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This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found
enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced
composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The
review introduced fabrication of CNTs reinforced composites (CNTs reinforcedmetalmatrix composites, CNTs reinforced polymer
matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and
biocompatibility tests in vivo.

1. Introduction

Carbon is an important element to various sciences, from
physics, chemistry, and materials science to life science,
but conventional carbon formulation in the micron scale
may not be the optimal implant material [1]. Then the
nanomaterials such as the carbon nanotubes (CNTs), with
unique electrical, mechanical, and surface properties, have
captured the attention and aroused the interest of many
scientists, since CNTs were discovered by Iijima in 1991 and
up to now appear well suited as a biomaterial [2–7]. CNTs are
substances with cylindrical structure of about 1 nm diameter
and 1–10 𝜇m length, consisting of only carbon atoms. In gen-
eral, CNTs contain single-wall carbon nanotubes (SWCNTs)
and multiwall carbon nanotubes (MWCNTs). SWCNTs are
viewed as rolled-up structures of single sheets of graphene
and individual carbon structures approximately 1 nm in
diameter and up to a millimeter or more in length, and
MWCNTs are similar to hollow graphite fibers, except that
they have a much higher degree of structural perfection,
which are having a diameter of 10–200 nm [8–11]. Lu and
Tsai investigated the load transfer efficiency in double-walled
carbon nanotubes (DWCNTs, a hollow cylindrical struc-
ture, which contains two concentric graphene layers) using

multiscale finite element modeling, and the results showed
that increasing of CNTs’ length can effectively improve the
load transfer efficiency in the outermost layers, while the
DWCNTswith incremental covalent bonds exhibit increasing
load transfer efficiency in the inner layer. Besides, compared
with SWCNTs, the DWCNTs still possess the less capacity
of load transfer efficiency [12]. For MWCNTs, the outer
graphene layers as well as the inner layers may be responsible
for sustaining the applied load, and the load carrying capacity
from the outermost layer to interior layers in MWCNTs
associated with different interatomistic properties are waiting
to be investigated thoroughly [12].

Treacy et al. measured the elastic modulus of MWCNTs
to be 1TPa, on the same level of diamond. Compared with
steel, the mechanical strength is 100 times higher of steel, but
the density is only one sixth of the steel [13, 14]. Wang et al.
studied the axial strength of MWCNTs and reported elastic
modulus values ranging from 200 to 400GPa, the bending
modulus is to 14GPa, and compression strength is about
100GPa. The high deformation of CNTs allows it to break
when tensile strength reaches 18% [15]. Iijima et al. inves-
tigated bending strength of CNTs, and their experimental
results and theoretical studies have demonstrated that CNTs
have extremely high tensile strengths, as high as 100GPa
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[16, 17]. Depending on the outstanding quality of the CNTs,
it is possible to use CNTs for composites reinforcement.
It is also believed that the incorporation of CNTs into
matrix materials should lead to composites with unique
properties.

Compared with conventional carbon, CNTs are stronger
and more flexible and have a higher tensile strength to
weight ratio [18]. Since CNTs have a density even smaller
than graphite due to the tube structure, and with sufficient
high strength and excellent thermal and chemical stability,
the CNTs material may be used as a structural material
in the biomedical field [4, 19–24]. At present, CNTs are
used as carriers for drug delivery and gene therapy, and
CNTs have been shown effective to reinforce scaffolds for
tissue engineering and regenerative medicine [25–30]. Since
CNTs have pores and the pores of SWCNTs and MWC-
NTs were, respectively, less than 1 nm and 4–30 nm in
diameter [31, 32], SWNTs and MWNTs might be available
for tissue regeneration. Besides, CNTs have been used as
supports for enzyme immobilization to improve biocatalyst
performances such as activity, stability, and reusability [33].
CNTs can be easily separated by simple filtration [34] and
enzymes can be adsorbed [35, 36] or covalently attached
[37, 38] on surface of SWCNTs and MWCNTs. The study of
Prlainovic showed that lipase can be successfully adsorbed
on the surface of unmodified MWCNTs, and immobilized
preparations were characterized, with FT-IR spectroscopy,
AFM, and cyclic voltammetry [39]. As filler materials, CNTs
are used to improve the properties of polymer composites
[40].

To date, various composite materials have been prepared
by incorporating SWCNTs or MWCNTs into a metal matrix,
a ceramic matrix, or a polymer matrix (including SiC
ceramic, SiN ceramic, quartz, Al

2
O
3
, and mental ceramic)

[41–50]. And CNTs reinforced polymer matrix composites
andCNTs reinforced ceramicmatrix compositesmay be used
as a structural material in the bone cement, bone filling
material, and tissue engineering scaffolds [45–50]. Webster
et al. fabricated polyurethane/CNTs composite, and the com-
posite material possessed better electrical conductivity and
mechanical properties, which can be used in neural tissue and
bone [51, 52]. Deng et al. studied the use ofMWCNT/chitosan
(CHI) scaffolds, composed of MWCNTs (up to 89wt%) and
CHI and with a well-defined microchannel porous structure,
as biocompatible and biodegradable supports for cell growth
[53].

This review addresses the different synthetic methods,
mechanical properties, and biocompatibility of CNTs-based
reinforced composites, which may indicate that CNTs-based
reinforced composites appear suited as biomaterials and may
become useful scaffold materials for tissue engineering.

2. Fabrication of CNTs and CNTs-Based
Reinforced Composites

2.1. Fabrication of CNTs. CNTs are generally prepared using
five main synthesis methods containing ARC discharge, laser
ablation, chemical vapor deposition (CVD), catalyst chemical

vapor deposition (CCVD), and template-directed synthesis
[54, 55]. Although arc discharge is a common method for
CNTs synthesis, it is difficult to control the morphology
of CNTs, such as length, diameter, and number of layers.
Compared with arc-discharge and laser-ablation methods,
CVD is most widely used for its low set-up cost, high
production yield, and ease of scale-up [56]. CCVD is themost
flexible and economic method for the production of CNTs;
however, since many parameters influence the producing
process, it is still very complex for precisely controlled growth
of CNTs [54]. In the study of Disfani, MWCNTs produced
by the catalytic carbon vapor deposition (CCVD) process
were then functionalized, which were designated as CNTs-
COOH, CNTs-OH, and CNTs-NH2. And different func-
tionalized CNTs, as well as nonfunctionalized CNTs, were
incorporated into a phenoxy resin via a melt mixing process
[57].

2.2. Fabrication of CNTs-Based Reinforced Composites

2.2.1. Fabrication of CNTs Reinforced Metal Matrix Compos-
ites. CNTs reinforced the strength, hardness, abrasion, and
wear properties and thermal of stability of metal, and CNTs
reinforced metal matrix composites are prepared through a
variety of processing techniques, such as powder metallurgy,
the melt casting, spray forming, electrochemical deposition,
and other novel techniques. At present, CNTs as reinforce-
ment in Fe-matrix, Cu-matrix, Mg-matrix, and Ni-matrix
composite materials have been successfully fabricated [58–
62]. Kuzumaki et al. produced CNTs reinforced aluminum
(Al) composites by hot-press and hot-extrusion methods
[63]. CNTs-Fe-Al

2
O
3
composites have been prepared by hot

pressing [64, 65].

2.2.2. Fabrication of CNTs Reinforced Polymer Matrix Com-
posites. The common fabricating methods of CNTs/polymer
composites are solution mixing, melt blending, in situ poly-
merization, and sol-gel method [66]. Uniform dispersion of
CNTs in polymer is a fundamental challenge and several
factors that influence the dispersion of CNTs in a polymer
matrix have to be considered in the preparation process of
CNTs/polymer composites. In recent years, many polymers,
such as epoxy [67–69], PMMA [70–73], PVA [74], PVC
[75], PP [76], PE [77, 78], PA12 [79], and PS [80, 81],
have been employed as matrices to prepare CNTs/polymer
composites.

2.2.3. Fabrication of CNTs Reinforced Ceramic Matrix Com-
posites. Ceramic materials possess high temperature resis-
tance, corrosion resistance, and better biocompatibility com-
pared with metal and polymer. The poor mechanical prop-
erties of ceramic with regard to its brittleness and low
fracture toughness restrict its use in load bearing applica-
tions [82–85]. Therefore, CNTs with excellent physical and
chemical properties are added to enhance the mechanical
properties of the ceramic matrix. The fabricating methods
of CNTs/ceramic composites include hot pressing process
(HP), hot isostatic pressing-sintering (Sinter-HIP), spark
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plasma sintering (SPS), microwave sintering, and high-
temperature extrusion molding according to the sintering
process [86, 87]. SPS method is a newly developed technique
used widely since 1990 [88]. During recent years, various
ceramics, composites, cermets, and othermaterials, including
Al, Ti, and functionally graded materials (FGM), have been
successfully compacted by SPS [88–96]. Compared with
other sintering methods, SPS method has several advantages.
The SPS method can break surface oxide layer on particles
and heat them up instantly by electric spark discharges under
compressive pressure. In this way, it is possible to obtain
fully dense samples at relatively low sintering temperature
and pressure in a very short holding time [56, 95, 97].
Besides, by rapid temperature rise, grain growth of the raw
material is kept to a minimum, thus making it possible to
maintain the nanotube structure in the sintered bulk CNTs.
Wang et al. successfully fabricated CNTs-based composites
including MWCNTs/5, 20, 25% polycarbosilane (PCS), 100%
MWCNTs, and MWCNTs/40% hydroxyapatite (HA) com-
posites by using the SPS method under different sintering
conditions. In addition, Yao et al. fabricated CNTs/alumina
reinforced composite by a combined process of pressure-
less sintering and atmosphere hot-pressing sintering [96].
Ogihara et al. synthesized the CNTs/alumina composite
using pressureless sintering under vacuum and hot isostatic
pressing [97].

3. Mechanical Properties and Biocompatibility
of CNTs-Based Reinforced Composites

3.1. Microstructure. CNTs have recently gained substantial
interest for their potential applications in tissue engineering
due to their large ratio of surface area to volume and unique
microstructure. From the TEM micrographs, MWCNTs
starting powders had external and internal diameters of 20–
80 nm and 10–50 nm, and the 100% MWCNTs monolith
basically maintained the nanosized tube microstructure and
the bamboo microstructures following SPS treatment, as
indicated by the hollow arrow in Figures 1(a) and 1(b)
[98].

For the phenoxy/MWCNTs nanocomposites, optical mi-
croscopic images were shown as in Figure 2, from which we
can see the state of CNTs dispersion in phenoxy matrix for
different functionalized and nonfunctionalized MWCNTs,
and compared with the other composites, the agglomerates
are much bigger for CNTs-COOH (Figure 2(a)) [57]. TEM
images of phenoxy/MWCNTs nanocomposites were shown
as in Figure 3. The size of aggregates was in the scale of
200 nm, and the size of CNTs aggregates follows the following
trend: CNT-COOH>pure-CNT>CNT-OH>CNT-NH [57].

In the sintering process of MWCNTs/5, 20, and 25% PCS,
nanosized SiC particles pyrolyzed from PCS during sintering
worked as the binder forMWCNTs, while HAwas selected as
binder to consolidate MWCNTs, which has been extensively
used for maxillofacial surgery, orthopedics, and implant fab-
rication and is one of themost compatible biomaterials owing
to its similar chemical composition and crystal structure to
apatite in human hard tissue such as bone and tooth [84, 85,

100nm

(a)

100nm

(b)

Figure 1: TEM images of MWCNTs starting powders and 100%
MWCNTsmonolith after SPS treatment [98]. (a)MWCNTspowders
and (b) 100% MWCNTs monolith.

99]. However, the poor mechanical properties of HA with
regard to its brittleness and low fracture toughness restrict its
use in load bearing applications (orthopedic/dental implant)
[86, 87].

3.2. Mechanical Properties. It has been well proved that the
mechanical property of matrix could be largely enhanced by
the addition of CNTs [100, 101].

3.2.1. Mechanical Properties of CNTs Reinforced Metal Matrix
Composites. For AZ31/CNTs composite, the maximal tensile
strength and the elongation of theAZ31/CNTs composites are
enhanced by 41.3% and 119.4%, respectively, and the elastic
modulus and microhardness are also raised by 67.8% and
66.9%, respectively, when compared with those of the as-
cast AZ31 Mg alloys [102]. Kim et al. were the first to report
Cu-CNTs reinforced composites by SPS. Further rolling was
performed on the composite to deform and align the CNT
rich regions resulting in improved properties. SPS of Cu-
CNTs nanocomposite powder, produced by molecular level
mixing process, helps further improve density and mechan-
ical properties. Enhancement in mechanical strength by
129% with addition of 5 vol% CNTs had been demonstrated
[103].
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Figure 2: Optical microscopic images of phenoxy/MWCNTs nanocomposites containing (a) CNTs-COOH, (b) CNTs-OH, (c) CNTs-NH2,
and (d) pure CNTs [57].

3.2.2. Mechanical Properties of CNTs Reinforced Polymer
Matrix Composites. In previous study, carboxyl-function-
alized MWCNTs were used as fillers in a polyamide 6
(PA6) matrix in order to change the effect of the material
[104, 105]. Sun et al. reported that the addition of CNTs
improved the storage modulus E and loss modulus E of the
PA6/CNTs composite [104]. Zomer Volpato et al. synthesized
MWCNTs/PA6 composite, and incorporation of up to 2wt%
CNTs in CNTs/PA6 laminates improved the flexural stress of
the laminates up to 36%, which should form hydrogen bonds
between the polymer and filler or form amide bond between
the free amines on the polymer and theCNTs carboxyl groups
[105].

To improve the physiochemical properties of polyure-
thane (PU), CNTs are incorporated to add functionalities of
material. For instance,Amr et al. reported thatYoung’smodu-
lus of CNTs/polystyrene (PS) nanocomposites was increased
by 22% [106]; Jung et al. reported that the transparent
PU film was incorporated with functionalized MWCNTs
and found 2-fold and 10-fold increases in tensile strength
and modulus, respectively, for MWCNTs/PU composite film
[107]. According to the result of Tijing, the incorporation
of MWCNTs increased the tensile strength and modulus of
the composite nanofibers by 69% and 140%, respectively,
and 62% and 78%, respectively, for composite films, and

the MWCNTs/PU composites showed an improved thermal
degradation behavior [108].

3.2.3. Mechanical Properties of CNTs Reinforced Ceramic
Matrix Composites. Yao et al. reported that the mechanical
properties of the CNTs/alumina reinforced composite can be
obviously improved due to the addition of the CNTs. As the
increase of mass fraction of carbon nanotubes, the tensile
strength and Brinell hardness of the composite are elevated
and achieve the maximum of 245MPa and 106.66 n/mm2,
respectively, when the mass fraction of CNTs increases to
2.0 wt% [96]. Ogihara et al. synthesized the CNTs/alumina
composite by direct growth of CNTs on alumina by chemical
vapor deposition (CVD) and the as-grown nanocomposites
were densified by SPS, and the mechanical strength was
enhanced as follows: Young’s modulus, 383GPa; Vickers
hardness, 19.9GPa; Bending strength, 578MPa [97].

For Zirconia-MWCNTs composites, the addition of
MWCNTs aims to avoid the slow crack propagation and
to enhance the toughness of the ceramic material used for
prostheses. The sample of Zirconia MWCNTs shows higher
density, lower grain size, improved toughness, and enhanced
hardness, which suggested the good behavior ofMWCNTs as
strengthening agents for zirconia [109].
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Figure 3: TEM images of phenoxy/MWCNTs nanocomposites containing (a) CNTs-COOH, (b) CNTs-OH, (c) CNTs-NH2, and (d) pure-
CNTs [57].

For MWCNTs/PCS composites, it is found that PCS
content and sintering pressure improved the bulk density
and Vickers hardness of sintered MWCNTs, and the value
of mechanical properties was highest for the MWCNTs/20%
PCS. The bulk density, Young’s modulus, and compressive
strength of the MWCNTs/20% PCS material had the high-
est value of 2.13 g/cm3, 27GPa, and 298MPa, which was
higher than that of human bone. However, the bulk density,
Young’s modulus, and compressive strength of 100% MWC-
NTs monolith were 1.95 g/cm3, 20GPa, and 249MPa, which
were very closer to those of bone (1.9 g/cm3, 19 GPa, and
150MPa) and lower than those of other traditional implant
materials: Ti (4.51 g/cm3, 120GPa, and 500MPa) and HA
(3.15 g/cm3, 35 GPa, and 600MPa) [98, 110–113]. The results
showed that the 100% MWCNTs monolith could match
the mechanical properties of human compact bone, which
might be more suitable for implant materials than HA and
Ti.

3.3. Biocompatibility. At present, carbon nanotubes have
been extensively studied for use in biomedical applications,
and biomaterials using CNTs are expected to be devel-
oped for clinical use [114–119]. Some studies showed that
nanophase biomaterials had higher biocompatibility than
similar micron-sized materials [5, 120]. Many studies in vivo
and in vitro have investigated the biocompatibility of CNTs
for biomedical applications.There are controversies on CNTs
cytotoxicity, and CNTs might have adverse effects, which is
ascribed to their physicochemical properties, such as struc-
ture, surface area, extent of oxidation, producingmethod, and
concentration [121]. The toxicity of CNTs on the respiratory
system is investigated. Lam et al. studied toxicity of CNTs
by bronchial injection test, and the results of studies showed
that 0.5mg of CNTs can cause the death of part of mice,
another part of the lungs in mice is characterized by damage
granuloma [122]. In contrast, Miyawaki et al. investigated in
vitro and in vivo the toxicities of carbon nanohorns (CNHs).
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Figure 4: Tissue images around alumina ceramic and CNTs/alumina composites embedded in the subcutaneous tissue of mice: (a) alumina
ceramic after 1 week, (b) CNTs/alumina after 1 week, (c) alumina ceramic after 4 weeks, and (d) CNTs/alumina after 4 weeks [97].

The CNHs were found to be a nonirritant and a nondermal
sensitizer through skin primary and conjunctival irritation
tests and skin sensitization test. The acute peroral toxicity
of CNHs was found to be quite low; the lethal dosage for
rats was more than 2000mg/kg of body weight. Intratracheal
instillation tests revealed that CNHs rarely damaged rat lung
tissue for a 90-day test period, although black pigmentation
due to accumulated nanohorns was observed. Yet the present
results suggest that CNHs have low acute toxicities [123].

Used in the scaffold, CNTs could promote cell adhesion,
and MWNTs could decrease osteoclast number to inhibit
bone resorption [124, 125]. When it comes to osteoblasts,
CNTs did not have cytotoxicity to osteoblasts and did not
have harmful effects on osteoblast differentiation or miner-
alization [126–128]. In addition, nonfunctionalized SWCNTs
had little toxicity to cell such as decreasing the viability
and number of cells [129]. It is reported that there was
no acute toxicity or adverse reaction for functionalized
CNTs; however, the severe tissue deposition and inflam-
matory response were observed for pristine CNTs. Tang et
al. modified the CNTs with macromolecules (polyethylene
glycol PEG), and the results indicated that the synthesized
CNTs are very biocompatible, exhibiting no differences from
normal control groups, and in other words, shorter pristine
and polymer functionalized MWCNTs have a significant
potential for biomedical applications as efficient carriers for
diagnostic, therapeutic, or cell-specific targeting molecules
[130]. Ahn et al. investigated the incorporation of MWC-
NTs into calcium phosphate cements (CPC) and evaluated

the bioactive nature of CPC-MWCNTs hybrid the osteogenic
differentiation capacity as bone grafting materials, using pro-
liferation and differentiation of MC3T3-E1 cells, the result of
which showed that CPC-MWCNTs hybrid which promoted
the osteogenic differentiation of osteoblasts could serve well
as bone repairing graft material [131]. Zomer Volpato et
al. synthesized PA6/MWCNT and investigated the effect of
the addition of CNTs on the cell-material interactions and
found that the proliferation and activation of MG63 cell
line osteoblasts were enhanced due to surface modification
caused by the filler addition compared to the purely PA6 net-
works [105].The result of Ogihara et al. about cell attachment
of CNTs/alumina composite indicated that CNTs/alumina
composite hadmore favorable cell attachment properties, and
CNTs at the surface of the implant did not inhibit attachment
[97].

Meanwhile the subcutaneous tissue reactions and bone
tissue reactions were evaluated for the alumina ceramic
and CNTs/alumina composite, and found that inflammatory
cells were observed around the composites after 1 week,
however, severe inflammatory reactions were not observed
(Figures 4(a) and 4(b)) [97]. And after 4 weeks, thin
fibrous capsules attached to alumina ceramic had been
formed, and the inflammatory reaction had disappeared.
Similar phenomenon was observed on the CNTs/alumina
composite (Figures 4(c) and 4(d)) [97].

Yokoyama et al. investigated the biological behavior of
hat-stacked carbon nanofibers (H-CNFs) in the subcuta-
neous tissue of rats, and the results showed that H-CNFswere
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englobed by fibrous connective tissuewith little inflammation
[27]. But Muller et al. found that CNTs have the potential
to cause serious inflammatory and fibrotic reactions by
studying rats exposed to respirable CNTs particles [132].
Colvin reported that the pulmonary toxicity of CNTs was not
obvious as granulomas which were not commonly observed
in rat lungs instilled with CNTs [133]. Additionally, the study
of Kumar et al. has revealed that the chemical state of the
surface of CNTsmay strongly influence tissue response [134].
The influence of catalytic particles, like Fe and Ni, applied
during the synthesis of CNTs on the toxicity of CNTs has been
reported [30].

The inflammation of MWCNTs powders is most seri-
ous in the soft tissue, which may be due to that the
dispersed powder easily caused body response. At 1 week
after the implantation in the soft tissue of rats, MWCNTs
powders were surrounded by granulation tissue with many
macrophages and foreign body giant cells (Figure 5(a))
[110], which was consistent with the study of Warheit et
al., who have demonstrated that pulmonary exposures to
CNTs in rats produced multifocal granulomas that consisted
of macrophage-like multinucleate, [135]. However, no severe
inflammatory response was observed aroundMWCNTs/PCS
composites with different percentage of PCS and 100%
MWCNTsmonolith. For the response in subcutaneous tissue,
there was a difference dependent on the content of PCS
in the early implant stage; the degree of inflammation was
influenced by SiC pyrolyzed from PCS. At 1 week after
surgery, inflammatory response around MWCNTs/5% PCS
(Figure 5(c)) was milder than that around MWCNTs/25%
PCS (Figure 5(e)) [110]. MWCNTs/20% PCS was covered
by relatively thick fibrous connective tissue including many
cells with large cytoplasm like fibroblasts, fibroblasts with
spindle-shaped cytoplasm, and some inflammatory round
cells (Figure 5(d)) [111], and an inflammatory reaction around
the 100% MWCNTs monolith was observed at 1 week after
implantation in subcutaneous tissue (Figure 5(b)) [98]. But
at 4 weeks after implantation, the MWCNTs/20% PCS and
100% MWCNTs monolith were covered by loose fibrous
connective tissue, and inflammation around materials was
slight in comparison to that at 1 week (Figures 6(a) and
6(b)) [98, 111]. The inflammatory reaction after one-week
implantation is normal for the short period that immediately
follows an implantation treatment.

The images of bone tissue reactions after alumina ceramic
or CNTs/alumina composite implanted in rabbit femurs were
shown as Figure 7 [97]. At 12 weeks, new bone was found
around the composites and the fibrous capsule between the
composites and the bone was rarely observed (Figures 7(a),
7(b), 7(e), and 7(f)). At 24 weeks, the entire circumference
of the specimen had attached to the bone tissue without
gaps, and composites were completely incorporated into the
bone and the bone defect was repaired (Figures 7(c), 7(d),
7(g), and 7(h)). These results showed that the bone tissue
compatibility of CNT/alumina composite is comparable with
that of alumina ceramic.

For the response in bone tissue, after implantation for 4
weeks in the femur, part of the newly formed bone attached
to MWCNTs/20% PCS directly (Figure 8(a)), lamellar newly

formed bone was observed around the 100% MWCNTs
implant (Figure 8(b)), and a large of newly formed bone
was observed around the MWCNTs/40% HA composites
as shown in Figure 8(c), and the newly formed bone was
attached to the implant directly [98, 111, 112]. The MWC-
NTs/PCS composite had very little prophlogistic effect and
possessed osteoconductivity. Similar in vitro results were
described by Elias et al. who reported that carbon fiber
compacts improved the growth of osteoblasts compared to
conventional carbon fiber [120]. However, the osteoconduc-
tivity was influenced by the PCS content, and the amount
of the newly formed bone was least in MWCNTs/20%
PCS and most in MWCNTs/40% HA. HA was added for
improving the biocompatibility of MWCNTs materials. HA
is widely accepted coating for orthopedic implants since
1980 due to its excellent biocompatibility and bioactivity
properties [133, 136]. And many composites containing HA
were fabricated and show good biocompatibility [137, 138].
MWCNTs/HA composites possessed better osseointegration
than pure MWCNTs as we expected.

4. Conclusions and Perspectives

Nanoscale substances like CNTs could be potential applied
in almost all the walks of life: media, entertainment, com-
munication, transport, health, and environment, especially
in the nanobiomedical field [53]. CNTs, with a range of
unique properties, appear suited as biomaterials and may
become useful scaffold materials for tissue engineering.
Reinforcing scaffolds with CNTs has been suggested to be an
effectivemeans of developing engineeringmaterials for tissue
regeneration. These reinforced scaffolds have been largely
applied for not only hard tissue but also soft tissue repair.
However, their safety and effectiveness as biomaterials are
still unclear. More and more interests were emerged in CNT-
based composites, including the synthesis of the composites
and their mechanical properties, cell experiments in vitro,
and biocompatibility in vivo. From previous studies, we
could find that there were many methods for composing the
variable CNTs-based composites under different synthetic
conditions. Those composites with adjustable mechanical
properties could be used for different usages, such as tissue
engineering, delivery of genes and drugs, scaffold, implant,
or as filler in other composites to improve their mechanical
properties. Besides, we found that the mechanical property
of 100% MWCNTs monolith was most close to that of
human bone.Moreover, in the animal experiments, no severe
inflammatory response such as necrosis and no toxicity for
soft tissue and bone regeneration were observed aroundmost
CNTs-based composites. The weak inflammatory reaction
in short term after implantation was normal for the short
period that immediately followed an implantation treatment,
and the inflammation could be reduced with the extension
of experiment time. The MWCNTs/40% HA composites
possessed better osseointegration than other composites.

Although modified CNTs might not represent certain
original structure and properties of CNTs, it is still pos-
sible for the modified CNTs-based composites to further
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Figure 5: Tissue responses at one week after implantation [98, 110–112]. (a) MWCNTs powders, (b) 100% MWCNTs monolith, (c)
MWCNTs/5% PCS, (d) MWCNTs/20% PCS, and (e) MWCNTs/25% PCS.
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Figure 6: Tissue responses at 4 weeks after implantation [98, 111]. (a) MWCNTs/20%PCS and (b) 100% MWCNTs monolith.
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Figure 7: Enlarged image of the border between the specimen and the bone (200x). (a and e) Alumina ceramic was implanted after 12 weeks
(40x, 220x); (b and f) CNTs/alumina composite was implanted after 12 weeks (40x, 220x); (c and g) alumina ceramic was implanted after 24
weeks (40x, 220x); (d and h) CNTs/alumina composite was implanted after 24 weeks (40x, 220x) [97].
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(a) (b)

(c)

Figure 8: Osteogenesis of (a) MWCNTs/20% PCS, (b) 100%MWCNTsmonolith, and (c) MWCNTs/40%HA in the femur at 4 weeks [98, 111,
112].

improve their biocompatibility and effectively reinforce their
mechanical properties. Above all, although there is still a
lot of works to do, the CNTs-based reinforced compos-
ites will be not only applicable as artificial bone implant
materials, but also for other biomedical applications poten-
tially rewards opportunities to develop the next generation
of engineered biomaterials in the future, such as tissue
engineering, cell therapy, drug delivery, and diagnostic
device.
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nanotube fibres,” Nature, vol. 423, no. 6941 article 703, 2003.

[48] S. Kumar, H. Doshi, M. Srinivasarao, J. O. Park, and D.
A. Schiraldi, “Fibers from polypropylene/nano carbon fiber
composites,” Polymer, vol. 43, no. 5, pp. 1701–1703, 2002.

[49] X. M. Li, L. Wang, Y. B. Fan, Q. L. Feng, and F. Z. Cui,
“Biocompatibility and toxicity of nanoparticles and nanotubes,”
Journal of Nanomaterials, vol. 2012, Article ID 548389, 19 pages,
2012.

[50] L. Valentini, J. Biagiotti, J. M. Kenny, and S. Santucci, “Morpho-
logical characterization of single-walled carbon nanotubes-PP
composites,” Composites Science and Technology, vol. 63, no. 8,
pp. 1149–1153, 2003.

[51] T. J. Webster, M. C. Waid, J. L. McKenzie, R. L. Price, and J. U.
Ejiofor, “Nano-biotechnology: carbon nanofibres as improved
neural and orthopaedic implants,” Nanotechnology, vol. 15, no.
1, pp. 48–54, 2004.

[52] R. L. Price, K. M. Haberstroh, and T. J. Webster, “Improved
osteoblast viability in the presence of smaller nanometre dimen-
sioned carbon fibres,” Nanotechnology, vol. 15, no. 8, pp. 892–
900, 2004.

[53] P. Deng, Z. Xu, and J. Li, “Simultaneous determination of ascor-
bic acid and rutin in pharmaceutical preparations with elec-
trochemical method based on multi-walled carbon nanotubes-
chitosan composite film modified electrode,” Journal of Phar-
maceutical and Biomedical Analysis, vol. 76, pp. 234–242, 2013.

[54] H. Golnabi, “Carbon nanotube research developments in terms
of published papers and patents, synthesis and production,”
Scientia Iranica, vol. 19, pp. 2012–2022, 2012.

[55] Y. Zhu, W. Wang, X. Jia, T. Akasaka, S. Liao, and F. Watari,
“Deposition of TiC film on titanium for abrasion resistant
implant material by ion-enhanced triode plasma CVD,”Applied
Surface Science, vol. 262, pp. 156–158, 2012.

[56] M. Kumar and Y. Ando, “Chemical vapor deposition of carbon
nanotubes: a review on growth mechanism and mass produc-
tion,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 6,
pp. 3739–3758, 2010.

[57] M. N. Disfani and S. H. Jafari, “Assessment of intertube interac-
tions in different functionalized multiwalled carbon nanotubes
incorporated in a phenoxy resin,” Polymer Engineering and
Science, vol. 53, no. 1, pp. 168–175, 2013.

[58] H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki,
“Combination of hot extrusion and spark plasma sintering
for producing carbon nanotube reinforced aluminum matrix
composites,” Carbon, vol. 47, no. 3, pp. 570–577, 2009.

[59] X. Zeng, G. Zhou, Q. Xu, Y. Xiong, C. Luo, and J. Wu, “A new
technique for dispersion of carbon nanotube in a metal melt,”
Materials Science and Engineering A, vol. 527, no. 20, pp. 5335–
5340, 2010.

[60] S. R. Bakshi, V. Singh, S. Seal, and A. Agarwal, “Aluminum
composite reinforced with multiwalled carbon nanotubes from
plasma spraying of spray dried powders,” Surface and Coatings
Technology, vol. 203, no. 10-11, pp. 1544–1554, 2009.

[61] G. Han, J. Yuan, G. Shi, and F. Wei, “Electrodeposition of
polypyrrole/multiwalled carbon nanotube composite films,”
Thin Solid Films, vol. 474, no. 1-2, pp. 64–69, 2005.

[62] S. R. Bakshi andA. Agarwal, “An analysis of the factors affecting
strengthening in carbon nanotube reinforced aluminum com-
posites,” Carbon, vol. 49, no. 2, pp. 533–544, 2011.

[63] T. Kuzumaki, K. Miyazawa, H. Ichinose, and K. Ito, “Processing
of carbon nanotube reinforced aluminum composite,” Journal
of Materials Research, vol. 13, no. 9, pp. 2445–2449, 1998.

[64] A. Peigney, C. Laurent, O. Dumortier, and A. Rousset, “Carbon
nanotubes-Fe-alumina nanocomposites. Part I: influence of the
Fe content on the synthesis of powders,” Journal of the European
Ceramic Society, vol. 18, no. 14, pp. 1995–1104, 1998.

[65] C. Laurent, A. Peigney, O. Dumortier, and A. Rousset, “Carbon
nanotubes-Fe-Alumina nanocomposites. Part II: microstruc-
ture and mechanical properties of the hot-Pressed composites,”
Journal of the EuropeanCeramic Society, vol. 18, no. 14, pp. 2005–
2013, 1998.

[66] S. B. Jagtap and D. Ratna, “Preparation and characterization of
rubbery epoxy/multiwall carbon nanotubes composites using
amino acid salt assisted dispersion technique,” Express Polymer
Letter, vol. 7, no. 4, pp. 329–339, 2013.

[67] J. Sandler,M. S. P. Shaffer, T. Prasse,W. Bauhofer, K. Schulte, and
A. H.Windle, “Development of a dispersion process for carbon
nanotubes in an epoxy matrix and the resulting electrical
properties,” Polymer, vol. 40, no. 21, pp. 5967–5971, 1999.

[68] L. S. Schadler, S. C. Giannaris, and P. M. Ajayan, “Load transfer
in carbon nanotube epoxy composites,” Applied Physics Letters,
vol. 73, no. 26, pp. 3842–3844, 1998.

[69] F. H. Gojny, J. Nastalczyk, Z. Roslaniec, and K. Schulte, “Sur-
face modified multi-walled carbon nanotubes in CNT/epoxy-
composites,”Chemical Physics Letters, vol. 370, no. 5-6, pp. 820–
824, 2003.

[70] Z. Jia, Z. Wang, C. Xu et al., “Study on poly(methyl methacry-
late)/carbon nanotube composites,”Materials Science and Engi-
neering A, vol. 271, no. 1-2, pp. 395–400, 1999.

[71] M. Lamy De La Chapelle, C. Stéphan, T. P. Nguyen et al.,
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