production of IL‑1β and IL‑18 in GDM placenta.

Most previous studies focused on the downstream biological 
effects of H2S (29,32,43‑45); however, the mechanism respon-
sible for the upstream regulatory factor for the expression of CBS 
and CSE, and the production of H2S remains unclear. Recently, 
several studies investigated the upstream regulatory mechanism 
for the expression of CBS and CSE, and the production of H2S, 
and the results demonstrated that high fat (46,47), high salt (48), 
hypoxia (49) and oxidative stress (50) inhibited the expression of 

CBS and CSE, and the production of H2S. Conversely, vitamin D 
supplementation increased CSE expression and the production of 
H2S (51). Other clinical studies have reported that high‑fat and 
high‑salt diet, vitamin D deficiency during pregnancy (52‑54), 
hypoxia and oxidative stress in the placenta (55,56) are associ-
ated with the pathogenesis of GDM. Taken together, these results 
suggest that high‑fat and high‑salt diet, vitamin D, hypoxia and 
oxidative stress may be upstream regulatory factors for the 
expression of CBS and CSE, and the production of H2S in GDM. 
However, further studies are required to determine the specific 
mechanism responsible for the expression of CBS and CSE, and 
the production of H2S in GDM.

In conclusion, the results of the present study demonstrated 
the role of the NLRP3 inflammasome and H2S in the occurrence 
and development of GDM. Excessive activation of the NLRP3 
inflammasome may be induced by the H2S synthetase deficiency 
in the placenta, and activation of the NLRP3 inflammasome 
mediates the elevated production of IL‑1β and IL‑18, thus initi-
ating maternal IR and causing abnormal glucose metabolism.
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