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Abstract
Despite the abundance of research on knowledge discovery from moving object databases,

only a limited number of studies have examined the interaction between moving point

objects in space over time. This paper describes a novel approach for measuring similarity

in the interaction between moving objects. The proposed approach consists of three steps.

First, we transform movement data into sequences of successive qualitative relations

based on the Qualitative Trajectory Calculus (QTC). Second, sequence alignment methods

are applied to measure the similarity between movement sequences. Finally, movement

sequences are grouped based on similarity by means of an agglomerative hierarchical clus-

tering method. The applicability of this approach is tested using movement data from

samba and tango dancers.

Introduction
Technological advances in tracking and navigation systems make it possible to capture, effi-
ciently and cost-effectively, the trajectories of a wide range of moving objects, including human
beings [1, 2], animals [3–6], and vehicles [7, 8]. With access to an unprecedented wealth of
accurate motion data, researchers today can apply pattern discovery techniques to moving
object databases and generate knowledge in a large member of disciplines, including urban
planning [9], event management [10, 11], crisis management [12], traffic [13], and tourism
[14]. In addition to their usefulness for processing large-scale movement data sets, data mining
and knowledge discovery techniques can also be applied to small-scale movement data sources.
For example, movement patterns, such as walking, running, jumping, lifting, striking and
swimming, can be investigated for various purposes. Investigating the movement of swimmers,
for instance, might help coaches to analyse the performance of their swimmers [15]. Nonethe-
less, the specific techniques and methods chosen for extracting movement patterns from a data
set depend on the context of the movement under examination. Among the wide range of
research methodologies, similarity analysis has attracted considerable attention from many
researchers. The similarity between two entities is measured as the cost of transforming one
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entity into another via a similarity measure [16]. In the context of movement, trajectories (i.e.,
representative paths that moving objects follow through space as a function of time) are typi-
cally considered to be the entities in similarity analysis of the dynamic behaviour of moving
objects. In the existing research that has applied similarity analysis to the study of moving
object trajectories, most studies have focused on the spatial dimension [17–20], whereas several
studies have considered both spatial and temporal aspects [21–25]. However, despite extensive
research in this field [26, 27], certain aspects of moving object trajectories have received only
scant attention to date.

In this paper, instead of presenting a spatial or spatio-temporal similarity analysis of trajec-
tories, we propose a framework in which the similarity measure is used to quantify similarity
when pairs of moving objects interact with one another. We believe that a focus on the similar-
ity in the interaction among moving object pairs may reveal more information on object move-
ment than a sole focus on object trajectories.

To form the basis of the similarity analysis, a qualitative formalism appropriate for the
representation of spatio-temporal human cognition is used to express the interactions between
objects. To date, researchers have proposed several formalisms for the qualitative analysis of
spatial and temporal phenomena. However, the existing work in this area has been limited to
either spatial or temporal qualitative calculi [28–31], with only a few studies presenting an inte-
grated, spatio-temporal treatment of object movements. One notable example of an integrative
approach is the Qualitative Trajectory Calculus (QTC) [32]. QTC reduces the complexity of
interacting, real-world, continuously disjoint moving objects by representing the interaction in
terms of qualitative relationships [33]. By converting relative motion attributes (i.e., distance)
into symbolic representations, QTC transforms quantitative data on movement (positional
information) into qualitative data (QTC relations), resulting in a simplified representation of
trajectory pairs. The practicality and appropriateness of QTC for analysing the interaction of
moving objects have been successfully demonstrated via various applications [34–37].

In this paper, we cross-pollinate QTC with sequence alignment methods (SAMs) to identify
similarities in the movement behaviour between pairs of interacting moving objects over time.
Although SAMs have long been used in bioinformatics for the analysis of DNA strings [38],
they have only recently been applied to the field of movement analysis [39]. In the current
study, sequence alignment is used to assess the similarity between movement sequences of
QTC relations for two reasons. First, SAMs allow us to visually distinguish movement patterns
from sequences and extract insightful information from them. Second, the comparison of
movement patterns using SAMs results in a quantitative measure of similarity between move-
ment patterns. Finally, the results of a similarity analysis are used to cluster movement data
into groups that share similar properties. The usefulness of our approach will be demonstrated
in an empirical case study in which sequence alignment is used to examine the movement pat-
terns of different parts of the body of samba and tango dance performers.

The remainder of this paper is organised as follows. Section 2 provides a brief review of the
background and basics of QTC and SAMs, Section 3 presents a description of the data set used
in this paper. Section 4 presents the methodology that is applied in this research. Section 5 dis-
cusses the proposed method, compares it with related approaches and identifies strengths and
open problems. Finally, Section 6 presents our concluding remarks and outlines the directions
for future work.

SAM and Movement Analysis
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Background

The Qualitative Trajectory Calculus (QTC)
QTC was introduced by Van de Weghe [32] as a qualitative calculus to represent and reason
about moving objects. It expresses the spatio-temporal relationship between two disjoint mov-
ing point objects (MPOS). Different types of QTC have been developed, namely QTCB

(QTC-Basic) [40], QTCC (QTC-Double Cross) [41], QTCN (QTC-Network) [42], and QTCS

(QTC-Shape) [43]. This paper will focus on QTCB and QTCC. In QTCB, qualitative relations
are defined based on the Euclidean distance between two disjoint MPOs at each time stamp of
movement (Fig 1A), while QTCC relations are determined based on three reference lines form-
ing a so-called double cross between two disjoint MPOs (Fig 1B). In the remainder of this sec-
tion, we will briefly introduce the basic concepts of QTCB and QTCC.

QTCB (QTC-Basic). QTCB provides a qualitative representation of the two-dimensional
movement of a pair of MPOs. Binary relations between two MPOs are evaluated based on the
Euclidean distance [32]. QTCB relations are constructed from the following relationships [36]:

Assume: MPOs k and l, and time point t

k|t denotes the position of k at t

l|t denotes the position of l at t

d(u, v) denotes the Euclidean distance between two positions u and v

A. Movement of k with respect to l at t (distance constraint):

−: k is moving towards l:

9t1ðt1 < t ^ 8t�ðt1 < t� < t ! dðkjt�; ljtÞ > dðkjt; ljtÞÞÞ^
9t2ðt < t2 ^ 8tþðt < tþ < t2 ! dðkjt; ljtÞ > dðkjtþ; ljtÞÞÞ

Fig 1. TwoMPOs, k and l, and their trajectories are used to formQTCB base relations. The frame of spatial reference is illustrated by the dashed line.
(a), QTCC setting (b). The frame of spatial reference is illustrated by the dashed line. Nine QTCB base relations (c).

doi:10.1371/journal.pone.0132452.g001
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+: k is moving away from l:9t2(t� t2 ^ 8t+(t� t+� t2 ! d(k|t, l|t)< d(k|t+, l|t)))

9t1ðt1 < t ^ 8t�ðt1 < t� < t ! dðkjt�; ljtÞ < dðkjt; ljtÞÞÞ^
9t2ðt < t2 ^ 8tþðt < tþ < t2 ! dðkjt; ljtÞ < dðkjtþ; ljtÞÞÞ

0: k is stable with respect to l (all other cases)

B. Movement of l with respect to k at t (distance constraint), can be described as in A with
k and l interchanged, and hence:

−: l is moving towards k

+: l is moving away from k

0: l is stable with respect to k (all other cases)

In QTCB, the distance constraints between two MPOs are denoted as A and B. Accordingly,
the (A B)B relationship syntax is used to represent the relation between two MPOs. In total,
there are 9 (32) base relations for QTCB (Fig 1C). For example, the QTCB relation (+ +) indi-
cates that the two objects are moving away from each other.

QTCC (QTC-Double Cross). An important difference between QTCB and QTCC is that,
in addition to the Euclidean distance, the direction of movement of MPOs with respect to the
reference line (RL), the straight connection line between both MPOs (Fig 1B), is considered in
the two-dimensional space. In other words, in addition to the towards / away from dichotomy
of QTCB, QTCC employs the left / right dichotomy. QTCC relations are constructed from the
following relationships [36]:

Assume: MPOs k and l, and time point t
RLt denotes the reference line through k|t and l|t

C. Movement of k with respect to RLt at t (side constraint):

–: k is moving to the left side of RLt

+: k is moving to the right side of RLt

0: k is moving along RLt (all other cases)

D. Movement of l with respect to RLt at t (side constraint), can be described as in C with k and
l interchanged, and hence:

–: l is moving to the left side of RLt

+: l is moving to the right side of RLt

0: l is moving along RLt (all other cases)

In QTCC, the towards/away from and left/right distinctions have been defined as notations
A, B, C, and D respectively. Accordingly, the (A B C D)C relationship syntax has been proposed
for the relation between two MPOs at each time stamp of the movement. In total, there are 81
(34) base relations for QTCC (Fig 2). QTCC relations thus reveal more detail of movement
between two MPOs.

SAM and Movement Analysis
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Trajectories and QTCMovement Sequences
The trajectory of an MPO comprises a set of observations through space and time [44, 45]. A
trajectory represents the movement of an individual MPO. The interactions between two
MPOs during a time interval of movement can be expressed in the form of a QTC movement
sequence– a chronological sequence of consecutive transitions between QTC relations. Fig 3
illustrates the movement of a pair of MPOs (i.e., hands of a dancer) during a 10-second interval
with its QTCB and QTCC relations at each time stamp.

Fig 2. 81 QTCC base relations.

doi:10.1371/journal.pone.0132452.g002
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Sequence Alignment Methods
Sequence alignment methods (SAMs) have played an important role in many research fields.
In the early 1980s, biochemists began to use sequence alignment to analyse DNA sequences
[39]. Later, social scientists, such as the sociologist Abbott [46], have applied sequence align-
ment to the analysis of career patterns. More recently, sequence alignment methods have been
used in fields including transportation [47–49], cartography [50], tourism [51], and crowd
behaviour analysis [52], among others.

Sequence alignment is the process of aligning two or more character sequences based on a
set of conventional operations. Specifically, dynamic programming algorithms are used to
equate sequences with the goal of maximising a similarity measure or minimising a distance
measure between them [48, 53]. Two of the most widely used SAMs are pairwise alignment
and multiple alignment. Pairwise alignment is the comparison of two sequences, whereas mul-
tiple alignment is the comparison of more than two sequences. Pairwise alignment and multi-
ple alignment both operate on the basis of two primary types of algorithms: (i) global
alignment and (ii) local alignment. Global alignment forces the alignment to span the entire
length of all sequences, whereas local alignments identifies regions of similarity in long
sequences (for a detailed explanation, see, e.g., [54]).

Pairwise alignment equates two sequences using four conventional operations: identity, sub-
stitution, insertion and deletion. Based on the scope of the research, each operation is associated
with a cost or penalty that is defined a priori. The entire set of pairwise substitution scores is
gathered in a scoring matrix.

In our case studies, we describe how SAMs can be used to align QTC movement sequences
derived from the way in which dancers move different parts of their bodies and analyse these
sequences based on the resulting similarities. In addition to the visual analysis of aligned QTC
movement sequences, we present an objective assessment regarding how well dancers follow
the instructions given by an instructor. In other words, our goal is to identify the aspects of stu-
dents/beginners’ performances in which movement patterns of the dancers matched or devi-
ated from the instructor’s movements.

Data
The raw data used in this study were recorded using the MoCap (MotionCapture) system
owned by the Department of Musicology at Ghent University. MoCap is a movement retrieval
technique that records the position of objects over time by means of reflective markers attached

Fig 3. QTCB and QTCC relations of the movement of two hands of a dancer.

doi:10.1371/journal.pone.0132452.g003
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to these objects in combination with infrared cameras. It is used in a wide range of research
fields. For example, MoCap has been used in sports sciences to capture the movement of ath-
letes as part of rehabilitation, physical education and practice [55, 56]. In the medical sciences,
physiotherapists, orthopaedists and neurologists may examine MoCap measurements of
human gait in conjunction with biomechanical modelling to evaluate a patient’s status and
develop plans for treatment and rehabilitation [57]. Here, we examine some of the basic move-
ments in two different types of dances, namely samba and tango.

Samba is a rhythmical dance. Characterising the conformity of samba dance movements is
highly meaningful given that samba is a dance that involves a group of dancers rather than a
single one.

The movements of the three samba dancers’ heads, torsos, right and left hands, and right
and left feet at each time stamp of a considered time interval of 3.64s (temporal granularity of
0.04s) were recorded in the following format: t (i.e., the time stamp of movement), x, y, and z
(i.e., the local positional information in a three-dimensional space) of each captured body part.
The recorded positions of the markers were transformed into coordinates using the torso of a
dancer’s body as origin. Across 92 time units, many repetitive movements were observed from
the performances of the teacher and the two students. Datasets and Videos of the movements
analysed in this study are available (S1 Dataset and S1 Video).

Next to samba, we will consider an example of tango. Tango is a sensual ballroom dance
usually performed by a couple, a man and a woman, expressing an element of romance in their
synchronised movements. Basically, tango consists of pivots and steps of either partner. The
moment a man opens his chest (i.e., dissociation), the woman will pivot and go in the direction
where the man opened his chest (i.e., steps). A basic step (i.e., Caminada) of a couple of tango
dancers is considered in this paper.

We recorded the movements of a couple of professional tango dancers and a couple of
beginners. Although we captured 25 body parts for each tango dancer at each time stamp of
movement (i.e., 0.01 s), for the sake of simplicity, we only consider the most important body
parts during a tango performance, namely shoulders, hips and feet. Movements of the profes-
sional tango dancers were registered with a calibrated MoCap system, while capturing devices
were not adjusted well during recording the movements of amateurs intentionally. Conse-
quently, there exist some errors and missing points in the dataset of the beginners. Clearly, the
beginners performed less on time than the professionals. Synchronicity in performance is the
factor that most effectively draws people’s attention. Not only is synchronicity important to
dancing, it may be used as a qualification measure for other types of movements such as syn-
chronised swimming—a hybrid form of swimming, dance and gymnastics—that consists of
swimmers performing a synchronised routine of complicated moves in the water, accompanied
by music.

Ethics Statement
The data used in this study were obtained from the movements of three samba dancers and
two couples of tango dancers. Participants were three volunteer samba dancers and two couples
of tango dancers whose movements were captured at the IPEM research group, Department of
Musicology of the Ghent University. This dataset contains X, Y, and Z coordinates of the body
parts of dancers. There is no identifying information associated with any of the individuals,
and thus this research does not constitute any risk to make the data available for public. In
addition, the dancers have given verbal informed consent to use the data for publication pur-
poses. The oral consents are documented by Dr. Luiz Naveda and Tim Vermeulen who was in
charge of obtaining data from dancers (http://www.ipem.ugent.be/user/19).
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Methodology
In contrast to existing methods of classification, in this study, we measure the similarity of
interactions between pairs of MPOs. In other words, instead of comparing individual trajecto-
ries, we compare pairs of trajectories for similarity. We follow three major steps. First, raw tra-
jectories of interacting MPOs from location-aware technologies are converted into qualitative
relations (QTCB and QTCC). Second, sequences of the qualitative relationships are aligned for
the interpretation of the movement patterns of MPOs. Finally, the results of the alignment are
used to evaluate the dance performances. Each step is discussed in depth below.

Step 1: Converting raw trajectories of MPOs into qualitative relations
Case 1: Samba dance. In the first step, the relationships between different parts of the

body of the three samba dancers are described in terms of QTCB and QTCC relations. For
example, Fig 4 presents the movement of the dancers’ heads, torsos, right and left hands, and
right and left feet in a given time interval from both the front view and the side view. The tra-
jectories of the teacher’s body parts to those of the students reveal several subtle differences.
For example, from the front views displayed in Fig 4, we can observe that the space used by stu-
dents to move their hands was quite different compared to that of their teacher.

Next, for simplicity, QTCB and QTCC relations were transcoded into single-character and
two-character sequences, respectively. The corresponding character code for each base relation
in QTCB and QTCC is presented in Figs 1B and 2, respectively (below each representation).
Fig 5A presents the entire set of transcoded sequences of QTCB relations between the different
limbs of the teacher (i.e., n(n − 1)/2 with n the number of body parts) in a movement lasting
3.64s (temporal granularity of 0.04 s).

Fig 4. Derived trajectories of the movements of different parts of the body of samba dancers using the MoCap system.

doi:10.1371/journal.pone.0132452.g004
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In the case of QTCC, each code has two characters in which the first character refers to the
first two symbols of the QTCC relation (distance constraints) and the second character to the
last two symbols of the QTCC relation (direction constraints). For example, QTCC relation (0 +
+ +) is replaced by the code Bc. In order to better detect transitions from one QTCC relation to
another, the first character in each code is capitalized. Eventually, a QTCC movement sequence
shows interactions between a pair of MPOs during a time interval of movement. Fig 5B illus-
trates the QTCC movement sequences of the hands of the samba dancers during a time interval
lasting 3.64s. Note, in all cases, we use QTC information in 2 dimensional space

As stated earlier, samba dance is a dance with numerous periodic movement patterns,
which can be discovered via an analysis of the QTC movement sequences of dancers. One way
to visually recognise the periodicity in movement sequences is mapping sequences to dot plots.
From a dot plot, certain sequence features (such as ‘repeats’) can be visually identified [58].
Dot plots are constructed using two sequences– one written along the top row and the second
written along the leftmost column of a two-dimensional matrix. In a dot plot, each dot repre-
sents a point at which there is a match between the characters in the corresponding row and
column. Thus, it is possible to identify a certain number of matches in a sequence in a search
window defined a priori. Repetitiveness in a single sequence can be assessed by plotting a
sequence against itself in a dot plot and sections that share similarities become visible in the
form of lines off the main diagonal. Fig 6 comprise dot plots of the QTCB movement sequences
for three pairs of body parts (i.e., left hand—right hand, left foot—right foot, and right hand—
left foot) for the teacher, student 1, and student 2. To derive the plots, we run a window span-
ning 10 characters along movement sequences in which 8 characters are matched. Many repeti-
tive sequences of relative movements can be observed in the dot plots of left hand—right hand
for all three samba dancers, whereas almost no repetition is observed in the QTCB relations of
left foot—right foot with a window of the same size. Regularity is more visible in the movement

Fig 5. All QTCB movement sequences of the teacher during 3.64s of movement (a), QTCC movement sequences of the hands of the teacher,
student 1, and student 2.

doi:10.1371/journal.pone.0132452.g005
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of hands than in those of feet. The neat straight lines in the left hand—right hand dot plot for
the teacher indicate regular and perfect repetitions of the teacher’s movements over time. The
lines in the dot plots for students 1 and 2 show various deviations, and are not as straight as
those of the teacher. These deviations are caused by lag and lead times in the repetition of the
same movements by the students. Based on these plots, we can roughly infer that the move-
ments of student 1 and 2 are not as regular as the movements of the teacher. Next, we will fur-
ther examine this irregularity in the students’movements via sequence alignment and attempt
to identify them automatically.

Case 2: Tango dance. In tango, the movement of couples is of interest. There exist many
forms of tango. In this study, we consider the Argentina tango style in which couples follow a
close embrace, a type of closed position where the leader and the follower stand facing each
other chest-to-chest in full or partial body contact. The foundation of the Argentine Tango is
like walking and is called Caminada. Compared to ordinary walking, the Caminada distin-
guishes itself on three aspects: more upright, in a narrower track and a bit like a prowling cat.
In this paper, we study the fundamental step in tango dance, Caminada. A professional tango
dancer aided us in obtaining a better understanding of the tango dance movements and

Fig 6. Dot plots of QTCB movement sequences of left hand—right hand, left foot—right foot, and right hand—left foot for three samba dancers.

doi:10.1371/journal.pone.0132452.g006
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recognizing the most important moments which can be taken as criteria to differentiate a good
performance from a feeble one.

The relative movements of the body parts of each tango dancer (i.e., shoulders, hips, and
feet) are formalized by QTCB and QTCC relations. In Fig 7A, the selected reflective markers
attached to the body parts of the tango dancer are illustrated. In Fig 7B, an example of impor-
tant movement sequences of the hips of a couple of professional tango dancers is given. In this
study, we only consider the relative movements of body parts of each dancer individually.
However, it would also be of interest to examine the relative movement of one body part of a
dancer with respect to that of the partner.

Step 2: Aligning QTCmovement sequences
In the second step, we align the QTC movement sequences of different body parts of the danc-
ers. Using SAMs, we determine the degree of similarity between the movements of dancers
during their performance. Finally, we evaluate the overall performance of each dancer based on
the similarities resulting from the alignments.

The main challenge is to optimally align the QTC movement sequences of the students/
beginners with the movement sequences of the teacher/professionals. Sequence alignment is
applied to identify the parts of the students/beginners’ performance that matches or mis-
matches the performance of the teacher/professionals. When the differences between the
aligned QTC movement sequences of the teacher/professionals and the student/beginners are
sufficiently small, we can conclude that the student/beginners have performed their move-
ments very well on the basis of the teacher/professionals’movements as the choreographic
benchmarks. Clearly, not all movements of the student/beginners’ bodies comply with the
benchmark. To visualise and analyse the (dis)similarity between the body movements of the
students/beginners with respect to that of the teacher/professionals, we examine short time
intervals of their performances. We deliberately keep the time intervals short to make it easier
to recognise (dis)similarity in the movement sequences and study the basic movements of
dancers.

As mentioned earlier, the alignment of two sequences is based on minimising the distance
between them (using a pre-defined scoring matrix). Performing sequence alignment on two

Fig 7. Selected reflectivemarkers (i.e., shoulders, hips, and feet) (a), an example of QTCB and QTCC movement sequences (i.e., ships) of the
couple of professional tango dancers (b).

doi:10.1371/journal.pone.0132452.g007
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sequences yields: (i) the distance (or similarity) between two sequences and (ii) the best possi-
ble alignment of the two sequences, which is the alignment that minimises the overall distance
between the two sequences.

Two different scoring matrices for QTCB and QTCC relations are defined based on the con-
ceptual distance [59] of QTC relations. The conceptual distance is defined as a measure of
closeness of two QTC relations by counting the number of changes in the symbols of the QTC
representation (A B)B and (A B C D)C [59]. The smallest conceptual distance is zero (i.e., the
distance between a QTCB/QTCC relation and itself). The conceptual distance between ‘0’ and
‘+’ or ‘–’ is one. The conceptual distance between ‘–’ and ‘+’ equals two because direct transi-
tion is impossible [60]. The overall conceptual distances between two QTC relations can then
be calculated by summing up the conceptual distance over all relation symbols and rescaling it
to the interval [0 10]. Therefore, a similarity score between two QTCB relations can then be cal-
culated as (10 – 2.5 � conceptual distance). For example, Table 1A presents the resulting QTCB

scoring matrix based on the transcoded QTCB relations in Table 1B. An exact character match
is assigned a similarity score of 10 (maximal similarity) and a total mismatch is given a similar-
ity score of 0 (maximum conceptual distance). For instance, the conceptual distance between
the two QTCB relations (– +) (i.e., character A) and (– 0) (i.e., character D) is equal to one. For
every conceptual distance unit, the similarity score decreases by 2.5 units from the maximal
similarity score of 10. Therefore, the similarity score between A and D is equal to 7.5.

Analogously, a scoring matrix based on the concept of conceptual distance is introduced for
QTCC movement sequences. This is a well-defined matrix in the same proportion as the scor-
ing matrix for QTCB movement sequences. It is an 81x81 symmetrical matrix in which each
cell indicates the conceptual distance between two QTCC relations. The maximum conceptual
distance is 4 for QTCB relations, while it is equal to 8 for QTCC relations as there are four sym-
bols in QTCC relations.

Two parameters that need to be set in the process of sequence alignment are gap opening
and gap extension. In this paper, insertion/deletion penalties for gap opening and for gap exten-
sions are—5 and—3, respectively. In SAMs, dynamic programming algorithms are used in the
search for optimal alignment to either maximise a similarity measure or minimise a distance
measure based on the predefined scoring matrix [48].

Case 1: Samba dance. Each samba dancer has 15 QTC movement sequences representing
15 interacting pairs of body parts. Because the dancer’s torso is used as a reference point for the
movement of other body parts, movement sequences involving torso (i.e., root) are not consid-
ered in the alignment process. Using the specified similarity scores and penalties, a multiple

Table 1. Sequence alignment scoringmatrix for QTCB relations.

A B

Similarity Matrix A B C D E F G H I QTCB Relations Code

A 10 7.5 5 7.5 5 2.5 5 2.5 0 (- +) A

B 7.5 10 7.5 5 7.5 5 2.5 5 2.5 (0 +) B

C 5 7.5 10 2.5 5 7.5 0 2.5 5 (+ +) C

D 7.5 5 2.5 10 7.5 5 7.5 5 2.5 (- 0) D

E 5 7.5 5 7.5 10 7.5 5 7.5 5 (0 0) E

F 2.5 5 7.5 5 7.5 10 2.5 5 7.5 (+ 0) F

G 5 2.5 0 7.5 5 2.5 10 7.5 5 (—) G

H 2.5 5 2.5 5 7.5 5 7.5 10 7.5 (0 -) H

I 0 2.5 5 2.5 5 7.5 5 7.5 10 (+-) I

doi:10.1371/journal.pone.0132452.t001
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alignment of QTC movement sequences is generated with the ClustalTXY software package
[48] based on the progressive alignment procedure. At a given time, three corresponding QTC
movement sequences (i.e., of the teacher and the two students) are aligned followed by a multi-
ple alignment using a global alignment [61].

Fig 8 presents the results of the alignment of QTCB movement sequences. For clarity, the
characters (i.e., transcoded QTCB relations) have been colour-coded. The row above the
aligned sequences is used to mark strongly conserved positions. Four characters are used to
indicate the degree of matches: '#' indicates positions that are 80%-100% identical, '� ' indicates
positions that are 60% -80% identical, ':' indicates positions that are 40% -60% identical, '.' indi-
cates positions that are 20% -40% identical. The curve below the movement sequences repre-
sents the rate of changes in the match and mismatch of characters at each time stamp of
movement after sequence alignment. Less fluctuation in curves with highly matched characters
at each time stamp indicates more similarity between movement sequences. The results show
the (lack of) regularity in dance movement patterns. For instance, the sequences representing
the left hand—right hand relations exhibit periodicities in the dancers’movements. This pat-
tern can be observed from the succession of colours and attributed to the fact that dancers paid
more attention to the movement of hands than to other parts of the body. Moreover, the rela-
tive movements of head and hands show more regularity than the relative movements of head
and feet, suggesting that dancers were more successful in adjusting the movement of the upper
part of their body relative to the lower part. From the sequences of left foot—right foot relations,
it can be observed that the rate of change in movement patterns is rather high compared to
those of the hands.

Using sequence alignment, repetitive movement patterns for each dancer can be individu-
ally assessed as smaller units of the entire performance. For this purpose, the rhythm in the
music is used to mark the starting and ending points of the repetitive movement patterns. In
our case, the entire performance lasts 91 time units and consists of 3 complete repetitive pat-
terns that each last 22 time units. Aligning these repetitive movements allows us to examine
the degree of similarity between the performances of dancers across successive beats. Fig 9
presents the results of aligning the movement sequences for each pair of body parts in relation
to the musical beat.

Up to now, we have relied only on QTCB information that is based on Euclidean distance
between MPOs and have thus disregarded the directional information of movement of MPOs.
An important difference between QTCB and QTCC is that, in addition to the Euclidean dis-
tance, QTCC takes into account directional information of movements as introduced earlier in
this paper. This extra information can be used to achieve better insight into movement behav-
iour of MPOs and understand the processes behind movement patterns. As an example, Fig 10
demonstrates the aligned QTCC movement sequences of (right hand—left hand) and (right
hand—left foot) of students and teacher taking into account the QTCC scoring matrix. To
enable a visual exploration of movement sequences and improve the interpretability of the
results, the characters have been colour-coded in a similar way as in Fig 8 with nine distin-
guishable colours. Each two characters in a QTCC relation are assigned a unit colour taking the
first character of each QTCC relation to colour it. The QTCC movement sequences embody
more detailed information of movements. As expected, the movements of hands of the three
dancers still have the best alignment with respect to other parts of the body.

Case 2: Tango dance. In the tango case, we only consider three interacting pairs of body
parts, namely shoulders, hips, and feet. Some of the results of aligning QTCB movement
sequences for tango case are presented in Fig 11. In this figure, one may observe which body
parts of beginners moved in a similar/dissimilar way to that of the benchmark (i.e.,
professionals).
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Fig 8. Multiple alignment of QTCB movement sequences of dancers’ bodymovements.

doi:10.1371/journal.pone.0132452.g008
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In Section 5, we will examine whether the proposed methodology can handle movement
which may include gaps, noise, non-equidistant sampling intervals, and non-cyclical move-
ment patterns and how robust the methodology would perform in the presence of uncertainty
(e.g. measuring errors of positions in the movement data) and data gaps.

Fig 9. Multiple alignments of QTCB movement sequences based on the beats of the music.

doi:10.1371/journal.pone.0132452.g009
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In addition to visually characterising the similarities/differences in movement patterns of
dancers based on the rhythm of the music (i.e., Teacher beat 1 (TB1), Teacher beat 2 (TB2),
Teacher beat 3 (TB3), Student 1 beat 1 (S1B1), Student 1 beat 2 (S1B2), Student 1 beat 3 (S1B3),
Student 2 beat 1 (S2B1), Student 2 beat 2 (S2B2), and Student 2 beat 3 (S2B3)), we further present
a numerical measure based on alignment scores, represented in the form of hierarchical clus-
ters of movement patterns and histograms.

Fig 10. Multiple alignment of QTCC movement sequences of left hand—right hand and right hand-left foot of samba dancers.

doi:10.1371/journal.pone.0132452.g010

Fig 11. Pairwise alignment of QTCB movement sequences for tango dancers.

doi:10.1371/journal.pone.0132452.g011
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Step 3: Overall evaluation of the performances
Clustering enables the detection of objects that share similar properties. Clustering is typically
application dependent. In this paper, we attempt to cluster the dancers’movements based on
the relative motions of various body parts. We use a hierarchical clustering method to build a
hierarchy of clusters (i.e., the movement sequences of the dancers). Based on the results of mul-
tiple alignments of QTCB and QTCC movement sequences, we evaluate the general perfor-
mances of dancers.

Case 1: Samba dance. For example, the results of the clustering of QTCB movement
sequences in samba case are represented in the form of dendrograms in Fig 12. A dendrogram
supports the determination of a typology of different movement behaviours of dancers. The
results of applying sequence alignment to real dance data suggest that certain movements were
harder to follow by the students than other movements. Fig 12 shows the agglomerative hierar-
chical clustering in the form of dendrograms for the sequences as presented in Fig 9.

The height of the branch points shows the extent to which clusters differ from one another:
the greater the height, the greater the difference. The value 0 represents the minimum distance
after aligning the movement sequences, whereas 1 represents the maximum distance. As
shown in the dendrograms, distances vary from one pair of body parts to another. In Fig 12,

Fig 12. Dendrograms based on Fig 9.

doi:10.1371/journal.pone.0132452.g012

SAM and Movement Analysis

PLOS ONE | DOI:10.1371/journal.pone.0132452 July 16, 2015 17 / 25



for example, the relative motion of the teacher’s hands did not differ significantly from that of
the students, as demonstrated by the relatively small distance in the left hand—right hand den-
drogram. In contrast, the head—left foot dendrogram shows a significant difference between
the last two beats of the teacher and the other beats. Based on this method of alignment and
clustering, we notice that the performance of student 1 is better than that of student 2. Further-
more, this method allows us to identify the pairs of student body parts that more closely resem-
ble those of the teacher. These results can assist instructors in recognising the strengths and
weaknesses in their students’ performance in the process of learning dance.

To show the impact of each parameter (i.e., distance and direction) on the final results, a
histogram is given in which the overall performances of students are compared to that of the
teacher both for QTCB and QTCC information (Fig 13). In this histogram, more detailed infor-
mation can be retrieved and interpreted. The result shows which body pairs of the samba stu-
dents were moving correctly with respect to the teacher’s movements. For instance, as shown
in Fig 13, student 1 could match the relative movements of his hands to those of the teacher,
whereas student 2 succeeded to relatively move his feet in a manner highly consistent with that
of his teacher. Moreover, although student 1 showed that he could control the relative distance
between his head and right hand over time, he could not manage to control the relative direc-
tions of his movements in a manner similar to that of the teacher. The results of this approach
are comparable with those in [62].

Case 2: Tango dance. In this subsection, we present the results of our comparison for the
most complete recorded tango data. Fig 14 shows a histogram in which the overall perfor-
mances of beginners are compared to those of professionals both for QTCB and QTCC infor-
mation. The result shows that the male partner moved his shoulders better with respect to that
of the female partner. Moreover, according to the results of alignments for movement

Fig 13. A sample assessment of the performances of the samba students.

doi:10.1371/journal.pone.0132452.g013

Fig 14. A sample assessment of the performances of the tango dancers.

doi:10.1371/journal.pone.0132452.g014
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sequences of hips, we notice that the male partner could not perform well enough in regard to
keep right directions consistently.

Discussion
Much progress has been made regarding the theories, methodologies, and applications for ana-
lysing, modelling, and interpreting movement data. Researchers have focused on different
aspects in this area, including analysing the sequential aspects within the spatial and temporal
dimensions of movement data (e.g., [39, 52, 63, 64]). For example, in [62], key parameters that
characterise the movement of objects, the so-called movement parameters (MPs) such as
speed, acceleration, direction, and derived from the trajectories of objects were taken into
account for finding similar trajectories. In [62], sequences of class labels as symbolic represen-
tation of MPs for the similarity measure were compared. In this section, we compare our
approach to two well-known techniques, namely the Relative Motion (REMO) and the
Dynamic Time Warping (DTW).

As a key contribution of this paper, we addressed the applicability of the sequence alignment
approach to analyse movements of MPOs. The method is comparable to, for example, REMO
and DTW. REMO is an approach that describes motion patterns by changes in the motion
attributes of objects such as the speed and motion azimuth of individual MPOs over time [6].
DTW is an algorithm for measuring the similarity between two time series that may vary in
time or speed [65]. Unlike traditional distance measures such as the Euclidean distance, DTW
can calculate the similarity between two time series that may feature some noise and
displacements.

The main difference between our current and previous work is that, at the very basic level,
we are investigating the interaction between pairs of MPOs instead of solely looking at the
movement of individuals over time. Furthermore, this paper does not investigate the changes
in the motion attributes of MPOs. Instead, we examine how the relative changes in the Euclid-
ean distances between MPOs can reveal interesting information.

In our previous work, we compared REMO with DTW and featured some of the advantages
and drawbacks of each technique with respect to the same case study used throughout this
paper [62]. Although the concept of REMO, DTW and SAMs are uncomplicated and applica-
ble to many research domains, the understanding of these techniques requires some expert
knowledge. Different from our previous study, in this paper we demonstrated the usefulness of
qualitative information in the analysis and reasoning about movement data. QTCB and QTCC

information were cross-pollinated with SAMs.
Unlike DTW, both REMO and the proposed approach in this paper based on SAM can

reveal interesting information about motion events retrieved from the interrelation among
multiple MPOs. They have this difference that QTC considers the relative motion of one object
with respect to another object (i.e., relative movements) and REMO allows the identification
and quantification of individual motion behaviour, events of distinct group motion behaviour,
so as to relate the motion of individuals to groups [6]. In the DTW approach, we do not investi-
gate movements of multiple objects simultaneously.

The superiority of SAM and DTW over the REMO approach is that REMO is very sensitive
to noise, shifts, and distortions in movement data. Thus, drawing analogy between REMO
matrices based on such data is challenging. SAM and DTW are less sensitive to noise, shifts,
and distortions and give intuitive distance measurements between time series by handling both
global and local shifting of the time dimension. Another advantage of DTW and SAM is the
ability to handle time series with different lengths, while this is quite challenging with the
REMO approach.
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From the visual analysis point of view, REMO and SAM support better the human intuition
in order to interpret the visual results. Therefore, the high dependency on expert knowledge
can be counted as a weakness of the DTW approach.

In order to appraise the robustness of SAMs in the presence of data uncertainty and errors,
we give an example of a tango dance in which besides the calibration errors (i.e., errors of posi-
tions in the movement data), other sources of noise and errors in capturing movement data
with MoCap had a major impact on the recorded data. For example, pairs of dancers perform-
ing very close to each other may result in some gaps in tracked data because not all infrared
markers attached to the body parts of dancers can be tracked properly.

The results of global alignment for such data may not be that reliable based on the degree of
incompleteness. In Fig 15, we show the results of QTCB aligned sequences for the movements
of male partners, both beginner and professional. In Fig 15A, the male partner started his per-
formance with some delays (i.e., shift). From the result of alignment, it can be inferred that
SAM is not sensitive to shift.

In Fig 15B, there are some gaps in the QTCB movement sequence of the beginner. These
gaps are well recognized in the results of alignment. It should be noted that the location of gaps
may change the accuracy of alignment. In Fig 15C, the data includes shifts, gaps, and errors of

Fig 15. Sample results of QTCB alignment for incomplete data.

doi:10.1371/journal.pone.0132452.g015
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positions. As might be expected, the more data is incomplete, the worse the alignment is. Com-
pared to samba data, the tango data were not highly repetitive. Therefore, it is worth to know
how well the proposed methodology would have performed if the sampling interval was less
dense or the movement patterns represented were less regular. In Fig 15D, we show the results
of alignment for low sampling rate.

The above visual representations provide complementary insight into the results of align-
ments. For example, we may judge that the results of SAM are less sensitive to the presence of
shifts in sequences (Fig 15A). However, differences due to the gaps in the movements can be
clearly observed in more detail from the second representation (Fig 15B). If we look more
closely at Fig 15C, we may realise a significant difference in the result due to the combination
of shifts, gaps, and errors of position in sequences.

The lower sampling rate has a significant impact on the results of the SAM (Fig 15D). In
this regard, detecting movement patterns is quite challenging. All these issues are open research
problems and should be comprehensively investigated in the future.

Another remark is that it is not always ideal to align long movement sequences as the results
of alignments can be doubtful. Therefore, segmentation of complex time series into smaller
units eases perception and learning processes.

Conclusions and Future Work
Knowledge discovery from moving objects’ trajectories is an important and challenging issue
in many research domains. This paper presented a new technique to analyse patterns of relative
motion between disjoint MPOs, based on three major steps. In the first step, we described
movement of MPOs using the qualitative trajectory calculus (QTC). QTC enables us to express
the interactions between moving objects qualitatively. In the next step, a sequence alignment
method (SAM) was used to align and assess qualitative movement sequences. Then, in the
third step, the results of aligning sequences were presented in the form of dendrograms, in
which similar movement sequences were grouped in the same clusters.

The proposed methodology could be used in a wide range of research applications. Move-
ment patterns such as walking, running, jumping, lifting, striking and swimming can be inves-
tigated for different purposes. For example, the proposed approach can be used in sports
sciences to analyse the movement of athletes with the purpose of rehabilitation, physical educa-
tion and practice. In this paper, the movements of three samba dancers were analysed to mea-
sure the degree of (dis)similarity between the dancers’movements. Characterising similarity/
dissimilarity contributes to a better understanding of how dancers move. The retrieved knowl-
edge can potentially assist dance instructors to examine the movement patterns of novice danc-
ers for educational purposes.

A comprehensive study is beneficial to select suitable compromises between granularity and
information. The trajectories captured with the finest time granularity show more details of the
movement. It would be worthwhile to investigate the results obtained from different time gran-
ularities. On the other hand, the examples presented in this paper were based on relatively
short time intervals. In future work, we intend to apply the approach to larger trajectory data
sets.

Another avenue for future work will be to enrich the proposed approach by incorporating
descriptive statistical analyses. These will provide summaries about QTC movement relations
at different time intervals of movement, to bring more insight into the movement patterns and
the results of alignments.
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