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This study presents a comprehensive study of the genetic bases controlling variation in the rice 
ionome employing genome-wide association studies (GWAS) with a diverse panel of indica accessions, 
each genotyped with 5.2 million markers. GWAS was performed for twelve elements including B, Ca, 
Co, Cu, Fe, K, Mg, Mn, Mo, Na, P, and Zn and four agronomic traits including days to 50% flowering, 
grain yield, plant height and thousand grain weight. GWAS identified 128 loci associated with the 
grain elements and 57 associated with the agronomic traits. There were sixteen co-localization regions 
containing QTL for two or more traits. Fourteen grain element quantitative trait loci were stable 
across growing environments, which can be strong candidates to be used in marker-assisted selection 
to improve the concentrations of nutritive elements in rice grain. Potential candidate genes were 
revealed including OsNAS3 linked to the locus that controls the variation of Zn and Co concentrations. 
The effects of starch synthesis and grain filling on multiple grain elements were elucidated through the 
likely involvement of OsSUS1 and OsGSSB1 genes. Overall, our study provides crucial insights into the 
genetic basis of ionomic variations in rice and will facilitate improvement in breeding for trace mineral 
content.
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SNP	� Single nucleotide polymorphism
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Zn	� Zinc

Rice (Oryza sativa L.) is a major staple food for over half of the world’s population and is a major source of 
nutrition, although in the form that most consumers eat (white, polished rice), it contains only small amounts 
of micronutrients1. A reliance on rice in the diet, coupled with limited diversity of nutrient-rich foods can lead 
to malnutrition2, with an estimated two billion people suffering from Fe deficiency3 and 1.5 billion from Zn 
deficiency4. Fe and Zn are responsible for 2.4% and 1.9%, respectively, of the total global burden of disease5.

To combat these deficiencies, various interventions have been used by the nutrition and public health com-
munity including supplementation, fortification and in more recent years, biofortification1. Both supplementation 
and fortification can be expensive as they require suitable infrastructure and networks to deliver the nutrient rich 
product. Biofortification relies on the delivery of Fe- and Zn-dense crops via various strategies, including plant 
breeding and fertilizer applications6–8 and is considered a longer-term sustainable approach where farmers can 
keep back nutrient-dense seed for subsequent plantings.

Worldwide, the biofortification strategy has led to 300 biofortified varieties being approved for release, in over 
40 developing countries9 and this includes Zn biofortified rice with moderate levels of Zn, indicating the need for 
further improvement. The development of Fe-dense rice has not been a target for conventional plant breeding 
due to insufficient variation for Fe within germplasm, which would not allow for sufficient genetic improvement 
to have a significant biological effect in humans. The strategy for breeding Fe-dense rice is through a transgenic 
route, with the overexpression of nicotianamine synthase genes showing significant promise in delivering Fe to 
deficient communities9,10.

Conventional breeding for Zn-dense rice is challenging. While sufficient variation for Zn exists in the germ-
plasm and this allows for a breeding strategy to be undertaken, there is moderate heritability11 and therefore 
stability of the Zn-dense trait across environments is a major challenge. Understanding of the various envi-
ronmental factors and genes impacting on the scavenging of Zn from the root rhizosphere and the short/long 
distance transport routes to the developing caryopsis has come a long way12–14 but there remain major gaps in 
our understanding and this confounds selection of stable parents. The introduction of stable genetic markers 
would be advantageous to accelerate development of Zn-dense rice.

GWAS is a powerful tool to study the molecular basis for phenotypic diversity in rice. Compared with con-
ventional biparental population linkage mapping, GWAS has two outstanding advantages: (i) the rice varieties/
accessions used in GWAS panels often contain much more genetic diversity and (ii) GWAS can take full advan-
tage of numerous ancient recombination events resulting in higher mapping resolution15. Over the last decades, 
studies using GWAS platforms have successfully dissected the genetic bases of several complex traits in major 
crops, such as flowering time and yield-related traits16–18. There have also been studies investigating the genet-
ics controlling the element accumulation in rice grain resulting in the identification of significantly associated 
loci and putative casual genes11,19–21. Examples of the identified genes include the OsHMA3 transporter gene 
controlling the translocation of Cd from the roots to the shoots22 and the molybdate transporter OsMOT1 gene 
controlling molybdenum concentration in both straw and grain23.

Many factors can affect the efficacy of GWAS such as population structure, sample size and marker density. 
The rice diversity panel used in this study consisted of 233 Oryza sativa subsp. indica genotypes. This panel was 
developed at the International Rice Research Institute (IRRI), Philippines for the Phenomics of Rice Adaptation 
and Yield potential (PRAY) project as a part of the Global Rice Phenotyping Network (http://​ricep​henon​etwork.​
IR.​org/​diver​sity‐panels/​pray‐diver​sity‐panel). The panel represented the diversity within the indica sub-species 
covering improved and traditional varieties across subtropical and tropical regions around the world24. Previously, 
this panel was used in GWAS studies for various traits including grain quality, panicle architecture, root plasticity, 
grain yield and yield-related traits24–28. This panel was initially genotyped with 700,000 SNPs29 and in the latest 
restatement, 5.2 million biallelic SNPs have been imputed on this panel by comparing the 700,000 SNPs with 
whole-genome sequence data of the 3000 sequenced rice cultivars30. The imputed high-density SNP set aimed 
to increase the signal strength of the marker–trait associations (MTA) and improve the mapping resolution.

In this study, we investigated the performance of twelve elements in brown rice grain of the diversity panel 
grown in four environments. GWAS were carried out to identify significant association loci that were stably 
expressed in the multiple environments. Subsequently, multiple potential causal candidate genes were identified 
and a genetic mechanism underlying the correlations among different trace minerals were proposed. Favourable 
alleles and candidate genes for improved micronutrient nutrition, especially for zinc, were identified that could 
be used in rice biofortification programs.

Results
Genotypic markers and population structure.  The number of independent markers in the indica 
accessions was estimated to be 6591. Using this figure in a Bonferroni correction gave a corrected significance 
threshold of p < 7.59 × 10–6 (= 0.05/6591) or a − log10(p) > 5.12 for use in declaration of significant MTA.

Population structure within the panel was examined using principal component analysis. The first PC (PC1) 
was sufficient to discriminate indica from aus and japonica accessions (Fig. 1). PC2 and PC3 further separated 

http://ricephenonetwork.IR.org/diversity‐panels/pray‐diversity‐panel
http://ricephenonetwork.IR.org/diversity‐panels/pray‐diversity‐panel
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indica accessions into three distinct groups. Wang et al.30 termed the three indica sub-populations IND1, IND2 
and IND3 with their origins mapped broadly to China (1); Indonesia and the Philippines (2); and India and 
Pakistan (3). The principal component analysis identified 17 non-indica accessions in the population, consistent 
with allocations made by Wang et al.30. Non-indica accessions were removed from this study. The first 2 PCs were 
used as covariates for association analyses due to their representation of real indica sub-populations.

Phenotypic variation and trait heritability.  The concentrations of 12 element (B, Ca, Co, Cu, Fe, K, 
Mg, Mn, Mo, Na, P and Zn) of the brown rice grain from the panel and their broad-sense heritability values are 
presented in Table 1. The scale of ionomic variation depends on both the element and the growing environment 
(Table 1, Fig. 2). Amongst the 12 elements, the lowest variation in concentrations were found with the three 
macronutrients: K, Mg and P (coefficient variation (CV) ranging from 6 to 10%), followed by Ca, Fe, Mn and 
Zn (CV ranging from 12 to 19%). The largest variations were found with the five elements: B, Co, Cu, Mo and 
Na (CV ranging from 19 to 51%). The agronomic traits including days to 50% flowering (DF), grain yield (GY), 
plant height (PH) and thousand grain weight (TGW) were also included in Table 1. Amongst these traits, GY 
(CV ranging from 25 to 50%) varied considerably more than the other three traits: PH, DF and TGW (CV rang-
ing from 12 to 22%). 

The growing environment had significant effects on all measured traits (one-way ANOVA, p < 0.05) (Table 1). 
GY was significantly different between all four environments. The highest GY was observed at PR12, approxi-
mately 1.6-, 2.4- and 3.7-fold higher than those at PR13, IR13 and IR12, respectively. The panel grown in the wet 
season (IR12) had significantly taller plants and longer DF than those grown in the dry seasons.

The highest yielding environment (PR12) had the lowest concentrations of 11 elements; all except for Co. On 
the contrary, the third highest yielding environment (IR13) had the highest concentrations of 10 elements (all 
except for Mg and Zn). The grain Zn concentration had the exact reverse ranking of the GY, with the highest 
concentration was from IR12, followed by IR13, PR13 and PR12.

The broad-sense heritability values for all the traits ranged from 26 to 90%. High heritabilities (> 70%) were 
observed for the nine grain elements (Ca, Co, Fe, K, Mg, Mn, Mo, P and Zn) and the two agronomic traits (DF 
and PH). The three grain elements (B, Cu and Na) and GY were estimated to have low to moderate heritabilities 
(26–55%).

Correlations between traits and environments.  Significant correlations between all four environ-
ments were observed for 10 elements (all except for B and Cu) and PH (p < 0.01, r: 0.25–0.93) (Supplemen-
tary Table S1). The group that had consistently high correlation coefficients (r > 0.5) between all environments 
included Ca, Mo, Mn, K and PH. For GY, significant correlations were found for the panel grown at the same site; 

Figure 1.   Population structure in PRAY Indica panel indicated by principal component analysis. Principal 
component analysis was performed in genotypic data in Plink, which separate different subpopulations 
identified by Wang, et al.30. PC1 vs PC2 (A) separates Indica accessions from Japonica; PC2 v PC3 (B) separates 
Indica subpopulations.
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between IR12 and IR13 (r: 0.36) and between PR12 and PR13 (r: 0.41). For DF, high correlations (r: 0.85–0.87) 
were found between the three dry seasons (IR13, PR12 and PR13).

Trait-wise correlation analysis within each environment reveals that the concentrations of the five elements; 
Zn, Fe, K, Mg, P were significantly correlated with each other in all environments (p < 0.05) (Supplementary 
Table S2). Of the five elements, P concentration consistently had the highest correlation coefficients with the 
other four elements in all environments: Zn and P (r: 0.45–0.57), Fe and P (0.41–0.59), K and P (0.60–0.74) and 
Mg and P (r: 0.73–0.89). These five elements also had strong correlations to the other elements including Cu 
(3/4 environments), Mn (3/4), Mo and Co (2/4).

Significant correlations were also observed between element concentrations and the other traits within each 
environment (Supplementary Table S2). Specifically, GY was negatively correlated with the grain Zn, Fe, K, Mg 
and P concentrations in all environments, with the Cu, Mn, Mo and Na concentrations in three and with B, Ca 
and Co in two environments. PH had positive correlations with the Ca, Co, K, Mg, Na, P and Zn concentrations 
in two or more environments and negative correlations to Cu and Mo concentrations in three environments. DF 
had negative correlations six elements: namely Ca, Co, Cu, Fe, Mg, P in two or more environments.

The correlations between developmental and agronomic traits differed markedly between the growing envi-
ronments. GY was positively correlated to DF and PH in two seasons (PR12 and PR13) and negative correlated 
with PH in one (IR13). PH and DF had only one significant correlation in the wet growing season IR12 (r:0.58).

Detection of stable and environment‑specific QTL.  GWAS was performed separately for each envi-
ronment and identified 128 QTL for grain element concentrations and 57 QTL for agronomic traits (Supple-
mentary Tables S3 and S4).

Table 1.   Descriptive statistics of agronomic and grain element traits in the PRAY panel grown in four 
environments (IR12: IRRI 2012, IR13: IRRI 2013, PR12: PhilRice 2012, PR13: PhilRice 2013). Data represents 
the mean ± standard deviation. Different letters indicate statistically significant differences between growing 
environments at P < 0.05 (ANOVA, one-way, Bonferroni pairwise test). All element concentrations were 
expressed as mg kg−1; DF, days to 50% flowering; PH, plant height (cm); GY, grain yield (kg ha−1); TGW: 
thousand grain weight (mg); H2, broad-sense heritability; –, data not available.

Trait IR12 IR13 PR12 PR13 H2

B 6.4 ± 1.5b 13.1 ± 3.5a 2.5 ± 1.0d 4.2 ± 2.1c 0.26

Ca 96.8 ± 14.7b 106.1 ± 16.2a 99.3 ± 12.7b 104.4 ± 15.7a 0.90

Co 0.043 ± 0.017c 0.052 ± 0.025a 0.048 ± 0.016b 0.055 ± 0.18a 0.79

Cu 4.6 ± 1.7b 5.9 ± 1.1a 3.3 ± 0.6c 3.2 ± 0.6c 0.55

Fe 11.9 ± 2.0b 12.6 ± 1.5a 10.6 ± 1.6c 11.7 ± 1.5b 0.76

K 3287 ± 343.7b 3521 ± 343a 2862 ± 266.2c 3471 ± 294a 0.82

Mg 1455 ± 123.8c 1485 ± 122.4b 1268 ± 124.4d 1516 ± 96.1a 0.70

Mn 28.3 ± 4.6b 33.3 ± 6.4a 23.7 ± 3.9d 25.1 ± 4.7c 0.83

Mo 1.03 ± 0.35b 1.56 ± 0.45a 0.40 ± 0.098c 0.36 ± 0.099c 0.73

Na 13.8 ± 4.0b 19.8 ± 10.1a 10.3 ± 2.6c 10.0 ± 3.6c 0.47

P 3882 ± 374b 4014 ± 383a 3445 ± 317c 3994 ± 320a 0.79

Zn 25.2 ± 4.9a 23.3 ± 3.8b 21.0 ± 2.7d 22.1 ± 3.3c 0.85

DF 93.3 ± 17.5a 77.6 ± 10.7c 74.8 ± 11.3c 81.0 ± 9.7b 0.76

GY 274.0 ± 136.6d 417.4 ± 141.8c 1003 ± 281.3a 616.5 ± 152.8b 0.38

PH 151.7 ± 34.1a 139.5 ± 29.6b 129.4 ± 18.9c 131.9 ± 24.9c 0.89

TGW​ – 17.0 ± 2.5b – 17.7 ± 2.5a –
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Figure 2.   The coefficient of variation (%) of 12 elements in the grain the rice panel grown at four environments 
(IR12: IRRI 2012, IR13: IRRI 2013, PR12: PhilRice 2012, PR13: PhilRice 2013).
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QTL associated with grain elements.  The QTL identified for grain elements were distributed on all chromo-
somes (Supplementary Table S3). The highest number of QTL was detected for Mo (22 QTL), followed by B, Co, 
Fe, K, Mn, Na and Zn (10–19 QTL, each) and Ca, Cu, Mg and P (3–5 QTL, each). Environment-wise, the highest 
numbers of QTL were detected for the two dry growing seasons IR13 and PR13 (45 and 43 QTL, respectively), 
followed by PR12 (35 QTL) and IR12 (25 QTL).

Of the grain element QTL, 14 were consistently identified in two or more environments (Table 2). There was 
one QTL that was common in all four environments; namely qZn7.2, three QTL stable in three environments 
(qCo7.1, qK6.1 and qZn7.2) and ten QTL common in two environments (qB7.1, qCa3.1, qCa12.2, qCo8.1, qFe1.2, 
qMo3.3, qMo8.1, qMo10.2, qNa1.2, qNa11.5). Elements having multiple stable QTL were Ca, Co, K, Mo, Na, Zn 
while Cu, Mg, Mn and P had no stable QTL.

The proportions of phenotypic variation explained (PVE) by these QTL ranged from 3.6 to 15.7% (Supple-
mentary Table S3). The QTL having the largest proportion of PVE in each environment were: qB4.3, qMn9.1 
and qCu1.1 (11.8%, 10.5% and 10.2%, respectively) in IR12; qB7.1, qCu4.1 and qFe7.2 (11.5%, 10.4% and 10.1%, 
respectively) in IR13; qCo8.1, qB2.1 and qMo8.1 (15.7%, 10.9% and 9.9%, respectively) in PR12; qCo8.1, qMg3.1 
and qMo8.1 (12.4%, 10.3% and 10.1%, respectively) in PR13.

Combined effect of the QTL for grain Zn concentration.  A total 13 QTL identified for Zn concentration in 
four environments (Fig. 3, Supplementary Table S3). The combined QTL effects explained for approximately 
19.7–32.1% of the variation in Zn concentration in each environment. The highest additive effects in each envi-
ronment were 7.3 mg kg−1 (qZn7.2 in IR12), 5.4 mg kg−1 (qZn6.1 in IR13), 4.0 mg kg−1 (qZn7.3 in PR12) and 
4.3 mg kg−1 (qZn1.1 in PR13). In all of those cases, high Zn was associated with the minor alleles (6–8% allele 

Table 2.   Summary of the stable QTL detected in 2, 3 and 4 environments (highlighted in bold, italics and 
bolditalics, respectively. Env environment (1 = IRRI 2012, 2 = IRRI 2013, 3 = PhilRice2012, 4 = PhilRice2013), 
Chr chromosome, Start/End physical Mb position of the linkage block, Add Effect: estimated additive effect, 
PVE phenotypic variation explained by the QTL (%), High all Freq Frequency of the higher value allele.

Trait QTL Env Chr Start Mb End Mb − log10P PVE% Add. effect High all Freq

B
qB7.1 1 7 6.06 6.49 8.8 9.7 2.44 0.12

qB7.1 2 7 6.06 6.49 8.9 11.5 4.03 0.16

Ca

qCa3.1 1 3 16.66 16.92 6.0 9.5 15.12 0.56

qCa3.1 4 3 16.80 16.90 5.7 5.1 13.52 0.41

qCa12.2 3 11 27.83 27.83 5.2 4.7 6.03 0.66

qCa12.2 4 11 27.83 27.83 5.2 3.6 7.89 0.68

Co

qCo7.1 2 7 29.23 29.37 5.5 4.5 0.02 0.14

qCo7.1 3 7 29.26 29.35 7.2 6.2 0.03 0.14

qCo7.1 4 7 29.27 29.34 5.4 5.1 0.02 0.14

qCo8.1 3 8 3.55 3.56 5.5 12.4 0.00 0.09

qCo8.1 4 8 3.55 3.57 6.2 15.7 0.00 0.90

Fe
qFe1.2 2 1 2.53 2.64 5.9 6.7 0.41 0.60

qFe1.2 4 1 2.56 2.66 5.6 7.0 0.44 0.82

K

qK6.1 2 6 1.59 1.83 7.8 6.2 255.44 0.13

qK6.1 3 6 1.70 1.81 5.5 5.0 261.83 0.13

qK6.1 4 6 1.70 1.83 6.0 4.5 233.69 0.13

Mo

qMo3.3 1 3 26.70 26.83 6.4 7.2 0.67 0.05

qMo3.3 3 3 26.76 26.78 6.0 6.3 0.17 0.06

qMo8.1 3 8 0.00 0.25 9.2 10.1 0.12 0.85

qMo8.1 4 8 0.00 0.33 8.0 9.9 0.07 0.38

qMo10.2 2 10 5.17 5.28 5.4 4.4 0.10 0.09

qMo10.2 3 10 5.17 5.36 7.1 7.5 0.59 0.09

Na

qNa1.2 1 1 11.01 11.54 8.9 9.7 10.28 0.27

qNa1.2 2 1 11.46 11.52 6.3 5.2 2.75 0.77

qNa11.5 2 11 27.37 27.48 6.2 5.4 5.54 0.05

qNa11.5 4 11 27.68 27.82 5.2 4.8 10.73 0.16

Zn

qZn7.2 1 7 29.26 29.43 6.3 5.0 4.88 0.11

qZn7.2 2 7 29.26 29.33 6.4 5.1 3.87 0.16

qZn7.2 3 7 29.26 29.42 6.9 8.0 2.94 0.19

qZn7.2 4 7 29.26 29.41 6.1 5.2 7.34 0.06

qZn7.3 1 7 29.42 29.67 6.5 5.4 6.38 0.08

qZn7.3 2 7 29.47 29.67 5.5 4.3 4.04 0.12

qZn7.3 3 7 29.52 29.67 5.4 5.0 4.00 0.07
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Figure 3.   Manhattan plots (left) and QQ plots (right) showing results of association analysis for zinc 
concentration in 2012 IRRI wet season (IRRI 12 Wet Zn), 2013 IRRI dry season (IRRI 13 Dry Zn), 2012 
PhilRice dry season (PR 12 Dry Zn) and 2013 PhilRice dry season (PR 12 Dry Zn). The orange line indicates a 
significance threshold of − log10(p) > 5.12.
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frequency). Two of the QTL (qZn7.2 and qZn7.3) were stable across three and four growing environments, 
respectively.

Haplotypes for the four environment Zn QTL (qZn7.2) were further examined (Fig. 4). Ten haplotypes were 
identified in the panel (Fig. 4). The H40 haplotype was associated with high Zn (30.5 mg kg−1). Meanwhile, the 
most common haplotypes in qZn7.2 was H1 associated with low Zn (21.2 mg kg−1).

QTL for agronomic traits.  The QTL detected for and the four agronomic traits were distributed on all chro-
mosomes: nine for DF, seven for GY, 28 for PH and twelve for TGW (Supplementary Table S4, Supplementary 
Fig. S1). The PVE by these QTL ranged from 2.9 to 14.7%. The QTL that explained the largest proportions of 
the PVE for each agronomic trait (with corresponding additive effects) were: qDF2.2 (14.7%; 9.7 days), qGY12.2 
(7.2%, 150.3 kg ha−1), qPH1.12 (12.8%; 49.3 mm), and qTGW7.4 (7.7%; 4.3 mg).

Thirteen QTLs were consistently identified in two or more environments: one for DF (qDF6.1) eight for PH 
(qPH1.1, qPH1.2, qPH1.4, qPH1.10, qPH1.11, qPH1.12, qPH1.13 and qPH1.14) and four for TGW (qTGW4.1, 
qTGW6.1, qTGW7.3 and qTGW12.1). The QTL detected for GY, in contrast were only detected in single envi-
ronments: two in IR13 and five in PR13.

Co‑localisation of QTL.  Co-localization among QTL for different traits were detected chromosomes 1, 2, 3, 6, 
7, 8, 9, 10, 11 and 12 (Table 3). As expected, some highly correlated traits showed QTL that were co-located or 
in close proximity (within 100 kb). For examples, Zn had one common QTL with Cu on chr 1 and one with Mg 
on chr 3. Na and K shared a common QTL on chr 2, P and K shared one on chr 1.

All agronomic traits had co-located QTL with those of the grain elements (Table 3). DF shared a common 
QTL with K and Mn (chr 2). GY had co-located QTL with Mo (chr 10). TGW shared a common QTL with B, Ca, 
Co and Mo (chr 3). The QTL for PH were co-localized with those for Co, Cu, K, Mg, Na, P and Zn on chr 1 and 8.

The two genomic regions that harboured the highest number of QTL were on chrs 3 and 8 (Table 3). The 
region around 15.9–16.6 Mb on chr 3 contained QTL controlling five elements: B, Ca, Co, Mn and Mo (qB3.1, 
qCa3.1, qCo3.1, qMn3.1, qMo3.2) and TGW (qTGW3.2). On chr 8, the region between (19.6–20.6 Mb) had the 
QTL controlling the concentrations of Co, Mg, Na and PH (qCo8.2, qMg8.1, qNa8.1, qPH8.1).

Candidate genes.  The physical positions of trait-associated markers were used to locate genes that were either 
linked to or in close proximity (within 300 kb) of the most significant SNPs. Supplementary Table S5 lists the 
potential candidate genes linked to the stable QTL (over three or more environments) and the major QTL clus-
ters (on chrs 3 and 8). There were three main groups: (i) genes involved in metal transportation processes such 
as Zinc transporter (ZIP2), High-affinity potassium transporters (HKT1, HKT9), Nicotianamine synthase 3 
(NAS3), Heavy-metal transport/detoxification, heavy-metal ATPase; (ii) genes controlling grain development 
such as Sucrose synthase (SUS1), Granule-bound starch synthase 1 (GBSS1), grain size (GS3) and (iii) genes con-
trolling plant phenology such as Flowering-time locus (FLT7), Heading response regulator, senescence protein, 
No apical meristem protein (NAC factor).

Discussion
Phenotypic variation.  The control of macro- and micro-nutrient homeostasis in plants have been exten-
sively studied, however the loci that control natural ionomic variations in the grain are still largely undetermined 
in rice31–33. GWAS has been a powerful to dissect complex traits in plants31, however there are several factors 
that can limit the success of using GWAS to study the rice ionomes. These limiting factors include the relatively 
little variation in plant elemental concentrations and the often-substantial environmental effect34,35. In plant the 
transport and homeostasis of essential mineral nutrients are highly regulated processes as they require adequate 
levels of these essential nutrients for their growth and reproduction, while at the same time excess accumulation 
can also be detrimental to cell growth36.

The rice panel used in this study represents an excellent resource for genetic diversity covering a wide geo-
graphical and ecological variation in rice germplasm25,26,30. This diversity promising a large number of haplotypes 
is advantageous, however the effects of population structure need to be accounted for, in this case through a 
mixed model approach. The high density of SNPs (∼ 17 SNPs per kb on average) in our GWAS panel also facili-
tates high-resolution mapping with the loci were generally obtained within ∼ 100 kb, much higher than those 
obtained using linkage mapping approach37. This high resolution makes it possible to identify plausible candidate 
genes for a number of loci identified by GWAS using the information about the functional gene annotation or 
their orthologous genes in other plant species38,39.

The group of elements that showed relatively low levels of variation for the grain element concentrations 
consisted of four essential macronutrients (K, Mg, P, Ca) and four essential micronutrients (Cu, Fe, Mn and Zn) 
(Table 1, Fig. 2). These results indicate that the homeostasis of these elements is under relatively tight regulation. 
Previous research has shown that plants have evolved regulatory mechanisms to control the internal fluctuation 
of the essential nutrients to maintain their concentrations within narrow ranges for optimal growth, develop-
ment and seed production40,41. Significantly larger variations were found for the concentration of the second 
group consisting of the three essential micronutrients B, Co and Mo and Na (Na is a functional but nonessential 
element42). It is likely that the elements in the second group were under less pressure to regulate their concentra-
tions (unless they approach toxicity levels), thus having more relaxed control mechanisms. The differences in 
these control mechanisms exist not only among genotypes, they can also vary temporally and spatially within a 
given plant. Because this regulatory variability exists, it would appear that enhancing the micronutrient density 
of edible plant components through the manipulation of physiological processes is an achievable goal. The high 
heritability values of the nine grain elements also indicate that the contribution of genotypic variance to the total 
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Figure 4.   Haplotype analysis of OsNAS3 (a candidate gene under four- environment Zn QTL qZn7.2, including 
1.5 kb upstream from start codon. Top: boxplot of grain zinc concentration associated with each haplotype. 
Middle: SNP analysis of the same region for homozygous haplotypes, ordered by mean grain zinc concentration. 
Zero and one indicate allele status at each position. Asterisks indicate alleles found exclusively in the top four Zn 
haplotypes. Bottom: boxplots showing grain Zn concentration associated with each genotype for SNPs unique to 
high Zn haplotypes.
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Table 3.   Summary of the co-localised QTL. Env environment (1 = IRRI 2012, 2 = IRRI 2013, 3 = PhilRice2012, 
4 = PhilRice2013), Chr chromosome, Start/End physical Mb position of the linkage block, Add. Eff estimated 
additive effect, PVE phenotypic variation (%).

Chr Co-located QTL QTL Env Start End − log10P PVE% Add. Eff

1 qK1.2, qP1.1, qPH1.1

qP1.1 1 27.25 27.38 5.6 4.8 528.0

qK1.2 1 27.29 27.33 5.7 4.3 443.5

qPH1.1 1 27.25 27.29 6.1 3.0 28.8

qPH1.1 4 27.25 27.29 7.8 3.9 19.2

1 qCu1.1, qZn1.2, qPH1.10

qPH1.10 1 38.48 38.56 6.2 8.1 50.6

qPH1.10 2 38.22 38.56 8.7 12.8 49.3

qPH1.10 4 38.39 38.63 7.3 10.6 41.8

qZn1.2 1 38.28 38.43 6.0 9.1 2.9

qCu1.1 1 38.36 38.46 5.3 10.2 1.2

2 qK2.1, qNa2.2
qNa2.2 4 19.69 19.71 5.5 8.0 5.2

qK2.1 4 20.11 20.26 6.3 4.8 246.5

2 qK2.2, qMn2.1, qDF2.2

qMn2.1 2 33.94 33.97 6.8 5.7 8.2

qK2.2 1 34.21 34.26 5.8 4.1 436.5

qDF2.2 4 34.44 34.45 7.9 14.7 9.7

2 qB2.1, qNa2.4
qNa2.4 3 35.37 35.42 6.3 6.1 4.7

qB2.1 3 35.67 35.77 6.1 10.9 0.6

3 qB3.1, qCa3.1, qCo3.1, qMn3.1, qMo3.1, qTGW3.1

qMo3.1 3 15.77 15.91 6.3 8.1 0.1

qCo3.1 3 16.32 16.36 6.3 7.6 0.0

qMn3.1 2 16.45 16.50 5.2 4.6 10.0

qB3.1 2 16.46 16.50 6.7 7.8 5.9

qCa3.1 1 16.66 16.92 6.0 9.5 15.1

qTGW3.1 4 16.73 16.92 5.2 6.0 1.4

qCa3.1 4 16.80 16.90 5.7 5.1 13.5

3 qCo3.3, qFe3.2
qFe3.2 1 34.98 35.01 5.7 5.2 3.4

qCo3.3 2 35.15 35.21 5.5 4.5 0.0

6 qDF6.3, qTGW6.1

qDF6.3 2 22.53 22.54 5.9 5.2 16.9

qTGW6.1 2 22.54 22.54 6.2 6.6 3.7

qTGW6.1 4 22.54 22.54 5.6 5.7 3.3

7 qCo7.1, qZn7.2

qCo7.1 2 29.23 29.37 5.5 4.5 0.0

qCo7.1 3 29.27 29.34 5.4 5.1 0.0

qCo7.1 4 29.26 29.35 7.2 6.2 0.0

qZn7.2 2 29.26 29.43 6.3 5.0 4.9

qZn7.2 4 29.26 29.33 6.4 5.1 3.9

qZn7.2 3 29.26 29.42 6.9 8.0 2.9

qZn7.2 1 29.26 29.41 6.1 5.2 7.3

8 qCo8.2, qMg8.1, qNa8.2, qPH8.2

qMg8.1 3 19.62 19.77 6.4 7.4 146.3

qCo8.2 1 20.04 20.14 6.5 7.2 0.0

qPH8.2 4 20.23 20.31 6.8 5.2 30.0

qNa8.2 3 20.67 20.72 8.5 6.9 4.5

9 qNa9.1, qZn9.1
qNa9.1 4 0.41 1.16 9.4 9.8 7.2

qZn9.1 4 0.66 0.78 5.4 4.2 2.5

10 qMn10.1, qMo10.2

qMo10.2 3 5.17 5.28 5.4 4.4 0.1

qMo10.2 2 5.17 5.36 7.1 7.5 0.6

qMn10.1 2 5.17 5.22 5.4 3.8 7.0

10 qMo10.4, qGY10.1
qGY10.1 2 16.81 17.20 5.8 5.1 168.7

qMo10.4 4 16.84 16.99 5.1 4.1 0.1

11 qNa11.4, qMn11.1
qMn11.1 3 26.88 26.95 6.0 4.8 4.1

qNa11.4 4 26.96 27.19 6.2 6.0 4.9

12 qB12.2, qZn12.1
qB12.2 3 9.29 9.43 5.5 6.7 0.9

qZn12.1 4 9.76 9.76 5.3 4.3 2.7

12 qB12.3, qMo12.9
qMo12.9 2 14.15 14.16 6.1 7.3 0.6

qB12.3 3 14.21 14.39 5.7 7.8 0.9
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phenotypic variance was significant for these traits. Similar results were reported in previous studies11,43,44. Thus, 
direct selection for these elements may be a practical approach for trait improvement.

Our study shows significant variations in agronomic and grain element traits between four growing envi-
ronments (Table 1). The most substantial differences were observed between the wet and the dry seasons and 
this might be because the wet season generally had lower temperature and higher rainfall during the period of 
vegetative and reproductive growth stages (Supplementary Table S6). These factors have been shown to influence 
flowering time in cereals45, which in turn would affect grain yield and grain nutrient levels46,47. The differences in 
soil chemistry, soil moisture and field management (including fertiliser application) (Supplementary Table S6) 
might also be the attributing factors to the variation between experimental sites.

Trait correlation and QTL clusters.  All twelve element concentrations in the grain were negatively cor-
related with grain yield in at least two environments using the Spearman’s rank correlation method (Supplemen-
tary Table S2). Six elements including Fe, K, Mg, Na, P and Zn had negative correlations with grain yield in all 
four environments and the highest correlation coefficients were found with Fe, Mg and P (r: − 0.39 to − 0.52). 
The negative correlations between grain yield and grain element concentrations are not uncommon in rice and 
have been reported in past studies for K, Mg, Mn, P, and Zn11,20. This likely reflects the dilution effects of increas-
ing grain mass on the elemental concentrations. Minimizing the effect of grain yield for genetic mapping may 
be a required corrective measure in determining the genetics controlling this element accumulation in the grain, 
which would benefit breeding for rice lines with high nutrient concentrations. In our study, despite having strong 
negative correlations with all elements, grain yield had only one co-located QTL with Mo concentration on chr 
10 (16.8 Mb) in one environment (PR13). This suggests that selection to enhance these grain elements at the 
identified loci is not likely to incur a yield penalty.

PH had consistent positive correlations with Co, Ca K and Zn; negative correlations with Cu and Mo and no 
correlations with Fe or Mn in three or more environments. As expected, PH QTL were located with those of Co, 
Ca, Na and Zn on chr 1 and 8. In theory, a taller plant will have more biomass and hence is able to accumulate 
higher levels of minerals during vegetative growth, which then becomes a larger source for remobilization of the 
stored minerals from leaves when they senesce at grain filling48,49.

Strong positive correlations between Co, Cu, Fe, K, Mg, Mn, and P were observed in three or more environ-
ments. This could be explained by an overlap in mechanisms to uptake and transport these elements within 
the plant. There have been several studies that reported correlations between different trace minerals21,44,50 and 
between essential minerals and toxic elements21. Genetic mapping has also been attempted to elucidate the 
genetic basis underlying these correlations in rice and other cereals51–53. Previous studies suggested that gene 
pleiotropy and QTL co-localization played a role in the correlations among trace minerals21,44,51. Similarly, several 
correlated traits were associated with the same QTLs either in the same or in a different environment in this 
study (Table 3). The results confirm that there is a highly complex genetic network controlling grain nutrition 
levels at multiple loci19,54,55. The co-localisations of Cu–Zn (chr 1), Co–Zn (chr 7), K–P (chr 1), K–Na (chr 2), 
K–Mn (chr 2) QTL support the possibility of simultaneous improvement of these elements in rice grain. Fe and 
Zn have been targeted for biofortification for decades56,57 and it is beneficial to explore the possibility to expand 
to other essential nutrients.

Despite of their strong correlations, P did not share any common QTL with either Zn, Fe or Mg. Thus, the 
selection for increasing the element concentrations of those at the loci is not likely to increase P concentration, 
which is desirable in relations to Zn and/or Fe bioavailability. In mature grain, P is mainly stored as phytate 
(myo-inositol-1,2,3,4,5,6-hexakisphosphate, InsP6), which has the ability to complex Zn and Fe forming insoluble 
complexes that cannot be digested or absorbed by humans58.

Two genomic regions contained the most QTL for element concentration on chrs 3 and 8 (Table 3). The region 
around 15.9–16.6 Mb on chr 3 harboured the QTL controlling five elements: B, Ca, Co, Mn and Mo (qB3.1, 
qCa3.1, qCo3.1, qMn3.1, qMo3.2) and TGW (qTGW3.1). Previous studies have also reported the association 
of this region with several grain element concentrations including Cd, Cu, Fe, Mn, P and Zn as well as grain 
length, thousand grain weight, grain yield and heading date20,34,43,59. There has not been any report of the QTL 
controlling B, Ca or Co concentration in this genomic region to date. On chr 8, the region between 19.6 and 
20.6 Mb harboured the QTL controlling the concentrations of Co, Mg, Na and PH (qCo8.2, qMg8.1, qNa8.1, and 
qPH8.1). This region was also found to be associated with traits including Cd, Cu and Zn concentrations in the 
grain, Cu and Mg concentrations in the leaf, photosynthetic ability and plant height in previous studies20,34,59,60. 
This is the first time that a QTL for the grain Co and Na concentrations is being reported in this region. Overall, 
the two genomic regions on chr 3 and 8 that were associated with multiple elements could lead to the possibility 
for improvement of multiple nutrients simultaneously in rice breeding. However, grain yield and other develop-
mental traits have also been mapped to the three regions in previous studies, suggesting that selection for higher 
grain nutrition may incur yield penalty and should be taken into consideration.

Stable QTL.  For QTLs to be highly effective within breeding programs, they must explain a significant pro-
portion of the variation and be stable across environments and populations31. The stability of the QTL in our 
study was investigated over four environments. Among the QTL detected for grain elements, qZn7.2 associated 
with Zn concentration on chr 7 was consistent in all four environments. The QTL with consensus in three envi-
ronments were qCo7.1 and qK6.1, associated with Co and K concentrations, respectively in three dry growing 
seasons. The two-environment QTL were found for eight traits including B, Ca, Co, Fe, K, Mo, Na and Zn con-
centrations. Interestingly, the four-environmental qZn7.2 and the three-environmental qCo7.1 were co-located 
on chr 7 (~ 29.26 Mb). The QTL accounted for approximately 5–8% and 4–6% of the variation in Zn and Co 
concentrations, respectively. The alleles associated with increased Zn and Co concentrations were present in 
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less than 20% of the panel accessions indicating this was a rare allele, probably originating from an uncommon 
genetic pool. Not only was this QTL highly stable in our study, but it has also been identified in different genetic 
backgrounds. For example, significant QTL for grain Zn and Fe concentrations were reported in this genomic 
region on chr 7 (~ 29 Mb) in a Multi-parent Advanced Generation Intercross (MAGIC) population43 and a map-
ping population consisting of F6 recombinant inbred lines (RILs) derived from the cross Madhukar × Swarna55. 
Thus, our results reinforce the significance of the loci in controlling grain Zn density and affirm its potential 
as a strong target for Zn biofortification. Other traits that have been linked to this genomic region were grain 
inorganic P concentration52 and heading date61 which may have to be taken into account for breeding purposes.

The three-environment QTL qK6.1 was located on the top of chr 6. This genomic region also harboured QTL 
for K, Cu and Zn concentrations and heading date in previous studies11,20,62. There has not been any QTL for 
grain yield reported in either of the genomic regions on chr 6 and 7 indicating that they are promising targets 
for improving Zn, Co and/or K concentration without yield penalty.

There was no stable QTL detected for grain yield or Cu, Mg, Mn and P concentrations. This is likely attributed 
to the large effect of the environmental conditions on the traits. For example, factors such as temperature, rainfall 
and/or soil chemistry could influence the bioavailability of these ions from the soil, which in turn affecting the 
mechanisms that plants would take for uptake, long-distance transport and remobilization34,63. Our results show 
significant environmental effects on the genetics controlling grain nutrient levels, which have also been reported 
in previous studies in wheat and rice34,64. Although consensus QTL can generally be considered as more favour-
able for marker-assisted selection, some QTL detected in one environment may lead to important discoveries.

Key candidate genes underlying the QTL clusters on chromosomes 3 and 8.  Underlying the 
QTL clusters, there were key genes that control plant phenology, grain development and metal transportation 
(Table 4 and Supplementary Table S5). Three genes involved in the processes of starch synthesis and grain fill-
ing were linked to the QTL cluster on chr 3. These genes were SUS1 (Os03g0401300), GS3 (Os03g0407400) and 
GS5 (Os03g0393300). SUS1 (linked to qCo3.1) encodes a sucrose synthase (Sucrose-UDP glucosyltransferase) 
responsible for the biosynthesis of starch within the endosperm. Overexpression of this gene in transgenic rice 
lines led to increased GY (per plant) and TGW​65. GS3 (linked to qCa3.2 and qTGW3.1) and GS5 (linked to 
qMo3.2) encode a transmembrane protein and a putative serine carboxypeptidase, respectively66,67. Natural vari-
ations in either of these genes were found to play important roles in regulating grain filling and final grain size 
and weight67–69. The results indicate a link between the processes of starch synthesis/grain filling and grain ele-
ment accumulation. The transfer route of micronutrients (such as Fe and Zn) into the grain is thought to be 
similar to that of sucrose70,71. In transgenic wheat lines overexpressing a sucrose transporter gene, there was an 
increase in grain yield as well as a 20–40% increase in grain Fe and Zn concentrations78. The functionality of 
those genes in relation to controlling grain nutrient elements such as Ca, Co and Mo in rice, will require further 
studies to elucidate.

On chr 8, the gene Os08g0430500 codes for a 14-3-3 protein (Florigen receptor) involved in controlling 
flowering time in rice72. Flowering, grain filling and whole-plant senescence are processes that are highly impor-
tant in determining grain weight, yield and quality parameters such as grain protein content (GPC) and grain 
micronutrient including Fe, Mn and Zn levels in cereals46,47.

Metal transporter genes were linked to the QTL clusters on both chrs 3 and 8. On chr 3, two genes, 
Os03g0411800 (OsZIP2) and Os03g0412300 (a heavy metal transport/detoxification) were located within the 
QTL for Ca concentration and TGW. On chr 8, the gene Os08g0422200 (linked to qPH8.3 and qCo8.2) codes 
for a Cation efflux protein, namely MTP12 (Metal tolerance protein). All of the three transporters have broad 
substrate transport activity (transporting Zn2+, Cd2+ Co2+, Cu2+, Fe2+, Mn2+, Ni2+)73–75, which may explain their 
involvement with the transport of multiple elements under the QTL clusters. The ZIP transporter family mostly 
mediates metal ions influx to the cytoplasm of root cells and some members (OsZIP1, 2, 4, 5, 7, and 8) were highly 
induced by Zn deficiency73,76. The Cation efflux protein family is involved mainly in the compartmentation of 
metal ions into organelles such as vacuoles at high concentrations77. Mineral uptake and transportation in rice 
has been revealed being a complex process that involved the combined actions of several transporter genes78,79. 
The genes being identified in this study would be potential candidates for further studies to improve essential 
nutrients in the rice grain.

Key candidate genes underlying the stable QTL on chromosomes 6 and 7.  Located within the 
markers flanking the four-environment QTL for Zn (qZn7.2), there was a prominent potential candidate gene 
OsNAS3 (Os07g0689600) coding for nicotianamine synthase 3 (Table 4). Nicotianamine synthase (NAS) is the 
enzyme responsible for production of nicotianamine (NA), a metal chelator for the internal transport of diverse 
metals, including Cu, Fe, Mn and Zn80. In rice, NA bound to Zn in phloem is supposed to avoid Zn immobili-
zation in the alkaline conditions of the phloem sap, thus playing a vital role in intercellular and long-distance 
transport of Zn to maintain Zn homeostasis in plants48,81. Rice possesses three NAS genes, namely OsNAS1-382. 
Overexpression of each NAS gene led to significant increases of Fe and Zn levels in the rice grain83,84 implying 
that they can all be targets for improving Zn and Fe concentrations in rice grain. The fact that NAS3 gene was 
linked to the stable Zn and Co QTL implies the important roles of the phloem transport processes for Zn and 
possibly also for Co from vegetative tissues into the grain. The presence of SNPs specific to high Zn haplotypes 
within the OsNAS3 promoter43 suggests that the effect of qZn-7.2 may be achieved through modulating expres-
sion of this gene.

On chr 6, there was one gene coding for granule-bound starch synthase GBSS1 (Os06g0133000) located within 
the three-environment QTL qK6.1. This enzyme is involved in starch synthesis during grain filling, specifically 
being responsible for the synthesis of amylose and building the final structure of amylopectin85. Similar to the 



12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:19230  | https://doi.org/10.1038/s41598-021-98573-w

www.nature.com/scientificreports/

cases of SUS1 (on chr 3), the results here propose an important relationship between the processes of starch 
synthesis/grain filling and nutrient upload into the grain.

In conclusion, the rice diversity panel used in this study proved to be a useful resource for association mapping 
of rice grain nutrition with significant variation observed and QTL detected for all traits. Co-localizations of QTL 
for multiple grain element concentrations was found, and particularly those on chrs 3 and 8 open the opportunity 
for enhancing multi elements simultaneously. Consistent QTL across environments were identified, particularly 
the four-environment QTL for Zn (qZn7.2). This QTL had been reported previously, indicating its stability in 
different genetic backgrounds, and is a strong candidate for being used in breeding for higher Zn concentration. 
Multiple candidate genes were identified, which can potentially play various roles in controlling mineral accu-
mulations in rice grain including NAS3, SUS1 and GBSS1. Further gene functionality studies would be helpful 
to validate the significance of the candidate genes in breeding for higher micronutrient content in rice grains.

Materials and methods
Plant material and field trial.  Field trials were planted at two sites in the Philippines: (i) IRRI (14° 15′ N 
121° 27′ E) during the 2012 wet season and 2013 dry season and (ii) PhilRice (15° 67′ N 120° 89′ E) during the 
2012 and 2013 dry seasons. The wet season was sown in June and the dry season was in January each year. Each 
field trial comprised three replicates planted in a randomized complete block design. The accessions were sown 
at the same time and grouped by previously estimated heading date and plant height to facilitate measurements. 
Detailed description of the experimental design, watering and fertiliser regime, disease and weed management 
are included in Supplementary Table S6.

Table 4.   Genes included in the localized region delimited by the most significantly associated SNPs with 
element concentrations. Genes involved in metal transporting are coded in bold, flowering in italics, starch 
synthesis/grain size in bolditalics. Gene annotation information is from https://​rapdb.​dna.​affrc.​go.​jp/​downl​
oad/​irgsp1.​html.

GeneID Chr Loc (Mb) Description Linked QTL

Os03g0392600 3 15.8 OsSCP14—Serine carboxypeptidase homologue qMo3.2

Os03g0395000 3 15.9 Stroma-localized heme oxygenase 2 qCa3.1

Os03g0401366 3 16.3 OsSUS1; Sucrose synthase (EC 2.4.1.13) qCo3.1

Os03g0407400 3 16.7 GS3, Regulator of grain size and organ size

qCa3.2, qTGW3.1

Os03g0410100 3 16.9 SUMO protease protein

Os03g0411800 3 17.0 Zinc transporter 2 (OsZIP2)

Os03g0412300 3 17.0 Heavy metal transport/detoxification protein

Os03g0412800 3 17.1 Glucose-6-phosphate dehydrogenase precursor

Os03g0413400 3 17.1 Glycosyl transferase, family 8 protein

Os06g0129400 6 1.6 Vacuolar phosphate efflux transporter, OsSPX-MFS3 qB6.1

Os06g0130400 6 1.6 ACC synthase; starch in endosperm

qK6.1
Os06g0131500 6 1.7 Glucan endo-1, 3-beta-glucosidase 7

Os06g0131700 6 1.7 No apical meristem (NAM) protein

Os06g0133000 6 1.8 Granule-bound starch synthase 1 (OsGBSS1)

Os06g0701600 6 29.5 High-affinity K + transporter 9; OsHKT9
qZn6.1

Os06g0701700 6 29.5 Na+/K+; high-affinity K + transporter 1 OsHKT1

Os07g0688000 7 29.2 Metallophosphoesterase
qCo7.1, qZn7.2

Os07g0689600 7 29.3 OsNAS3 Nicotianamine synthase 3

Os07g0690300 7 29.4 Zinc finger, RING/FYVE/PHD-type

qZn7.2
Os07g0690800 7 29.4 Phytochelatin synthase 12

Os07g0690900 7 29.4 Glycosyl-phosphatidyl inositol-anchored

Os07g0691100 7 29.4 Pectin methylesterase 6

Os07g0692900 7 29.5 Ubiquitin-activating enzyme E1

qZn7.2, qCu7.1

Os07g0693100 7 29.5 Pyruvate decarboxylase isozyme 3 (EC 4.1.1.1);

Os07g0694000 7 29.5 Phosphoinositide phospholipase C, Salt tolerance

Os07g0694700 7 29.6 Ascorbate peroxidase, Carbohydrate metabolism

Os07g0695100 7 29.6 Heading response regulator; Long-day repression

Os08g0410500 8 19.6 Carbohydrate transporter/sugar porter/transporter qMg8.1, qPH8.1

Os08g0414700 8 19.8 Trehalose-6-phosphate synthase qPH8.1

Os08g0421700 8 20.2 Zinc finger, CCHC-type qCo8.2

Os08g0423600 8 20.3 Carbonic anhydrase
qPH8.3

Os08g0425300 8 20.4 Endoglucanase 21

https://rapdb.dna.affrc.go.jp/download/irgsp1.html
https://rapdb.dna.affrc.go.jp/download/irgsp1.html
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Phenotyping.  At maturity, plants of from the middle two rows (excluding the border rows) were harvested 
to assess yield (14% moisture) and thousand grain weight (TGW) following standard procedure85. Days to flow-
ering (DF) was assessed as the interval between the date of sowing and the date when panicles of 50% of plants 
per plot were fully exerted. Plant height (PH) was measured from the base of the root–shoot junction to the tip 
of the flag leaf, which was manually straightened to be aligned with the culm.

Grain nutrient analysis.  Representative samples of about 250 g of mature grains collected from each plot 
were analysed for grain nutrient concentration at the Flinders Analytical Laboratory (Flinders University, Aus-
tralia). The twelve grain elements being analysed included boron (B), calcium (Ca), cobalt (Co), copper (Cu), 
iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molybdenum (Mo), sodium (Na), phosphorus (P) 
and zinc (Zn). Approximately 0.3 g of each grain sample (oven dried at 80 °C for 4 h) was digested with a closed 
tube acid digestion as described86. Grain element concentrations were determined using inductively coupled 
plasma mass spectrometry (ICP-MS 7500x; Agilent, Santa Clara, CA) following the method described in Ref.87. 
A blank and a certified reference material (CRM; NIST 1567a wheat flour) were included in each digestion batch 
for quality assurance. The element concentrations were expressed on a dry weight basis. Contamination with soil 
was monitored by analysis for aluminium and titanium.

Statistical analysis.  Statistical analyses were conducted by using R statistical software (ver. 3.6.0) and 
Genstat1888. The non-linear correlation between all traits was determined within each seasonal dataset using 
the Spearman rank correlation method as implemented in the corr.test function from the psych package89. The 
significance of the correlations was determined with two-sided test of the correlations against 0 at a probability 
of 0.05. The means of different seasons were compared using one-way ANOVA at a 0.05 level of probability. The 
frequency distributions of grain mineral concentrations and TGW were demonstrated using Histogram.

Genotypic data, population structure and linkage disequilibrium.  Genotypic data describing 
5.2 million biallelic SNPs in a rice reference panel covers 233 genotypes from the PRAY Indica panel30 and was 
used in this current study. The number of independent markers in the genotypic data was estimated according 
to the autocorrelation method described by Sobota et al.89. Briefly, genotypic data was split by chromosome and 
recoded to represent the number of minor alleles at each locus for each individual. An autoregressive model was 
fit to each individual to estimate the number of independent markers. This number was averaged for each chro-
mosome and the final number of independent markers derived by summing all chromosomes.

Principal component analysis was conducted using PLINK 1.990 to identify population substructure and 
identify non-Indica individuals.

A kinship matrix was constructed using the IBS model in emmax91 to describe cryptic relatedness in the 
population.

GWAS.  Normality of phenotypic distribution was assessed using the Shapiro–Wilk test implemented in R 
(R Core Team 2018) using a significance threshold of p < 0.05. Where possible, phenotypes found not to be nor-
mally distributed were transformed to normality using the following transformations: square root, cube root, 
natural log, inverse cube root, inverse square root, inverse. GWAS were performed for all transformations up to 
and including the first to be normally distributed.

GWAS were performed utilising a mixed linear model (MLM) in emmax, incorporating kinship plus up to 
two principal components to account for population structure.

In the mixed model, principal components and family kinship were included

where Y represents the vector of phenotype, X represents the vector of SNPs, Q is the PCA matrix and K is the 
relative kinship matrix. Xα and Qβ are the fixed effects, and Kμ and e represent random effects. The Q and K 
matrices help to reduce the spurious false positive associations. Correction for population structure (Q) sub-
stantially reduces the false positives but it sometimes eliminates true positive associations due to overcorrec-
tion. Therefore, the optimal number of principal components was estimated for each trait before incorporating 
them for MLM tests, based on the forward model selection method using the Bayesian information criterion. 
This method helps to control both false-positive and -negative associations more effectively although it cannot 
eliminate both completely.

The lambda genomic inflation factor was determined for each association analysis using the regression 
method of the estlambda function from the GenABEL R package92. In comparing multiple association models 
applied to a single trait, an inflation factor closest to one signified the best analysis.

A significance threshold α = 0.05 was used for association mapping, but was adjusted using the Bonferroni 
approach considering the estimated number of independent markers:

where α is the unadjusted significance threshold and n is the number of independent markers in the population.
Quantitative trait loci (QTLs), regions containing SNPs associated with phenotypes, were defined as described 

by McCouch et al.29. A QTL was defined as any region containing one SNP with − log10(p) > − log10 (αadj) flanked 
by markers with − log10 (p) > 4 on each side and within 100 kb.

Y = Xα + Qβ + Kµ + e,

αadj = α/n,
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Candidate gene and haplotype analysis.  The physical locations of SNPs were identified based on the 
Rice Annotation version of 7.0 of variety Nipponbare from Michigan State University. Considering that the LD 
decay distance in XI accessions is about 100 kb93, significant SNPs located to a region of less than 100 kb were 
treated as one locus. The annotations of genes located within LD blocks were obtained from the Os-Nipponbare-
Reference-IRGSP-1.0 rice genome database (https://​rapdb.​dna.​affrc.​go.​jp/​downl​oad/​irgsp1.​html).

Haplotype analysis of candidate genes plus 1.5 kb upstream was performed in R using the imputed SNP 
dataset.

Trait heritability.  Trait heritability and genotype × environment interactions were investigated using addi-
tive main effects and multiplicative interactions (AMMI) model in GenStat88. The computed variance com-
ponents were used to estimate broad-sense heritability across the four environments tested using the formula 
described by Velu et al.94:

where H2 is the broad-sense heritability, σg2 is the genotypic variance, σge2 is the genotype × environment vari-
ance, and σe2 is the residual error variance for r replicates and l locations.

Ethics declarations.  The authors declare that the experimental research and field studies on plants in this 
study including the collection of plant material comply with relevant institutional, national, and international 
guidelines and legislation.
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