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a b s t r a c t

Background: The causal associations and potential mechanisms between prostatic diseases, the pre-
dominant male urological disorders, and the course of COVID-19 remain unclear.
Methods: A two-sample Mendelian randomization (MR) analysis was performed to evaluate causal
associations between prostate cancer, benign prostatic hyperplasia, and prostatitis and different COVID-
19 outcomes (SARS-CoV-2 infection, hospitalized COVID-19, and severe COVID-19). Reverse MR, linkage
disequilibrium score regression, and Bayesian colocalization analyses were subsequently performed to
strengthen the identified causal relationships. Furthermore, immunome- and metabolome-wide MR
analysis was conducted to prioritize COVID-19-associated immune characteristics and metabolites. Two-
step MR analysis was performed to evaluate the mediating effects of the immunome and metabolome on
the associations between prostatic diseases and COVID-19.
Results: Genetically predicted prostatic diseases were not causally associated with severe COVID-19,
while prostatitis was suggested to be an independent risk factor for SARS-CoV-2 infection (odds ratio
(OR) ¼ 1.11, 95% confidence interval (CI) 1.01 to 1.23; P ¼ 0.03). Multiple sensitivity tests verified the
reliability of the established causal relationships. Dozens of blood immune and metabolic features were
identified to reveal the immune and metabolic profiles of different COVID-19 courses. Moreover, PDL-1
on monocyte was found to mediate the interaction between prostatitis and SARS-CoV-2 infection, with a
mediation proportion of 9.2%.
Conclusion: Our study identified thecausal relationships ofprostaticdiseaseswithCOVID-19andsuggested
pathways explaining these associations through alterations in the blood immunome and metabolome.
© 2024 The Asian Pacific Prostate Society. Published by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Since the onset of the COVID-19 pandemic in 2019, it has posed a
significant public health threat nationwide. The emergence of
continuous mutant strains of COVID-19 has heightened concerns
regarding viral reinfection and transmission.1 Researchers have
identified ACE2 as the receptor for SARS-CoV-2, which mediates
viral entry into host cells.2 The infection of organs by viruses de-
pends on the co-expression of ACE2 and TMPRSS2.2 While the virus
predominantly targets the lungs, co-expressing ACE2 and TMPRSS2
has also been detected in other organs, including the prostate.3

Interestingly, there are gender disparities in the morbidity and
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mortality rates of severe COVID-19, with males exhibiting a greater
likelihood of severe illness.4 Prostatic diseases, including prostate
cancer, benign prostatic hyperplasia (BPH), and prostatitis, are
prevalent urological conditions among men. The co-occurrence of
these high-prevalence prostatic diseases with the COVID-19
pandemic has raised concerns among urologists regarding the
potential impact of prostatic diseases on the severity of COVID-19.

Patients with prostate diseases exhibit alterations in immune
responses, metabolism, microbiome, and other micro-
environments,5e8 which may pose risk conditions for COVID-19.
Recent studies have investigated the links between COVID-19 and
prostate cancer, revealing that individuals recently diagnosed with
prostate cancer were more susceptible to COVID-19 and had a
poorer prognosis.9 Furthermore, research examining various cancer
types, including prostate cancer, has reported higher 30-day mor-
tality rates in cancer patients infected with COVID-19.10 Notably,
chronic prostatitis is themost common urinary tract disease inmen
under 50 years of age, with over half of Chinese males estimated to
be afflicted with this condition.11 On the other hand, BPH is prev-
alent in men over 50, affecting 70% of males over 60 and rising to
90% among those over 80.12 Despite the high prevalence of BPH and
prostatitis, their associations with COVID-19 have not been exten-
sively explored.

To assess the causal relationships between prostatic diseases
and COVID-19, this study employed Mendelian randomization
(MR). MR was a robust approach that enabled the determination of
diseases causality unbiased by environmental confounders,
leveraging genetic variants assigned at birth.13 Specifically, two-
sample MR analysis was utilized to investigate the causal associa-
tions between prostatic diseases and susceptibility, hospitalization,
and severity of COVID-19. Furthermore, potential mechanisms
underlying the interaction between prostatic disease and COVID-19
mediated by immune characteristics and the blood metabolome
were explored using two-step MR analysis.

2. Methods

As with other statistical methods, Mendelian randomization
analysis follows three major assumptions (correlation, indepen-
dence, and exclusion restriction assumption) (Supplementary
Fig. 1). These assumptions allow genetic variants to serve as prox-
ies for modifiable exposures, facilitating the estimation of causal
effects on outcomes. The details of the study designwere displayed
in Fig. 1, and more specific method description was presented in
Supplementary Materials.

2.1. GWAS data sources

2.1.1. Data sources for prostatic diseases and comorbid factors
For prostate cancer, we obtained GWAS data from the Prostate

Cancer Association Group to Investigate Cancer Associated Alter-
ations in the Genome consortium14 with a sample size of 140,254
individuals. Patient inclusion criteria were based on pathological or
self-reported diagnoses within the PRACTICAL consortium and the
ICD-10 C61 code. To minimize the impact of sample randomness,
we chose two independent GWASs for BPH and prostatitis. The
GWAS data for BPH and prostatitis were extracted from the UK
Biobank and FinnGen consortium, with sample sizes ranging from
134,299 to 183,888 individuals. Inclusion criteria for UK Biobank
participants included ICD-10 N40 code or surveys by the Office of
Population and Censuses for BPH, and diagnosis of chronic or acute
bacterial prostatitis for prostatitis; FinnGen used ICD-10 N40 for
BPH and N41 for prostatitis. A genome-wide meta-analysis was
performed for two independent GWASs of BPH and prostatitis us-
ing a fixed effects model through METAL software.15

We searched for the major comorbid factors of prostate cancer,
including smoking, alcohol consumption, diabetes status, obesity,
hypertension, and a high-fat diet, based on previous meta-analysis
studies (Supplementary Table 1). The detailed sources of GWAS
data for comorbid factors can be found in Table 1.

2.1.2. Data sources for three different COVID-19 outcomes
Three largest GWAS datasets from the COVID-19 Host Genetics

Initiative Consortium16 were chosen for the outcome of SARS-CoV-
2 infection, hospitalized COVID-19, and severe COVID-19, with
sample sizes of 2,297,856, 2,095,324 and 1,086,211 individuals,
respectively. SARS-CoV-2 infection was defined through laboratory
testing, clinical confirmation, or self-reported diagnosis. Hospital-
ized COVID-19 were defined as patients admitted to the hospital
with COVID-19 symptoms. Severe COVID-19 were defined as pa-
tients with severe respiratory failure secondary to COVID-19.

2.2. Statistical analyses

A threshold P-value less than 5 � 10�8 and a linkage disequi-
librium threshold of an r2 cutoff of 0.001 within a 10Mb window
were applied. A larger threshold of 5 � 10�6 was introduced to
achieve enough genetic variants for immune characteristics and the
blood metabolome. The strength of association of the genetic var-
iants for prostatic diseases and comorbid factors was quantified by
the F-statistic, and all SNPs with F-statistics less than 10 were
removed to ensure statistical strength. To minimize pleiotropy
caused by potential confounders, the SNPs associated with poten-
tial confounders identified through previous meta-analysis studies
were removed using the PhenoScanner database (Supplementary
Tables 1 and 2).

As the primary method of MR analysis, we used inverse variance
weighted (IVW) to separately assess the causal effects. Heteroge-
neity was quantified through Cochran's Q test. For results with
heterogeneity, we employed the IVW method with a random ef-
fects model, while a fixed effects model was used for results
without heterogeneity. To ensure robust results, three additional
methods, MR Egger, the weighted median, and the weighted mode,
were carried out for sensitivity testing.

The relationships estimated by MR analysis could be interpreted
as follows: 1) causal association; 2) reverse causation; 3) biased by
horizontal pleiotropy; and 4) interference by genetic correlation or
linkage disequilibrium (LD). To determine the causal inference
linking prostatic diseases with COVID-19, we extended our investi-
gation through several sensitivity analyses. 1) To exclude reverse
causality, we conducted reverse MR analysis to evaluate the causal
effects of COVID-19 on prostatic diseases. 2) To assess pleiotropy, MR
Egger regressionwas calculated. TheMRpleiotropy residual sumand
outlier (MR-PRESSO) test was performed to further remove outliers
causing pleiotropy. 3) To mitigate the impact of overall genetic cor-
relation, we employed linkage disequilibrium score regression
(LDSC) analysis to evaluate comprehensive genetic correlation.17 4)
To account for linkage disequilibrium, we adopted Bayesian coloc-
alization analysis to investigate whether the identified causality
could be driven by LD among shared genetic loci.18 Two-step MR
analysiswas conducted to evaluate the potentialmediating effects of
COVID-19-related immune characteristics and circulating meta-
bolismon the causal associations betweenprostatitis and SARS-CoV-
2 infection. As in previous studies, only immune characteristics and
metabolites with consistent total and mediation effects were
included in the mediation analyses.19



Fig. 1. Overall study design.
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Table 1
Detailed information on used studies

Phenotypes Data source (Consortium) Sexes Sample size Author, published year PMID

Prostatic diseases
Prostate cancer PRACTICAL males 140,254 Schumacher et al., 2018 29892016
Benign prostatic hyperplasia UKBB males 183,888 NA, 2018 NA

FinnGen males 163,095 NA, 2023 NA
Prostatitis UKBB males 166,988 NA, 2018 NA

FinnGen males 134,299 NA, 2023 NA
Comorbid factors for prostate cancera)

Smoking Current tobacco smoking UKBB combined 462,434 NA, 2018 NA
Ever smoked UKBB combined 461,066 NA, 2018 NA
Cigarettes smoked per day GSCAN combined 249,752 Liu et al., 2019 30643251

Alcohol Alcohol intake frequency UKBB combined 462,346 NA, 2018 NA
Diabetes Type 2 diabetes NA combined 655,666 Xue et al., 2018 30054458

Fasting glucose NA combined 200,622 Chen et al., 2021 34059833
Fasting insulin NA combined 151,013 Chen et al., 2021 34059833

Hypertension Diastolic blood pressure International Consortium
of Blood Pressure

combined 757,601 Evangelou et al., 2018 30224653

Systolic blood pressure International Consortium
of Blood Pressure

combined 757,601 Evangelou et al., 2018 30224653

Obesity Hip circumference GIANT combined 224,459 Shungin et al., 2015 25673412
Waist circumference GIANT combined 232,101 Shungin et al., 2015 25673412
Body mass index GIANT combined 339,224 Shungin et al., 2015 25673412
Waist-to-hip ratio GIANT combined 212,244 Shungin et al., 2015 25673412

High-fat diet Saturated fatty acids NA combined 114,999 Borges et al., 2020 NA
Total fatty acids NA combined 114,999 Borges et al., 2020 NA
Monounsaturated fatty acids NA combined 114,999 Borges et al., 2020 NA
Polyunsaturated fatty acids NA combined 114,999 Borges et al., 2020 NA

COVID-19
SARS-CoV-2 infection COVID-19 Host Genetics

Initiative
combined 2,597,856 NA, 2022 NA

Hospitalized COVID-19 COVID-19 Host Genetics
Initiative

combined 2,095,324 NA, 2022 NA

Severe COVID-19 COVID-19 Host Genetics
Initiative

combined 1,086,211 NA, 2022 NA

Immune characters and blood metabolome
Circulating cytokines and growth factors - combined 8,290 Ahola-Olli et al., 2017 27989323
Immune cells - combined 3,757 Orrù et al., 2020 32929287
Human blood metabolites - combined 7,824 Shin et al., 2014 24816252
Circulating metabolites - combined 24,925 Kettunen et al., 2016 27005778
Metabolic biomarkers UKBB combined 115,078 NA, 2018 NA

GIANT, Genetic Investigation of ANthropometric Traits; GSCAN, GWAS & Sequencing Consortium of Alcohol and Nicotine use; PRACTICAL, Prostate Cancer Association Group
to Investigate Cancer Associated Alterations in the Genome; UKBB, UK Biobank.
UKBB: http://www.nealelab.is/uk-biobank.
FinnGen: https://www.finngen.fi/fi.
COVID-19 Host Genetics Initiative: https://www.covid19hg.org/results/r7/.
a) Major comorbid factors of prostate cancer, including smoking, alcohol consumption, diabetes status, obesity, hypertension, and a high-fat diet, based on previous meta-

analysis studies.
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3. Results

3.1. Causal effects of genetically predicted prostatitis on SARS-CoV-2
infection

After removing SNPs associated with confounding factors
through the PhenoScanner database, a total of 131, 21, and 6 SNPs
were extracted as genetic instrumental variants for prostate cancer,
BPH, and prostatitis, respectively, while 13, 29, and 26 SNPs were
filtered as instruments for SARS-CoV-2 infection, Hospitalized
COVID-19, and Severe COVID-19, respectively (Supplementary
Tables 3 and 4). All the instrumental variables were of sufficient
strength to achieve F-statistics greater than 10.

MR analysis suggested that prostatitis, rather than prostate
cancer, was genetically associated with COVID-19. The causal ef-
fects of prostate cancer and BPH on SARS-CoV-2 infection, hospi-
talized COVID-19, and severe COVID-19 were not significant
(P <0.05). Genetically predicted prostatitis was causally associated
with increased susceptibility to SARS-CoV-2, with odds ratios (ORs)
of 1.11 (95% confidence intervals (CIs) 1.01 to 1.23, P¼ 0.03), despite
no associations with hospitalization or severity of COVID-19
(Fig. 2). These findings were consistent across the IVW, MR Egger,
weighted median, and weighted mode methods, as presented in
Supplementary Table 5.

3.2. Results from reverse MR, genetic correlation, and colocalization
analyses

To reinforce the identified causation between prostatitis and
SARS-CoV-2 infection, multiple additional sensitivity analyses were
also conducted (Supplementary Tables 6e9). Reverse MR results
revealed noncausal effects of COVID-19 on prostatic diseases, sug-
gesting that reverse causation would not interfere with the causal
associations (Fig. 3a). Mild pleiotropy was observed in the associa-
tions between hospitalized patients and severe COVID-19 and BPH
patients. The removal of outliers by MR-PRESSO corrected for plei-
otropy, although the significance of the causal effect did not change
after removal of these outliers (Supplementary Table 7). LDSC anal-
ysis revealed genetic correlations among the three COVID-19 out-
comes and among each of the three prostatic diseases, as expected.
Moreover, significant genetic correlations were found between BPH
and hospitalized COVID-19, as well as between prostatitis and severe
COVID-19. Interestingly, no genetic correlationwas detected between
prostatitis and SARS-CoV-2 infection, suggesting that the causal

http://www.nealelab.is/uk-biobank
https://www.finngen.fi/fi
https://www.covid19hg.org/results/r7/


Fig. 2. Forest plot for the causal associations between prostatic diseases with COVID-19. Inverse variance weighted, MR-Egger, weighted median, and weighted mode presented
different MR models, and inverse variance weighted was considered the primary analysis method. Statistically significant results (P < 0.05) were indicated in bold font.
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association was not disturbed (Fig. 3b). Bayesian colocalization
analysis indicated that the probability of sharing the same genetic
locus between prostatitis and SARS-CoV-2 infection or of having
linkage disequilibrium among their major SNPs was low, eliminating
the disturbance of linkage disequilibrium (Fig. 3c).

3.3. Causal associations between comorbid factors of prostate
cancer and COVID-19

We further explored the causal associations between prostate
cancer-related comorbid factors and COVID-19. The 17 major co-
morbid factors of prostatic diseases were extracted from previous
meta-analysis studies and are presented in Table 1. The MR results
suggested that genetically predicted Body mass index (BMI), hip
circumference (HC), waist circumference (WC), waist-to-hip ratio
(WHR), smoking per day, and systolic blood pressure (SBP) were
causally associated with the three different COVID-19 outcomes. To
control for the incidence of type I errors, we used the Bonferroni-
corrected P-value (P ¼ 9.8 � 10�4, a ¼ 0.05/51) as the significance
threshold. We found that only BMI, HC, and WC had significant
effects on SARS-CoV-2 infection, hospitalized COVID-19, and severe
COVID-19 after the adjusted threshold was applied (Fig. 4 and
Supplementary Table 10).

3.4. Results from immunome- and metabolome-wide MR analysis
of COVID-19

Immunome- and metabolome-wide MR analyses, which
included 772 immune characteristics and 842 blood metabolites,
were also conducted to explore the COVID-19-associated blood



Fig. 3. Sensitivity and additional analyses. A, forest plot of reverse MR results for prostatic disease on COVID-19. B, Heatmap for LDSC analysis between prostatic diseases and
COVID-19. The size of the squares represented the magnitude of the effect size of genetic correlation. C, Regional LocusZoom Plots of colocalization between prostatitis and SARS-
CoV-2 infection within 250 kb.
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biomarkers. Notably, no phenotypes survived to Bonferroni
correction (P ¼ 3.1 � 10�5, a ¼ 0.05/1614); therefore, the signifi-
cance threshold was set at 0.05.

We identified 22 immune and 33 metabolic characteristics
which were associated with SARS-CoV-2 infection. The imbalances
in the immune system, especially regulatory T (Treg) cell, were
associated with susceptibility of SARS-CoV-2. Additionally, the
activation of adaptive immunity and the involvement of innate
immunity such as central memory CD4-CD8- T cell %CD4-CD8- T
cell (OR ¼ 0.98, P ¼ 0.04), IgD þ CD24þ B cell AC (OR ¼ 0.97,
P ¼ 0.01), and PDL-1 on monocyte (OR ¼ 0.98, P ¼ 0.04), were
identified as protective immune characteristics for SARS-CoV-2
infection, as we expected (Fig. 5 and Supplementary Table 11).
The lipid and amino acid levels in the blood metabolome had also
been identified as risk factors for SARS-CoV-2 infection. Lipid-
related metabolites, including linoleate (18:2n6), 1-stearoyl glyc-
erophocholine (OR ¼ 1.34, P ¼ 0.03), and linolenate [alpha or
gamma; (18:3n3 or 6)] (OR ¼ 1.72, P ¼ 9.8 � 10�5), were causally
associated with increased susceptibility to COVID-19, while doco-
sapentaenoate (n3 DPA; 22:5n3) (OR ¼ 0.78, P ¼ 0.02) and total
lipids in large VLDL (OR ¼ 0.97, P ¼ 0.04) were associated with
decreased susceptibility to COVID-19. Moreover, there were results
indicating the relationships between SARS-CoV-2 infection and
alterations in blood amino acid levels, including phenylalanine,
isoleucine, valine, and total concentration of branched-chain amino
acids (leucine þ isoleucine þ valine) (Fig. 5 and Supplementary
Table 11).

Dozens of immune andmetabolic characteristics were identified
as hospitalized COVID-19 and severe COVID-19-related blood bio-
markers. Similarly, dysregulation of Treg cell subpopulations
among T cells was associated with more advanced COVID-19 out-
comes, particularly in hospitalized COVID-19. The presence of
specific subgroups of B cells, such as IgD þ CD24þ and
IgD þ CD38þ, were identified as the protective features for COVID-
19. Moreover, higher macrophage inflammatory protein 1b levels
were thought to be protective against progression to both hospi-
talized and severe COVID-19, and higher interleukin-1beta levels
were only recognized to mitigate severe COVID-19 risk
(Supplementary Figs. 2 and 3, Supplementary Tables 12 and 13).We
also highlighted novel metabolic features associated with the risk
of hospitalization and severe COVID-19 outcomes. In addition to
unidentified metabolites, the metabolic pathways included energy
(lactate), cofactors (bilirubin [E,Z or Z,E*]), carbohydrates (1,6-
anhydroglucose), lipids (palmitoleate [16:1n7]), peptides (albu-
min), and amino acids (valine)). Somemetabolites displayed similar
effects on disease courses in hospitalized and severe COVID-19. 3-
hydroxybutyrate (BHBA), bilirubin (E,Z or Z,E)*, and myristoleate
(14:1n5), exemplify well, known to be associatedwith a greater risk
of these more advanced COVID-19 outcomes. Nonetheless, me-
tabolites exhibited different metabolic profiles between hospital-
ized COVID-19 and severe COVID-19, with lipid-related metabolites
being more frequently associated with severe COVID-19; interest-
ingly, creatinine levels were also correlated exclusively with it
(Supplementary Figs. 2 and 3, Supplementary Tables 12 and 13).

3.5. PDL-1 on monocyte partially mediated the effect of prostatitis
on the risk of SARS-CoV-2 infection

To explore the mediating mechanisms by which prostatitis
increased the risk of SARS-CoV-2 infection, we further evaluated



Fig. 4. Causal associations between comorbid factors of prostate cancer and COVID-19. A, bubble chart for the causal associations between comorbid factors of prostate cancer
and COVID-19. The Bonferroni-corrected P-value (P ¼ 9.8 � 10�4) was set as the significance threshold. B, scatterplot of associations with suggestive evidence (P < 0.05). BMI: body
mass index; HC: hip circumference; WC: waist circumference; WHR: waist-to-hip ratio; SBP: systolic blood pressure.
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the alterations of 55 immune and metabolic characteristics
associated with SARS-CoV-2 infection. After the exclusion of
inconsistent direction between total effects and mediation effects,
only PDL-1 on monocyte was identified as the potential mediator
between prostatitis and SARS-CoV-2 infection, with a 9.2% media-
tion proportion (Table 2, Fig. 6). Patients with prostatitis appear to
be associated with lower levels of PDL-1 on monocyte, which could
increase the risk of SARS-CoV-2 infection. Bloodmetabolites, on the
other hand, did not mediate the causal relationship between
prostatitis and SARS-CoV-2 infection (Supplementary Table 14).

4. Discussion

In this study, we conducted anMR analysis to identify the causal
relationships between prostatic diseases and three different
COVID-19 outcomes utilizing the largest scale of GWAS data.



Fig. 5. Heatmap for immune and metabolic features associated risk of SARS-CoV-2 infection. This figure showed the MR results in the inverse variance weighted method, and effect
size of causal association was indicated with OR.

Prostate International 12 (2024) 167e177174
Prostatitis, not prostate cancer, was identified as a risk factor for
SARS-CoV-2 infection, and this causal relationship was verified by
multiple sensitivity tests. Additionally, comprehensive immunomic
and metabolomic-wide MR analyses prioritized dozens of COVID-
19-associated immune and metabolic features, especially imbal-
ances in specific subgroups for Treg and B cells and alterations in
lipid-, energy-, and amino acid-related metabolite levels. Through
further two-step MR analysis, PDL-1 on monocyte was identified as
a potential mediator between prostatitis and SARS-CoV-2 infection,
with 9.2% of the effect being mediated.

Previous studies have focused on the associations between
prostate cancer and COVID-19,9,10 neglecting the two highly prev-
alent diseases, prostatitis and BPH. We obtained the largest GWAS
dataset for prostatic diseases by genome-wide meta-analysis, sys-
tematically evaluating the causal relationships between prostatic
Table 2
Mediation effects between prostatitis, PDL-1 on monocyte, and SARS-CoV-2 infection

Mediator Exposure Outcome Total effect Mediation e

PDL-1 on
monocyte

Prostatitis SARS-CoV-2
infection

0.108
(0.010 to 0.206)

�0.486
(�0.897 to

Mediation effect A, effect of exposure on mediator; mediation effect B, effect of media
mediation effect equaled to mediation effect A multiplied by mediation effect B; mediatio
of exposure on outcome.
diseases and three different COVID-19 outcomes. Only prostatitis
was identified as a risk factor for SARS-CoV-2 infection, while
prostate cancer was not. Our findings demonstrated that only
obesity (including BMI, HC and WC) among the prostate cancer-
associated comorbid factors was significantly associated with se-
vere COVID-19 after Bonferroni correction. This result aligns with
previous MR studies examining severe COVID-19.20 Obesity is a
shared risk factor for both prostate cancer and COVID-19, with
shared mechanisms such as inflammation and immune dysregu-
lation, and metabolic disturbances21,22 potentially confounding
associations between prostate cancer and COVID-19 identified in
previous studies. Additionally, prostatitis had been identified as an
independent risk factor for SARS-CoV-2 infection; however, it did
not increase the risk of developing advanced COVID-19 outcomes
requiring hospitalization or intensive care. This observation could
ffect A Mediation effect B Mediation effect Mediation
proportion (%)

�0.080)
�0.021
(�0.040 to �0.001)

0.010
(�0.003 to 0.022)

9.2
(�5.0 to 23.4)

tor on outcome; mediation effect, calculated by “coefficient product method” that
n proportion (%), the proportion of mediation effect on total effect; Total effect, effect



Fig. 6. Heatmap for causal effects of prostatitis on SARS-CoV-2 infection-related immune and metabolic features. Inverse variance weighted, MR-Egger, weighted median, and
weighted mode presented different MR models, and inverse variance weighted was considered the primary analysis method. Significant results (P < 0.05) in IVW method were
identified in red.
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be attributed to the demographic typically affected by prostatitis,
predominantly comprising young to middle-aged adults11 who
generally exhibit robust physiological resilience against severe
outcomes of COVID-19.

We performed comprehensive immunome- and metabolome-
wide analyses to reveal the immune and metabolic profiles of
different COVID-19 courses. Our findings underscored the complex
role of specific immune cell subpopulations, particularly Tregs, in
influencing COVID-19 outcomes. Previous studies have come to
contradictory conclusions about altered concentrations of Treg cells
and interactions with COVID-19,23,24 whichwe foundmay be due to
the different roles of specific Treg subgroups. Our study showed
that enriched CD28þ CD45RA- CD8dim Tregs were associated with
a reduced risk of COVID-19 in both the mild and severe stages,
whichmay be attributed to enhanced Tcell activation, proliferation,
and memory formation.25 Additionally, our analysis indicated that
the presence of an enriched CD39þ Treg population correlatedwith
a higher risk of COVID-19, whereas this phenomenon was consis-
tent with the findings of Simsek et al.26 The role of the CD39þ Treg
subpopulation, known for suppressing immunity and inflamma-
tion,27 in determining COVID-19 severity further exemplified the
complex interplay between immune regulation and disease
outcome.

Our study corroborated findings from Shi et al., who linked
metabolites such as phenylalanine, serine, and cholesterol signifi-
cantly with COVID-19.28 Despite some discrepancies in the direc-
tion of metabolite impacts,28 suggesting variability, our
comprehensive examination offered a broader perspective on the
metabolic disruption caused by COVID-19. By conducting a
comprehensive metabolomic analysis, we identified key alterations
across various pathways, including those involved in energy pro-
duction, lipid regulation, and amino acid balance, echoing and
expanding upon previous research.29,30 This extended analysis
highlighted the complex metabolic reprogramming that occurred
in response to COVID-19 and the potential for targeted therapeutic
interventions.

Our findings suggested that PDL-1 levels on monocyte mediated
causal effect of prostatitis on SARS-CoV-2 infection and that lower
PDL-1 levels on monocyte following prostatitis may contribute to
increased COVID-19 risk. However, these findings contrast with the
commonly observed correlation between lower PDL-1 levels and
greater T cell activation,31 which typically correlates with an
increased risk of virus infection. Nevertheless, excessive T cell
activation can also lead to immune-mediated damage to host tis-
sues. In the context of COVID-19, excessive T cell activation is
implicated in systemic inflammatory responses in severe cases.32

Furthermore, conflicting reports exist regarding changes in
monocyte PDL-1 levels following COVID-19 infection, with some
studies indicating an increase in PD-L1, while others suggest a
decrease.33e35 These discrepancies underscore the complex inter-
play between immune regulation and disease pathogenesis, high-
lighting the need for further research to elucidate the precise role of
PDL-1.

Nonetheless, this study has several limitations. First, the GWAS
data utilized in this study were obtained solely from individuals of
European ancestry, thereby restricting the generalizability of the
findings to other populations. Second, while efforts were made to
minimize potential bias by matching the corresponding sex-
specific GWAS data for prostatic diseases, the lack of sex-specific
data for COVID-19 and other mediators may have affected the
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results. Third, despite the use of the largest GWAS dataset for
prostatic diseases and the combination of estimated results from
two independent datasets, the restricted sample size may limit the
accuracy of the statistical findings. Fourth, the P-values from the
immunome- and metabolome-wide analyses did not survive mul-
tiple corrections; thus, a more lenient significance threshold was
employed, potentially increasing the probability of type I errors.

In conclusion, our study evaluated the causal relationships be-
tween prostatic diseases and different COVID-19 outcomes and
explained these associations through alterations in the blood
immunome and metabolome. These findings emphasized the
importance of considering both local and systemic factors in dis-
ease management. Our research contributed to understanding the
implications of COVID-19 for individuals with prostatic conditions,
informing clinical and public health interventions.
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