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Age related macular degeneration (AMD) and diabetic retinopathy (DR) are multifactorial,
neurodegenerative and inflammatory diseases of the eye primarily involving cellular and
molecular components of the outer and inner blood-retina barriers (BRB), respectively.
Largely contributed by genetic factors, particularly polymorphisms in complement genes,
AMD is a paradigm of retinal immune dysregulation. DR, a major complication of diabetes
mellitus, typically presents with increased vascular permeability and occlusion of the retinal
vasculature that leads, in the proliferative form of the disease, to neovascularization, a
pathogenic trait shared with advanced AMD. In spite of distinct etiology and clinical
manifestations, both pathologies share common drivers, such as chronic inflammation,
either of immune (in AMD) or metabolic (in DR) origin, which initiates and propagates
degeneration of the neural retina, yet the underlying mechanisms are still unclear. As a
soluble pattern recognition molecule with complement regulatory functions and a marker
of vascular damage, long pentraxin 3 (PTX3) is emerging as a novel player in ocular
homeostasis and a potential pharmacological target in neurodegenerative disorders of the
retina. Physiologically present in the human eye and induced in inflammatory conditions,
this protein is strategically positioned at the BRB interface, where it acts as a “molecular
trap” for complement, and modulates inflammation both in homeostatic and pathological
conditions. Here, we discuss current viewpoints on PTX3 and retinal diseases, with a focus
on AMD and DR, the roles therein proposed for this pentraxin, and their implications for the
development of new therapeutic strategies.
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INTRODUCTION

Diabetic retinopathy (DR) and age-related macular degeneration
(AMD) are leading causes of vision loss in working-age and
elderly individuals, respectively, in developed countries (Cheung
et al., 2010; Wong et al., 2014). In spite of distinctive clinical
presentations and pathogenetic mechanisms, both diseases are
multifactorial and neurodegenerative, and have in chronic
inflammation a common driver. Cellular and molecular
components of the outer blood-retinal barrier (oBRB) in AMD
and inner BRB (iBRB) in DR are primarily involved in these
pathologies. AMD manifests itself with accumulation of retinal
pigment epithelium (RPE) abnormalities and drusen,
extracellular deposits located between the RPE and Bruch’s
membrane (BrM) (Parmeggiani et al., 2013). On the other
hand, DR is characterized by capillary occlusion, decreased
retinal perfusion, microvascular destabilization, and increased
vascular permeability, which collectively lead to retinal ischemia
and vascular abnormalities (e.g., microaneurysms, retinal
hemorrhages) (Semeraro et al., 2015). In both cases, a status
of chronic and local inflammation sets in place that propels and
sustains progression to advanced pathology. In this regard,
exudative macular edema, neovascularization and
hemorrhages, responsible for structural damage to the retina
and fibrosis, are characteristic of DR and neovascular AMD
(Govetto et al., 2020), whereas geographic atrophy,
degeneration of the RPE and photoreceptors are typical
processes of dry AMD (Parmeggiani et al., 2013). Interestingly,
among the optical coherence tomography (OCT) biomarkers
identified for these diseases (Ceravolo et al., 2020; Sitnilska
et al., 2021), intraretinal hyperreflective foci in optical
coherence tomography (OCT), representative of microglial
activation and, thus, intraretinal inflammation, have been
proposed as biomarkers of AMD and DR (Schreur et al., 2020;
Sitnilska et al., 2021; Wu et al., 2021), indicating that local
inflammatory reactions in the eye might have diagnostic
potential (e.g., to monitor disease progression and/or response
to therapy) in addition to play a direct role as pathogenetic
mechanisms.

AMD is regarded as the paradigm of retinal immune
dysregulation, in that local overactivation of the complement
system (and the following inflammation) is a primary
pathogenetic mechanism of AMD (Ambati et al., 2013; Clark
and Bishop, 2018). In this regard, many factors contribute to the
risk of disease, including age-related changes in structure/
function of the RPE and BrM, oxidative stress, lifestyle, and,
more importantly, genetics (Armento et al., 2021). Most of the
polymorphisms associated with onset and progression of AMD
map in or nearby genes of the complement system, particularly
those of the alternative pathway (AP) (Fritsche et al., 2016). Of
these, the Y402H polymorphism in the factor H gene (CFH) is the
greatest (single) genetic risk factor of developing AMD (Hageman
et al., 2005; Fritsche et al., 2016). This polymorphism affects the
coding sequence of factor H (major soluble inhibitor of the AP)
and its truncated form factor H-like protein 1 (FHL-1), and alters
the binding of these proteins to sulfated glycosaminoglycans
(GAGs) of the BrM (Clark et al., 2010). This extracellular

matrix is devoid of any other inhibitor of the AP, therefore
the restricted binding specificity of the pathological variant of
factor H (and FHL-1) is believed to cause dysregulated
complement activation (Clark and Bishop, 2018). This leads to
generation of the anaphylatoxins C3a and C5a and the sub-lytic
C5b-9 complexes, which induce the RPE to express inflammatory
cytokines and growth factors (e.g., vascular endothelial growth
factor, VEGF) (Lueck et al., 2011; Lueck et al., 2015).
Complement fragments and RPE-derived factors cooperatively
promote recruitment and activation of immune cells (Behnke
et al., 2020; Ogura et al., 2020) that propagate the inflammatory
reaction in the eye, eventually leading to damage and dysfunction
of the oBRB (Natoli et al., 2017). In addition to inflammation,
complement overactivation has been associated with impaired
antioxidant potential and energy metabolism in the RPE cells
(Sivapathasuntharam et al., 2019; Armento et al., 2020), and
accumulation of retinal lipids in the drusen (Acar et al., 2020).
Furthermore, age-related changes in the RPE and BrM, and
smoking both contribute to complement activation, retinal
inflammation and oxidative stress, pointing to a close
interaction between diverse risk factors (Pietkiewicz et al.,
2008; Wang et al., 2014; Woodell and Rohrer, 2014; Clark
et al., 2017; Fields et al., 2017; Brown et al., 2019).

In DR, hyperglycemia promotes vascular dysfunction and
neuroinflammation through multiple biochemical mechanisms,
including activation of the polyol pathway, increased expression
of cytokines and growth factors (e.g., tumor necrosis factor-alpha,
TNF-α, pro-inflammatory interleukins, adiponectin,
erythropoietin, VEGF, angiopoietin-2), oxidative stress,
enhanced production of advanced glycation and lipoxidation
end-products (AGE, ALE, respectively), hemodynamic
changes, and leukostasis and oxidative stress (the latter also
involved in AMD and other retinal pathologies) (Lorenzi,
2007; Costagliola et al., 2013; Semeraro et al., 2014; Semeraro
et al., 2015; Khalaf et al., 2017; Toro et al., 2019; Kinuthia et al.,
2020; Pietras-Baczewska et al., 2021). In particular, reactive
oxygen species (ROS), AGE, ALE, and pro-inflammatory
molecules collectively lead to activation of microglia, which is
considered a major mechanism of neuroinflammation (Sharma
et al., 2012; Semeraro et al., 2015; Subedi et al., 2020). Activated
microglial cells in turn synthesize and release pro-inflammatory
cytokines (e.g., TNF-α, IL-1β, and IL-6) and cytotoxic molecules
(e.g., ROS and reactive nitrogen species, RNS) that propagate the
local inflammatory response with endothelial damage, loss of
pericytes, iBRB disruption, and vascular dysfunction (Scholz
et al., 2015; Kinuthia et al., 2020). Neuroinflammation is
further amplified by overactivation of the complement system
and other glial cells, such as retinal astrocytes (Kinuthia et al.,
2020; Shahulhameed et al., 2020). Moreover, breakdown of the
iBRB favors the transfer of circulating pro-inflammatory factors,
including chemokines, cytokines, and immune cells, into the
inner retina which further promotes local immune
dysregulation and retinal neurovascular damage, thus leading
to DR progression (Kinuthia et al., 2020).

AMD and DR share cellular and molecular components of
major inflammatory pathways, including the long pentraxin 3
(PTX3), long-known as a key mediator of vascular (Presta et al.,
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2018; Ristagno et al., 2019) and complement-dependent (Doni
et al., 2019; Haapasalo and Meri, 2019) inflammation, and
recently emerging as a novel player in retinal
neurodegeneration (Wang et al., 2016; Stravalaci et al., 2020).
Here, we revisit available clinical and preclinical evidence on the
role(s) of PTX3 in AMD and DR, with major regard to current
hypotheses on the involvement of this pentraxin in their
pathogenesis, and its potential as a diagnostic/prognostic
biomarker (see Table 1).

STRUCTURE/FUNCTION OF THE LONG
PENTRAXIN PTX3

Originally cloned in the early 1990s, PTX3 is the prototype of long
pentraxins, which, along with the short pentraxins C reactive
protein (CRP) and Serum Amyloid P component (SAP), make up
a superfamily of evolutionary conserved proteins with distinctive
structures and functions [reviewed in (Daigo et al., 2016)]. As
opposed to CRP and SAP, whose synthesis is primarily induced in
the liver by IL-6, PTX3 is expressed by a number of immune and
non-immune cells (including RPE, endothelial and myeloid cells)
at sites of inflammation and infection upon stimulation with
inflammatory cytokines, microbial moieties, and intact
microorganisms (Doni et al., 2019). Of relevance to AMD and
DR, oxidative conditions [e.g., oxidized low density lipoproteins,
ox-LDL (Norata et al., 2008; Yamada et al., 2008)], in addition to
inflammatory cytokines (Breviario et al., 1992; An et al., 2008;
Woo et al., 2013; Juel et al., 2015; Stravalaci et al., 2020), induce
the synthesis of PTX3 both in RPE and endothelial cells (see
below). Furthermore, expression of the human protein is
controlled both in physiological and pathological conditions

by epigenetic mechanisms (Rubino et al., 2017) and genetic
polymorphisms (Garlanda et al., 2018).

Like other long pentraxins, the human PTX3 protomer is a
multidomain glycoprotein (Inforzato et al., 2006) with a
C-terminal pentraxin domain and an N-terminal region that
fold into homo-octamers stabilized by noncovalent (coiled coils)
and covalent (disulfide bonds) interactions (Inforzato et al., 2008;
Inforzato et al., 2010). This structural organization mediates the
protein’s interactions with a broad spectrum of ligands, which
results into diverse functions in innate immunity (Porte et al.,
2019), inflammation (Bottazzi et al., 2016), vascular biology
(Presta et al., 2018; Ristagno et al., 2019) and tissue
remodeling (Doni et al., 2016). In particular, PTX3 is a ligand
of key complement activators [i.e., C1q (Nauta et al., 2003; Bally
et al., 2019), ficolin-1 (Ma et al., 2013), ficolin-2 (Ma et al., 2009),
mannose binding lectin, MBL (Ma et al., 2011), and C3b
(Stravalaci et al., 2020)] and inhibitors [i.e., factor H (Deban
et al., 2008), and C4 binding protein, C4BP (Braunschweig and
Józsi, 2011)], and therefore modulates all three complement
pathways. Also, PTX3 regulates the extravasation of leukocytes
at sites of inflammation via its interaction with P-selectin, thus
controlling the inflammatory response via complement-
independent mechanisms (Deban et al., 2010). Interestingly,
PTX3 binds selected fibroblast growth factors (FGFs),
including FGF2 and FGF8b, and inhibits FGF-dependent
angiogenic responses (Rusnati et al., 2004; Camozzi et al.,
2006). Finally, this pentraxin is a key component of the
hyaluronic acid-rich extracellular matrix (ECM) that forms in
inflammatory and inflammation-like conditions (Scarchilli et al.,
2007; Baranova et al., 2014). These properties, particularly the
engagement of factor H and FGF2, might be relevant in the
pathogenesis of AMD and DR, as discussed below.

TABLE 1 | Studies describing expression and localization of PTX3 in AMD and DR.

References Source Treatment Localization Main findings

An et al. (2008), Woo et al. (2013), Juel et al.
(2015), Stravalaci et al. (2020)

ARPE-19 cell line TNF-αa
IL-1β

secreted PTX3 was overexpressed by ARPE-19 cells in inflammatory
conditions, and the released protein had complement-inhibiting
properties

Yamada et al. (2008), Wang et al. (2016) ARPE-19 cell line ox-LDL
4-HNE

secreted PTX3 expression was induced by oxidative stress

Hwang et al. (2019) ARPE-19 cell line
primary H-RPE cells

NaIO3 secreted PTX3 expression was correlated with cell death caused by
oxidative stress

Wang et al. (2016) Mouse retina 4-HNE RPE/inner BrM In a mouse model of AMD, PTX3 was found to co-localize with
factor H and control complement activation

Yamada et al. (2008) Human retina — BrM/
choriocapillaris

PTX3 immunohistochemical staining was documented in tissues
obtained from AMD donors

Swinkels et al. (2018) Human retina — BrM/
choriocapillaris

PTX3 immunofluorescence staining was reported in tissues
obtained both from AMD and non-AMD subjects, suggesting a
role in retina homeostasis

Stravalaci et al. (2020) Human vitreous — secreted PTX3 was detected and quantitated in the humor vitreous of
AMD and non-AMD donors, suggesting that other cell types of
the retina (in addition to the RPE) can make the protein

Yang et al. (2014), Zhou and Hu. (2016),
Erdenen et al. (2018), Elbana et al. (2019)

Human plasma/
serum

— circulating Plasma/serum PTX3 levels were associated with DR

Chodkowski et al. (2018), Hokazono et al.
(2018), Güngel et al. (2021)

Human plasma — circulating No differences were found in the plasma levels of PTX3measured
in DR patients and diabetics without retinopathy

Mutlu et al. (2017) Aqueous humor — secreted PTX3 levels in the aqueous humor were associated with DR

aTNF-α, tumor necrosis factor-α; IL-1β, interleukin-1β; ox-LDL, oxidized low-density lipoprotein; 4-HNE, 4-Hydroxynonenal; NaIO3, sodium iodate.
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PTX3 AS AN ENDOGENOUS RHEOSTAT OF
COMPLEMENT ACTIVATION IN AMD

Initial evidence of an involvement of PTX3 in the
pathogenesis of AMD dates back to 2008, when Yamada
et al. documented the presence of this protein in the
macula of an 81-year-old male with early AMD by means
of immunohistochemistry on post-mortem human eye
specimens (Yamada et al., 2008). Using fluorescence
microscopy techniques, we have afterward recapitulated
these findings in an independent cohorts of AMD donors,
and demonstrated that PTX3 is expressed in the eye of non-
AMD donors too, where it localizes at the interface between
the RPE and choroid, particularly in the intercapillary septa of
the choriocapillaris (Swinkels et al., 2018). Also, we found the
protein in the humor vitreous of both AMD and non-AMD
donors (Stravalaci et al., 2020), suggesting that PTX3 is
constitutively expressed in the human eye, where it might
contribute to tissue homeostasis both in physiological and
pathological conditions. Current literature indicates that
PTX3 is locally made by the RPE in the presence of pro-
inflammatory cytokines, such as TNF-α or IL-1β (An et al.,
2008; Woo et al., 2013; Juel et al., 2015; Stravalaci et al., 2020),
peroxidized lipids (i.e., 4-hydroxinonenanl, 4-HNE) (Wang
et al., 2016), and ox-LDL (Hwang et al., 2019). Based on the
notion that human leukocytes express PTX3 (Doni et al.,
2019), it is plausible that eye-resident phagocytes (in
addition to the RPE) might make the protein, including
retinal microglia and Mu€ller cells. Regardless of the cellular
sources of PTX3 in the eye, this organ marginally contributes
to the protein’s plasmatic pool, which therefore cannot
predict the AMD status (Juel et al., 2015). Conceivably, it
is the locally made protein (i.e., in the posterior segment of the
eye) that contributes to AMD pathogenesis. So far, no large
study has been conducted to assess associations between the
ocular levels of PTX3 and AMD, however, in small cohorts of
donors; trends of increasing protein concentration in the
vitreous (Stravalaci et al., 2020) and staining intensity in
the choriocapillaris (Swinkels et al., 2018) have been
documented in AMD subjects. Also, it is interesting to
notice that transcription of the PTX3 gene in the human
RPE/choroid region increases with age, although in an
AMD-independent fashion (Juel et al., 2015).

The role of PTX3 in AMD has been investigated in diverse
experimental settings. Hwang et al. reported that in the
presence of sodium iodate (that induces oxidative stress),
primary human H-RPE and ARPE-19 cells cultured in vitro
increased PTX3 expression, and the newly synthesized protein
impaired the transcription of antioxidant enzymes, while
inducing that of AMD-associated genes (Hwang et al.,
2019). These findings might suggest that PTX3 contributes
to AMD development by accelerating RPE cell death, however
a non-physiological chemical stimulus (i.e., sodium iodate)
was used throughout the study, and the applied experimental
setting did not consider the effect of PTX3 on activation of the
complement system [a primary pathogenetic mechanism of
AMD (Clark and Bishop, 2018)]. In this regard, PTX3 is a

well-known ligand of complement factor H (CFH) (Deban
et al., 2008), and genetic variations in the CFH gene,
particularly the Y402H polymorphism in the complement
control protein (CCP) module seven of the protein, are
strongly associated with the risk of developing AMD, as
anticipated above (Parente et al., 2017). PTX3 binds factor
H at CCP7 and CCPs19-20, via its C- and N-terminal
domains, respectively (Deban et al., 2008). Therefore,
assembly and control of the factor H/PTX3 complex might
be of functional relevance in retinal physiology and pathology.
In this regard, in an animal model of AMD, genetic deficiency
of PTX3 amplified complement activation induced by 4-HNE
(a product of lipid peroxidation found in the AMD eye), with
increased C3a levels and inflammasome activation, leading to
IL-1β production by the RPE, and enhanced accumulation of
macrophages in the choroid (Wang et al., 2016). These
findings indicate that PTX3 mediates retinal homeostasis in
vivo, especially in inflammatory conditions, whereby it
promotes the recruitment of factor H and tames
complement overactivation. Consistent with this view,
PTX3 has been shown to co-localize with factor H in the
murine inner BrM and RPE, where it controls factor H
distribution and protects the RPE from complement
dysregulation and inflammasome activation (Wang et al.,
2016).

We have recently reported that PTX3 binds RPE cells in
physiological conditions in vitro, however this interaction is
impaired when these cells are stimulated with IL-1β and, to a
lesser extent, TNF-α (to mimic the inflammatory
microenvironment of AMD) (Stravalaci et al., 2020).
Therefore, PTX3 cannot restrain complement on the RPE
surface during inflammation, when expression of the AP-
activating genes (C3 and factor B, FB, but not CFH) is
upregulated (Stravalaci et al., 2020). However, we have
demonstrated that PTX3 recruits both factor H and C3b
onto non-cellular surfaces (simulating the basement
membrane of RPE and choroid, and the BrM), where it
forms a stable ternary complex that acts as a “molecular
brake” for complement activation (Stravalaci et al., 2020).
This mechanism is likely relevant in the presence of the AMD-
associated 402H variant of factor H, which has a more
restricted specificity for sulfated GAGs compared to 402Y,
and likely has decreased ability to control complement
activation at ECM sites, such as the BrM (Clark and
Bishop, 2018). Also, we have reported that PTX3 interacts
with FHL-1 (in addition to factor H), and the Y402H
polymorphism (that is retained in FHL-1) affects the
binding of FHL-1 (but not factor H) to PTX3 (Swinkels
et al., 2018). Immunolocalization studies indicate that FHL-
1 is the major complement inhibitor in the BrM and
intercapillary septa of the choriocapillaris, and passively
diffuses through the BrM, whereas factor H cannot (Clark
et al., 2014). Therefore, PTX3 might act as an ECM anchoring
site for FHL-1 (in addition to factor H), and a “hot spot” for
complement inhibition in the eye. Furthermore, the
interaction of PTX3 with factor H has been proposed to
promote complement-mediated phagocytosis [including
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clearance of apoptotic debris (Deban et al., 2008)], suggesting
that this long pentraxin might take part in the RPE-dependent
turnover of photoreceptor outer segments (POS), a
fundamental process of retinal physiology (Kwon and
Freeman, 2020). Overall, available in vitro and in vivo
evidence points to a protective (rather than pathological)
role of PTX3 in response to complement dysregulation
in AMD.

EMERGING ROLES OF PTX3 IN DR

Diabetes is underpinned by sterile, chronic, low-grade
inflammation characterized by mildly elevated circulating
levels of IL-1β (Donath and Shoelson, 2011). In line with
this view, anti-inflammatory drugs, such as interleukin one
receptor antagonist (Larsen et al., 2007), anti-IL-1β antibody
(Cavelti-Weder et al., 2012), and salsalate (Goldfine et al.,
2013) have been shown to lower hyperglycemia in type 2
diabetes patients. Most diabetic complications, including
retinal diseases, are associated with endotheliopathy
(endothelial dysfunction), which points to inflammatory
vascular pathology as a major point of attention in the
clinical management of diabetes (Rask-Madsen and King,
2013). Interestingly, PTX3 is produced by endothelial cells
during inflammation (Breviario et al., 1992), and has been
consistently proposed as a biomarker of vascular
inflammation (Ristagno et al., 2019). This has prompted
investigations into the role of PTX3 as a marker of disease
in DR, with conflicting outcomes. In fact, higher PTX3 levels
have been documented in the plasma (or serum) of DR
patients, compared to that of diabetics with no retinopathy
or non-diabetic volunteers (Yang et al., 2014; Zhou and Hu,
2016; Erdenen et al., 2018; Elbana et al., 2019), however these
findings have not been recapitulated in other studies
(Chodkowski et al., 2018; Hokazono et al., 2018; Güngel
et al., 2021). Such lack of consistency is likely due to high
variability in the plasmatic concentration of PTX3 in diabetic
patients, as a reflection of varying extents of hyperglycemia-
dependent damage to tissues and vascular beds. This makes it
problematic to detect differences across small cohorts of
patients (like those investigated so far). We propose that
PTX3 is involved in the local rather than systemic
inflammatory reaction to hyperglycemia. Our view is
supported by a study reporting higher levels of the protein
in the aqueous humor of patients with DR than in that of
diabetics with no retinopathy or non-diabetic volunteers
(Mutlu et al., 2017). This suggests that the diabetic damage
to the retinal endothelium is perhaps more evident in adjacent
tissues (like the vitreous) than is in the blood, where any PTX3
contribution from the retinal tissue is likely to be highly
diluted. In line with this, no correlation has been found
between serum hemoglobin A1c (HbA1c) and vitreous
PTX3 levels (Mutlu et al., 2017).

PTX3 is produced by myeloid and endothelial cells in
response to inflammatory stimuli, including TNF-α or IL-
1β (Doni et al., 2019). The inner retina is a complex tissue that

comprises various cells able to synthesize and release PTX3,
and the diabetic microenvironment provides relevant pro-
inflammatory triggers. DR is associated with endothelial
dysfunction, microglia activation, and neurodegeneration
(Stitt et al., 2016). In this context, microglia, endothelial
cells, and neural cells are tissue-resident candidate
producers of PTX3 within the retina. Retinal endothelial
cells are particularly sensitive to damage by hyperglycemia.
Indeed, early glycemia control is a primary therapeutic goal to
avoid the development of DR complications (Yau et al., 2012).
Poor control of glycemia and longer duration of diabetes are
associated with loss of pericytes, thickening of the basement
membrane, and pathological neovascularization in the
vitreoretinal interphase, leading to proliferative DR. Since
PTX3 binds to FGF2 (Camozzi et al., 2006), and inhibits its
proangiogenic functions (Rusnati et al., 2004; Presta et al.,
2018), there is potential for this pentraxin to provide an
alternative to current anti-VEGF therapies for treatment of
DR (and wet AMD), especially in non-responsive cases.
Although inhibition of pathological preretinal
neovascularization is the goal in the clinical management
of advanced proliferative DR, it is important to underscore
that in early-stage DR, intraretinal reparative angiogenesis is a
desired biological outcome (Sapieha, 2012). Therefore, PTX3-
dependent inhibition of angiogenesis (e.g., via binding and
sequestration of FGF2) in the ischemic DR may drive disease
progression (rather than regression) to proliferative
retinopathy.

As outlined above, inflammation plays a major role in DR.
In this regard, microglia are resident cells of the retina that
modulate tissue inflammation. In physiological conditions,
retinal microglia patrol the inner retina and maintain tissue
homeostasis. However, in conditions of prolonged
hyperglycemia and hypoxic stress, an activated microglial
status is induced that promotes inflammation, including
complement activation, and disease progression (Fumagalli
et al., 2015). In this context, PTX3 might exert complement-
modulating in addition to angiogenesis-inhibiting properties,
with a more complex role in DR-associated retinal
inflammation.

CONCLUDING REMARKS

Clinical and pre-clinical evidence corroborates the
inflammatory nature of AMD (Parmeggiani et al., 2013)
and DR (Semeraro et al., 2019), and new molecules and
processes are proposed that take part in their pathogenesis
(Forrester et al., 2020). The inflammatory mediator PTX3 is
emerging as a novel player in neurodegenerative disorders of
the retina (summarized in Table 1). Endowed with
modulatory properties towards complement (Haapasalo
and Meri, 2019) and angiogenesis (Presta et al., 2018), this
pentraxin is ideally positioned at the interface between
immune and metabolic inflammation. In this regard, in
vivo and in vitro data suggest that PTX3 acts as an
endogenous inhibitor of complement overactivation and

Frontiers in Pharmacology | www.frontiersin.org January 2022 | Volume 12 | Article 8113445

Stravalaci et al. PTX3 in Neurodegenerative Retinopathies

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


neovascularization in the human eye, thus holding promise as
a pharmacological target for the treatment of AMD (Wang
et al., 2016; Stravalaci et al., 2020). Available information
points to this pentraxin as a biomarker and, possibly, a
pathogenetic player of DR too, however more research is
needed to address these hypotheses, with major regard to
animal modelling of the disease and clinical investigations.
Human data, in particular, are fragmented, likely due to small
size of the studies so far conducted. Larger cohorts of patients
are needed to overcome this limitation that integrate
biochemical (e.g., protein concentration) and genetic (e.g.,
polymorphisms) information, perhaps accounting for
epistatic interactions between this pentraxin and other
pathogenetic drivers of DR (and AMD), including FGFs
(and complement proteins).
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